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Abstract

Nesfatin-1 was identified in 2006 as a potent anorexigenic peptide involved in the Key Words
regulation of homeostatic feeding. It is processed from the precursor-peptide NEFA/ NUCB2
nucleobindin 2 (NUCB2), which is expressed both in the central nervous system as well nesfatin-1

as in the periphery, from where it can access the brain via non-saturable transmembrane energy homeostasis
diffusion. In hypothalamus and brainstem, nesfatin-1 recruits the oxytocin, the
melancortin and other systems to relay its anorexigenic properties. NUCB2/nesfatin-1
peptide expression in reward-related areas suggests that nesfatin-1 might also be
involved in hedonic feeding. Besides its initially discovered anorexigenic properties, over
the last years, other important functions of nesfatin-1 have been discovered, many of
them related to energy homeostasis, e.g. energy expenditure and glucose homeostasis.

Nesfatin-1 is not only affecting these physiological processes but also the alterations of

glucose metabolism
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the metabolic state (e.g. fat mass, glycemic state) have an impact on the synthesis and
release of NUCB2 and/or nesfatin-1. Furthermore, nesfatin-1 exerts pleiotropic actions
at the level of cardiovascular and digestive systems, as well as plays a role in stress

response, behavior, sleep and reproduction. Despite the recent advances in nesfatin-1
research, a putative receptor has not been identified and furthermore potentially
distinct functions of nesfatin-1 and its precursor NUCB2 have not been dissected yet. To

tackle these open questions will be the major objectives of future research to broaden

our knowledge on NUCB2/nesfatin-1.

Introduction

In quest of novel appetite regulating molecules, in 2006,
Oh-I and coworkers re-discovered NEFA/nucleobindin2
(Nucb2), a peroxisome proliferator y receptor
(PPARG)-activated gene in immortalized cell lines (Oh-I
et al. 2006) and later in the hypothalamus of rodents
(Oh-I et al. 2006). Its gene product NUCB2, a 396 amino
acid (AA) peptide, which was originally described as a
secreted protein of unknown function (Miura et al. 1992,
Barnikol-Watanabe et al. 1994), possesses a number of
putative cleavage sites, suggesting further processing (Oh-I
et al. 2006). The N-terminal fragment, named nesfatin-1,
was subsequently identified in rat cerebrospinal fluid
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(CSF) and the hypothalamic paraventricular nucleus
(PVN), and it was found to dose-dependently reduce
food intake when administered intracerebroventricularly
(i.c.v.) in rodents (Oh-I et al. 2006). Since the seminal
work by Oh-I et al. (2006), numerous research groups have
aimed at elucidating the role of nesfatin-1 not only in the
regulation of food intake but also in other physiological
functions. With this review, we aim at summarizing
the current knowledge in the field with a particular
focus on energy homeostasis. Furthermore, we provide
comprehensive tables
dosages and physiological effects.

on nesfatin-1 administration,
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NUCB2 and nesfatin-1: expression, processing
and release

Nucb2 mRNA is mainly expressed in gastric mucosa and
white adipose tissue and also, but to a minor extent, in
other peripheral organs, e.g. pancreas and testis (Gonzalez
et al. 2009, Shimizu et al. 2009b, Stengel et al. 2009b,
Ramanjaneya et al. 2010, Kim et al. 2014). Within the
central nervous system (CNS), Nucb2 mRNA is present, for
example, in the hypothalamus and brainstem (Oh-I ef al.
2006, Brailoiu et al. 2007) (for more details we refer to the
respective sections).

The product of the Nucb2 gene is a 420 AA peptide
consisting of a 24 AA signal peptide and 396 AA peptide
termed NUCB2. The latter possesses putative cleaving
sites for protein convertases (PC) 1/3 and PC2, suggesting
further processing into three alleged fragments: nesfatin-1
(AA 1-82), nesfatin-2 (AA 85-163) and nesfatin-3 (AA
166-396) (Oh-I et al. 2006). NUCB2 is co-localized with
these enzymes in the cytoplasm (Steiner et al. 1992, Oh-I
et al. 2006, Mohan et al. 2014, 2016), suggesting that
processing of NUCB2 may take place physiologically.
However, to our knowledge, this has not been proven so
far by in vivo and in in vitro studies; Chinese hamster ovary
(CHO) cells overexpressing the relevant genes (Nucb2,
Pc1/3, Pc2), failed to produce nesfatin-1 (Oh-I et al. 2013).
Alternatively, other enzymes, for example, the cell surface
membrane-bound protein furin, which cleaves at the same
general motif as the PCs, might be involved in NUCB2
processing (Seidah & Prat 2002). In most rodent tissues
studied, for example, gastric mucosa, pancreas, pituitary
gland and testis, either only the precursor NUCB2 or
indistinguishable NUCB2/nesfatin-1 was detected (Stengel
et al. 2009b, Kim et al. 2014). However, nesfatin-1, the
amino terminal putative cleavage product of NUCB2, was
unambiguously identified in the hypothalamus and CSF
of rodents (Oh-I et al. 2006) and also in human plasma
(Tsuchiya et al. 2010).

