Action of GH on skeletal muscle function: molecular and metabolic mechanisms

    1. Ken K Y Ho
    1. Department of Diabetes and Endocrinology, Centres for Health Research, Princess Alexandra Hospital; The Translational Research Institute and the University of Queensland, 37 Kent Street, Wooloongabba, Brisbane, Queensland 4102, Australia
    1. Correspondence should be addressed to K K Y Ho; Email: k.ho{at}uq.edu.au

    Abstract

    Skeletal muscle is a target tissue of GH. Based on its anabolic properties, it is widely accepted that GH enhances muscle performance in sports and muscle function in the elderly. This paper critically reviews information on the effects of GH on muscle function covering structure, protein metabolism, the role of IGF1 mediation, bioenergetics and performance drawn from molecular, cellular and physiological studies on animals and humans. GH increases muscle strength by enhancing muscle mass without affecting contractile force or fibre composition type. GH stimulates whole-body protein accretion with protein synthesis occurring in muscular and extra-muscular sites. The energy required to power muscle function is derived from a continuum of anaerobic and aerobic sources. Molecular and functional studies provide evidence that GH stimulates the anaerobic and suppresses the aerobic energy system, in turn affecting power-based functional measures in a time-dependent manner. GH exerts complex multi-system effects on skeletal muscle function in part mediated by the IGF system.

    Keywords
    • Revision received 14 October 2013
    • Accepted 25 October 2013
    • Made available online as an Accepted Preprint 25 October 2013
    | Table of Contents