Although this clearly proves the existence of
nesfatin-1 in vivo, it is still unknown whether the putative
cleavage products nesfatin-2 and -3 exist and are secreted
in vivo. The administration of neither nesfatin-2 nor -3
was effective in terms of food intake (Oh-I et al. 2006).
For the biological action, the mid-segment of nesfatin-1,
which corresponds to AA 24-53 of NUCB2 and nesfatin-1,
is of particular relevance (Shimizu et al. 20094, Stengel
et al. 2012, Prinz et al. 2015).

On the cellular level, at least in the PVN, nesfatin-1 is
located mainly in secretory vesicles in perikarya near the
Golgi apparatus, but not in axon terminals, suggesting
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a dendritic release and thus eventually autocrine or
paracrine actions (Maejima et al. 2009). Likewise, in the
periphery, NUCB2/nesfatin-1 immunoreactivity was
detected in intracellular vesicles of gastric oxyntic mucosa
and endocrine cells of pancreatic islets and the anterior
pituitary (Stengel et al. 2009b).

As mentioned previously, NUCB2 is expressed both
in the CNS as well as in peripheral tissues, and it has been
shown that nesfatin-1 can also cross the blood-brain
barrier (BBB) by non-saturable transmembrane diffusion,
consistent with its low lipophilicity (Pan et al. 2007,
Price et al. 2007). This finding suggests that peripheral
nesfatin-1 (either endogenous or exogenous) may access
the CNS to exert biological actions.

Of note, many publications state that nesfatin-1
was detected by antibody (Ab)-based methods (e.g.
immunohistochemistry, immunoassays). However,
in most cases, this statement is not justified, since
with rare exceptions (e.g. Oh-I et al. 2006, Celik
et al. 2013), the assays used could not distinguish
between proteolytically cleaved nesfatin-1 and full-
length NUCB2. Only in some studies, western blots
were performed to distinguish between NUCB2 and
nesfatin-1 based on the molecular weight (e.g. Stengel
et al. 2009b, Kim et al. 2014). Throughout this review,
the term ‘NUCB2/nesfatin-1’ is used whenever one or
the other was not positively identified.

Nesfatin-1: signal transduction

Although the putative NUCB2/nesfatin-1 receptor has not
yet been identified, specific binding sites for nesfatin-1
were detected both in the CNS (e.g. hypothalamus,
cortex) and peripheral organs (e.g. gastrointestinal system,
pituitary, pancreas) (Ishida et al. 2012, Prinz et al. 2016).

Some studies have investigated intracellular signaling
events of nesfatin-1 not only in various cell types,
e.g. in hypothalamic, nucleus ambiguus or dorsal root
ganglia (DRG) neurons or neuronal cell lines but also in
pancreatic p-cells and cardiac myocytes.

As a universal principle, in most cell types, nesfatin-1
stimulates Ca2+influx either through L- (Brailoiu etal. 2007,
Nakata et al. 2011, Ishida et al. 2012), P/Q- (Brailoiu et al.
2007, 2013) or N- (Iwasaki et al. 2009) type Ca2+ channels.
Both neuronal depolarization (Brailoiu et al. 2013) as well
as the increase in intracellular Ca2+ (Brailoiu et al. 2007,
2013, Ozcan et al. 2016) were prevented by pretreatment
with pertussis toxin, indicating the involvement of a
G;-protein-coupled receptor. Accordingly, no increase
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in cyclic adenosine monophosphate (cCAMP) formation
was observed (Ishida et al. 2012). Nevertheless, CREB
phosphorylation was increased in a neuroblastoma cell
line (Ishida et al. 2012), however, not in vivo (Tanida et al.
2015). The activation of protein kinase A (PKA) appears
to differ across tissues and might indicate a tissue-specific
recruitment of G-protein subunits (Brailoiu et al. 2007,
Nakata et al. 2011, Ishida et al. 2012). In addition to
these established G-protein-related pathways, in cardiac
myocytes and DRG neurons, nesfatin-1 acts to inhibit
L-type Ca?* channels through protein kinase C (PKC),
indicating an involvement of G, (Ying ef al. 2015, Ozcan
etal. 2016). These findings, albeit unequivocal with regard
to the type of G-proteins involved, suggest the existence of
one or more 7-transmembrane receptor(s). Furthermore,
mitogen-activated protein kinases (MAPK) (extracellular
signal-regulated kinase (ERK1/2)) (Ishida et al. 2012,
Angelone et al. 2013, Tanida et al. 2015) is activated by
nesfatin-1; 5’ AMP-activated protein kinase (AMPK) and
phosphatidylinositol-3-kinases (PI3K), however, do not
appear to be involved (Tanida et al. 2015).

The current findings on intracellular signaling events
have to be interpreted with caution as they might not be
directly linked to a putative NUCB2/nesfatin-1 receptor.
Some of the observed intracellular consequences,
e.g. the nesfatin-1-induced activation of a cCAMP response
element (Cre)-reporter in a transfected neuroblastoma
cell line (Ishida et al. 2012) and the suppression of cardiac
L-type Ca?+ channels (Ying ef al. 2015), are attenuated by
the melanocortin receptor (MC) 3/4 antagonist SHU9119
(Ishida et al. 2012, Ying et al. 2015). Provided that
nesfatin-1 is not directly acting at the MC3/4 (Oh-I et al.
2006), this could indicate that some observations are not
signaling events of a putative NUCB2/nesfatin-1 receptor.
They could rather result from intracellular signaling
cascades of receptors downstream the alleged NUCB2/
nesfatin-1 receptor, e.g. the MC3 or 4.

Genetics

Different polymorphisms of the Nucb2 gene have been
associated with body weight in correlation studies. Based
on the frequency of these polymorphisms in lean vs obese
subjects some of them were implied to promote obesity
(Zegers et al. 2012), whereas others rather seem to protect
from it (Zegers et al. 2011). Specifically, the 1012C>G
polymorphism reduces the susceptibility for the
development of an obese phenotype. The GG genotype
is more frequent in healthy, lean individuals than in
obese children (Chen et al. 2013) and patients suffering
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from the metabolic syndrome (Wang et al. 2016), and its
presence in the latter patients is associated with lower
fasting glucose levels (Wang et al. 2016). These findings
in metabolic syndrome patients are complemented by the
negative association of this polymorphism with blood
pressure (Tragante et al. 2014).

Energy homeostasis

Homeostatic regulation of food and water intake

Oh-I et al. (2006) were the first to demonstrate that
both nesfatin-1 and its precursor NUCB2 possess
anorexigenic properties. A third ventricle injection of
either NUCB2 or nesfatin-1 at similar doses reduces
food intake in ad libitum fed rats during the dark phase
in Oh-I et al. (2006). The application of the two other
putative cleavage products of NUCB2, nesfatin-2 and/or
nesfatin-3 was not effective. Moreover, the anorexigenic
effect of nesfatin-1 is independent from leptin because
it is still present in leptin-resistant Zucker rats (Brunner
etal. 1997, Oh-I et al. 2006). Conversely, third ventricle
acute administration of a nesfatin-1 Ab as well as daily
injection of a Nucb2 antisense oligonucleotide over
10 days increase food intake, thus suggesting that
endogenous levels of NUCB2/nesfatin-1 play a role in
regulating feeding behavior (Oh-I et al. 2006).
Nesfatin-1’s anorexigenic effect was confirmed in
further studies where nesfatin-1 was injected centrally
in ad libitum fed rats and mice (Maejima et al. 2009,
Stengel et al. 20094, Yosten & Samson 2009, 2010,
Goebel et al. 2011, Konczol et al. 2012, Gotoh et al.
2013) and fasted animals (Yosten & Samson 2009,
Atsuchi et al. 2010, Wernecke et al. 2014). Only in one
study nesfatin-1 failed to suppress light-phase food
intake in fasted animals when given into the cisterna
magna (Stengel et al. 2009a). When given intranasally,
nesfatin-1 reduces cumulative food intake (Shimizu
et al. 2009Db), similar to leptin (Schulz et al. 2004, 2012,
Fliedner et al. 2006), most likely by directly accessing
the brain and thus bypassing the BBB. As Nucb2
mRNA and protein are expressed in the periphery,
the effects of its putative cleavage product nesfatin-1
(and segments thereof) in suppressing food intake
after peripheral administration were also studied.
Intraperitoneal (i.p.) acute administration of nesfatin-1
midsegment decreased food intake in both lean and
db/db leptin-resistant obese mice (Shimizu et al. 2009a),
thus suggesting that also peripheral nesfatin-1 induces
anorexia in a leptin-independent manner. Peripheral
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nesfatin-1 can potentially affect central
food intake regulation either via direct access to the
brain, vagal afferents or via endocrine messengers,
e.g. cholecystokinin (CCK). How and to which extent
these different means of signaling are of physiological
relevance, remains to be elucidated.

Although endogenous NUCB2/nesfatin-1 itself
regulates feeding behavior, its expression can also be
regulated by the feeding state. In rodents, Nucb2 mRNA
and NUCB2/nesfatin-1 protein levels were found to be
reduced by fasting, and normalized by refeeding, both
centrally in the supraoptic nucleus (SON) and PVN
(Oh-I et al. 2006, Kohno et al. 2008, Garcia-Galiano
et al. 2010) as well as peripherally in subcutaneous
adipose tissue (Ramanjaneya et al. 2010) and plasma
(Stengel et al. 2009a). Fittingly, mice fed a high-fat diet
for 12 or 20 weeks show an increase in NUCB2 protein
expression in subcutaneous adipose tissue (Ramanjaneya
et al. 2010). In addition, an acute gavage with a high fat
bolus also increased serum NUCB2/nesfatin-1 levels in
mice (Mohan et al. 2014). Finally, peripheral and central
acute injection of nesfatin-1 midsegment reduced food
intake in mice fed a high-fat diet (Shimizu et al. 2009a,
Prinz et al. 2015), whereas leptin did not (Shimizu et al.
2009a), indicating that long term exposure to high-fat
diet did not cause ‘nesfatin-1 resistance’ analogous to the
well-described leptin-resistance (Crujeiras et al. 2015).
Thus, nesfatin-1 could represent a valid alternative in
the treatment of metabolic diseases even in the state of
leptin resistance.

As mentioned, nesfatin-1 exerts its anorexigenic
functions in a leptin-independent manner. Rather,
nesfatin-1 signaling seems to be important in mediating
leptin-induced anorexia. Recently, it was shown that
leptin increases Nucb2 mRNA expression in the PVN both
in vitro and in vivo (Darambazar et al. 2015). In agreement
with this, in PVN NUCB2-knockdown mice, both
peripheral and central administration of leptin failed
to induce anorexia (Darambazar et al. 2015). Moreover,
central co-administration of leptin and nesfatin-1 did
not yield larger effects on energy expenditure than
nesfatin-1 or leptin alone, possibly suggesting common
downstream signaling mechanisms (Wernecke et al.
2014). However, when endogenous nesfatin-1 was
blocked by the administration of an Ab, leptin was still
capable to induce anorexia (Oh-I et al. 2006). Further
studies are needed to clarify the functional relationship
between these two adipokines.

The nesfatinergic system was shown to interact
with a number of systems known to regulate feeding

nervous
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behavior. For instance, the anorexigenic effect induced
by nesfatin-1 is blocked by the central administration of
the MC3/4 receptor antagonist SHU9119 (Oh-I et al. 2006,
Yosten & Samson 2009). Contrary to peripheral leptin
actions (Huo et al. 2006, Perello et al. 2007), central or
peripheral administration of nesfatin-1 or its midsegment
increased proopiomelanocortin (POMC) and cocaine- and
amphetamine-related transcript (CART) mRNA expression
in the nucleus of the solitary tract (NTS), but not at the
hypothalamic level in rats (Oh-I et al. 2006, Shimizu
et al. 2009a, Wernecke et al. 2014). The interaction
between these two systems is further supported by the
finding that a-melanocyte-stimulating hormone (a-MSH)
administration increased Nucb2 mRNA expression
(Oh-I et al. 2006) and activated NUCB2/nesfatin-1
neurons (Sedbazar et al. 2014) in the PVN.

The anorexigenic effect of nesfatin-1 seems to be,
at least in part, mediated by oxytocinergic neurons. In
fact, nesfatin-1 was demonstrated to be co-localized
with oxytocin within the SON and PVN (Foo et al. 2008,
Kohno et al. 2008). The excitability of oxytocinergic
neurons of the PVN was influenced by nesfatin-1 in vitro
(Price et al. 2008a). Strikingly, endogenous nesfatin-1
was shown to alter oxytocin release in PVN slices
(Maejima et al. 2009). However, central administration of
nesfatin-1 did not affect plasma basal levels of oxytocin
in rats (Yosten & Samson 2010), indicating that axonal
oxytocin release from magnocellular PVN and/or SON
neurons was unaffected. The reduction of cumulative
food intake induced by central nesfatin-1 was blocked
by the coadministration of a selective antagonist for the
oxytocin receptor (H4928) (Maejima et al. 2009, Yosten
& Samson 2010). When injected site specifically into the
PVN, nesfatin-1 suppressed feeding by the stimulation of
the oxytocin system, together with an increased in c-fos
expression in the NTS, suggesting that oxytocinergic
neurons projecting from PVN to the NTS are modulated
by nesfatin-1 to induce anorexia (Maejima et al. 2009).

The nesfatinergic system was also found to interact
with the corticotropin-releasing factor (CRF)/CREF,
receptor system to modulate feeding behavior (see
below). Co-localization of nesfatin-1 with CRF within the
PVN was observed (Foo et al. 2008, Kohno et al. 2008).
In agreement, nesfatin-1 was shown to influence the
excitability of Crf-expressing neurons in vitro (Price et al.
2008a) as well as to increase CRF protein levels (Gotoh
et al. 2013) in the PVN. The administration of a specific
CRF, receptor antagonist (astressin,-B) injected into the
forebrain, but not into the hindbrain, fully abolished the
anorexigenic effect of nesfatin-1 (Stengel et al. 2009a).
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NUCB2/nesfatin-1 were shown to be expressed and
co-localized with the orexigenic peptide neuropeptide
Y (NPY) in the arcuate nucleus (ARC) (Oh-I et al. 2006,
Brailoiu et al. 2007, Inhoff et al. 2010). An in vitro
electrophysiological study demonstrated that the majority
of Npy-expressing neurons in the ARC was hyperpolarized
by nesfatin-1 (Price et al. 2008b), indicating that
nesfatin-1 could suppress food intake by downregulating
NPY signaling. In agreement, rats administered i.c.v. with
nesfatin-1 showed decreased Npy mRNA expression in
the hypothalamus and NTS (Wernecke et al. 2014). Also,
NUCB2/nesfatin-1 neurons of the PVN were inhibited
by NPY in vitro (Sedbazar et al. 2014), confirming that
nesfatin-1 and NPY interact within the PVN-ARC-feeding
center. Lastly, it was also found that the orexigenic effect
of peripheral ghrelin was blocked by desacyl ghrelin via
activation of NUCB2/nesfatin-1 neurons of the ARC
(Inhoff et al. 2008).

In one study the interaction between nesfatin-1 and
the serotoninergic system was addressed. The serotonin
SHT g/ receptor agonist, m-chlorophenylpiperazine,
induced anorexia in a leptin-independent manner by
upregulating Nucb2 expression in the hypothalamus
(Nonogaki et al. 2008). Such effects were blunted in
SHT,. receptor mutant mice (Nonogaki et al. 2008),
suggesting that activation of SHT, receptors might play a
role in regulating Nuch2 expression and, in turn, feeding
behavior. Pharmacological treatment with olanzapine,
a neuroleptic, which acts as an inverse agonist on the
SHT, receptor, was shown to decrease NUCB2/nesfatin-1
expression in hypothalamic feeding-related areas of rats,
leading the authors to speculate that olanzapine could
enhance food intake and in turn body weight gain partly
by downregulating NUCB2/nesfatin-1 expression (Rojczyk
et al. 2015). Finally, in another study, the involvement
of histamine and thyrotropin-releasing hormone (TRH)
in mediating nesfatin-1’s effects was investigated (Gotoh
et al. 2013). Histamine is known to potently reduce
appetite and (Masaki et al. 2004) and NUCB2/nesfatin-1
was found to be expressed in the tuberal hypothalamic
area (THA) (Fort et al. 2008) where histaminergic neurons
are exclusively localized (Giannoni et al. 2009). It was
found that central administration of histamine increased
NUCB2/nesfatin-1 peptide expression in the PVN and in
turn, central administration of nesfatin-1 increased the
turnover of histamine in the hypothalamus. Moreover, the
anorexigenic effect of nesfatin-1 was reduced in animals
with disrupted histamine signaling (Gotoh et al. 2013).
Finally, administration of nesfatin-1 resulted in an
increase in TRH mRNA expression in the PVN and the
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anorexigenic effect of nesfatin-1 was attenuated when an
Ab against TRH was co-administered (Gotoh et al. 2013).

Nesfatin-1 was also shown to alter meal pattern. In
mice, central administration of nesfatin-1 reduced meal
size and increased inter-meal intervals indicating both
satiety (meal termination) and satiation (delayed meal
initiation) (Goebel et al. 2011), whereas central injection
of nesfatin-1 midsegment induced satiety without
affecting satiation (Stengel et al. 2012). Interestingly, in
rats fed normal chow, central nesfatin-1 midsegment
induced satiation, whereas satiety was induced in rats
with diet-induced obesity (Prinz et al. 2015). As suggested
by the authors, these mixed results could be explained by
differences in species, receptor-binding affinity between
full-length nesfatin-1 vs its midsegment and/or the
activation of different signaling pathways depending on
dietary conditions (Prinz et al. 201S5). In a recent study,
treatment with nesfatin-1 resulted in the upregulation
of Cck (a satiation peptide) and in the downregulation
of peptide Yy (PYY, a satiety peptide) mRNA and protein
levels both in vitro and in vivo (Ramesh et al. 2016).

For a comprehensive overview of nesfatin-1’s
effects on homeostatic food intake regulation, please
refer to Table 1.

Nesfatin-1 was shown to be involved not only
in feeding behavior but also in body fluid regulation
(Yosten & Samson 2009, 2010, Konczol et al. 2012,
Yosten et al. 2012, Yoshimura et al. 2014). This was first
demonstrated by Yosten and Samson (2009) who showed
that nesfatin-1reduces water intake when injectedi.c.v.,
an effect mediated by MC3/4 and oxytocin receptors
(Yosten & Samson 2009, 2010). Interestingly, nesfatin-1’s
antidipsogenic effect had an earlier onset with respect
to the anorexigenic effect (60 min vs 150 min) (Yosten
& Samson 2009), raising the possibility that the
reduction of food intake might be a consequence of
the reduced fluid intake. In addition, reduction of
intake elicited by nesfatin-1 was more pronounced in
water than in food (70% vs 50%, respectively) (Yosten
& Samson 2009).

Intracerebroventricular nesfatin-1 dose-dependently
attenuates the water drinking response to angiotensin
II, to overnight fluid restriction, and to hypertonic
saline (Yosten et al. 2012). Consistent with other data
(Oh-I et al. 2006), a 2-day treatment with antisense
morpholino oligonucleotide against Nucb2 gene
resulted in a reduction of NUCB2/nesfatin-1 in the
PVN without altering water intake (Yosten et al. 2012);
however, drinking response upon angiotensin II
administration was exaggerated (Yosten et al. 2012).
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(Goebel et al. 2011, Stengel et al. 2012, Chen et al.
2015). However, how and to which extent nesfatin-1 is
involved in the modulation of ‘wanting’, ‘liking’, and/or
other reward-related behaviors is currently unknown.

Whether nesfatin-1 acts directly or also recruits
other neurotransmitter systems to modulate reward
pathways is yet to be elucidated. One possibility is that
NUCB2/nesfatin-1 neurons interact with melanocortin
and oxytocin systems, which are mediating nesfatin-
1’s effects on homeostatic food intake (Oh-I et al. 2006,
Maejima et al. 2009, Yosten & Samson 2009, 2010). In
support of this idea, melanocortins and oxytocin were
shown to regulate not only homeostatic feeding (Saper
et al. 2002, Sabatier et al. 2013) but also play a role in
the modulation of hedonic pathways. Recently, it
was shown that motivation to obtain sucrose in rats is
downregulated by the activation of MC3 within reward-
related areas (Pandit et al. 2015, 2016). Similarly, oxytocin
reduces methamphetamine-induced seeking behavior in
rodents (Cox et al. 2013) and reward-driven food intake
in humans (Ott et al. 2013).

A second possible scenario might be the interaction
between the nesfatin-1 and ghrelin systems. Ghrelin
and nesfatin-1 are co-expressed in X/A endocrine cells
of the gastric mucosa (Stengel & Taché 2009, Stengel
et al. 2009b). Ghrelin regulates homeostatic feeding by
increasing food intake in both rodents and humans (Wren
et al. 2000, 2001, Gil-Campos et al. 2006). An interaction
of nesfatin-1 and ghrelin is also supported by data
showing their co-localization in goldfish hypothalamus
(Kerbel & Unniappan 2012). Moreover, i.c.v. nesfatin-1
suppresses food intake and downregulates preproghrelin
and ghrelin receptor mRNA expression in the forebrain of
fed fish (Kerbel & Unniappan 2012). In a similar fashion,
i.c.v. ghrelin promotes food intake and downregulates
Nucb2 mRNA expression in the forebrain (Kerbel &
Unniappan 2012). Accordingly, lipopolysaccharide-
induced acute inflammation in rats increased plasma
NUCB2/nesfatin-1 levels (Stengel et al. 2011), whereas
those of acyl and desacyl ghrelin were decreased in
conjunction with reduced food intake (Stengel et al.
2010), thus suggesting that NUCB2/nesfatin-1 and
ghrelin expression might be regulated differentially.
As ghrelin participates in regulating hedonic feeding
(Egecioglu et al. 2010, Skibicka et al. 2012), it can be
speculated that the two peptides might also interact
within reward-related areas.

A summary of nesfatin-1’s effects on the hedonic
aspects of food intake is given in Table 1.
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Gastric distension and gastric acid secretion

NUCB2/nesfatin-1 was not only described as a direct
mediator of central nervous regulation of food intake
but also as a regulator of gastrointestinal functions, e.g.
by slowing down gastric emptying. The latter in turn
supports nesfatin-1’s central nervous anorexigenic actions
by eliciting peripheral satiety signals.

I.c.v. injection of an anorexigenic dose of nesfatin-1
decreased gastric emptying in fasted rats (Stengel et al.
2009a) and mice (Goebel-Stengel et al. 2011). Additionally,
nesfatin-1’s involvement in regulating gastroduodenal
motility was also shown in mice after a central
administration of nesfatin-1’s midsegment (Atsuchi et al.
2010). Although it was shown previously that the CRF,
receptor is involved in the regulation of gastric motility
(Czimmer et al. 2006), nesfatin-1 is recruiting other
pathways than this (Stengel et al. 2009a).

The brain areas that are thought to be responsible for
nesfatin-1's effects on gastrointestinal functions are the
PVN, ARC, CeA and basomedial amygdala (BMA). When
administered into the PVN, nesfatin-1 dose-dependently
decreased gastric motility and emptying, an effect
mediated by oxytocinergic neurons (Guo et al. 2015).
Similarly, when injected into the ARC, CeA or BMA,
nesfatin-1 decreased gastric motility and emptying by
exploiting the melanocortin system (Li et al. 2013b, Wang
et al. 2014, Xu et al. 2015a). Strikingly, the endogenous
level of NUCB2/nesfatin-1 seems to be important in
the physiological regulation of gastric functions as anti-
NUCB2/nesfatin-1 Ab application is also capable to alter
the activity of PVN, ARC, CeA and BMA gastric distension-
sensitive neurons (Li et al. 2013b, Wang et al. 2014, Guo
etal. 2015, Xu et al. 2015a).

Gastric distension (e.g. a consequence of reduced
gastric emptying, gastric and duodenal motility) might
be relayed to the CNS to induce satiety through CCK.
Interestingly, the peripheral injection of CCK increased
c-fos expression in NUCB2/nesfatin-1 neurons of the
SON, PVN, NTS and the area postrema (Noetzel et al.
2009, Stengel et al. 2009a, Saito et al. 2016). Conversely,
nesfatin-1 at an anorexigenic dose increased Cck mRNA
expression in the hypothalamus of fed and unfed goldfish
(Kerbel & Unniappan 2012). This positive feedback
indicates that the two peptides act in concert to suppress
food intake.

In addition to this mechanism, experimental data
also support the existence of a neuronal connection
between the gastrointestinal system and central nervous
NUCB2/nesfatin-1 neurons. NUCB2/nesfatin-1 neurons
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of the NTS, which receive gastric and intestinal afferents
inputs via the vagus nerve, were activated after gastric
distension in rats (Bonnet et al. 2013). In addition,
oral administration of metformin reduced food intake
and gastric emptying in mice, in conjunction with the
activation of NUCB2/nesfatin-1 neurons in the NTS and
dorsal nucleus of the vagus nerve (DMNX) (Rouquet
et al. 2014).

Gastric acid secretion was also found to be affected
by nesfatin-1. Particularly, a central injection of an
anorexigenic dose of nesfatin-1 is also capable to inhibit
the 2-deoxy-p-glucose-stimulated gastric acid secretion via
vagal efferents in rats, as suggested by a 16-fold increase of
c-fos-positive neurons in the DMNX, but not in the NTS
(Xia et al. 2012). In agreement, 80% of DMNX neurons
projecting to the stomach are nesfatin-1 positive (as was
shown by retrograde tracing) (Bonnet et al. 2013).

Thus, nesfatin-1 appears to contribute to the
regulation of food intake by directly and/or indirectly
affecting the integration of input and output signals
between gut and brain.

An overview of nesfatin-1’s effects on gastric
distension and gastric acid secretion is provided in the
Supplementary Table 1.

Thermogenesis

In contrast to nesfatin-1’s role in food intake regulation,
its participation in the regulation of energy expenditure,
the second aspect contributing to whole body energy
homeostasis, is less well investigated and understood.
Konczol and coworkers provided the first evidence
for a function of nesfatin-1 in energy expenditure by
reporting an increase in core body temperature after its
i.c.v. administration (Kénczol et al. 2012). This finding
was substantiated in a study using direct calorimetry to
quantify dry heat loss as a measure for thermogenesis
and thus energy expenditure (Wernecke et al. 2014). In
this study, i.c.v. application of nesfatin-1 increased dry
heat loss of rats over eight hours to 8.49 +1.09 W/kg?-75
compared to 7.09+0.84W/kg075> in control animals
(Wernecke et al. 2014). Thereby other structures than
the PVN are involved because NUCB2 knockdown
in this nucleus does not affect energy expenditure
(Nakata et al. 2016).

In contrast to the findings i.c.v.
administration of nesfatin-1, (s.c.)
osmotic minipump infusion for 7 days elicited a decrease
of oxygen consumption and energy expenditure in the

on acute
subcutaneous
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light phase, but no alteration in the dark phase in freely
feeding rats (Mortazavi et al. 2015). In a short term
experiment (1 day), oxygen consumption was reduced in
the dark phase; this was, however, not reflected in energy
expenditure calculations (Mortazavi et al. 2015). In the
light phase, no alterations were observed (Mortazavi
et al. 2015).

The underlying central nervous and peripheral
mechanisms of nesfatin-1’s impact on thermogenesis
remain to be elucidated.

Nesfatin-1’s effects on thermogenesis are summarized
in Table 2.

Glucose homeostasis

Outside the CNS, Nucbh2 mRNA was detected not
only in adipose tissue but also in rodent and human
pancreatic islets (Riva et al. 2011). The distribution
of mRNA expression is matched by the occurrence of
NUCB2/nesfatin-1 protein (Gonzalez et al. 2009, Stengel
et al. 2009b, Foo et al. 2010, Riva et al. 2011), which is
colocalized almost exclusively with insulin in the p-cells of
pancreatic islets (Gonzalez et al. 2009, Foo et al. 2010, Riva
et al. 2011). In fact, NUCB2/nesfatin-1-immunoreactivity
is present in all or almost all p-cells (Foo et al. 2010, Riva
et al. 2011), with a subcellular distribution distinct from
insulin immunoreactivity (Foo et al. 2010). Colocalization
of NUCB2/nesfatin-1 with PC1/3 and PC2 suggests that
processing into nesfatin-1 may take place physiologically
in pancreatic islets (Mohan et al. 2016).

In the pancreatic p-cells, intracellular NUCB2 mRNA
and/or NUCB2/nesfatin-1 protein synthesis or release are
dynamically regulated by glucose levels: In vitro, Nucb2
mRNA is upregulated in human islets by glucolipotoxic
conditions (high glucose and palmitate) and release can
be triggered by glucose stimulation in rat islets (Foo
et al. 2010). This regulation seems to be impaired in
glycemic diseases; e.g. in streptozotocin diabetic mice,
Nucb2 mRNA and NUCB2/nesfatin-1 protein expression
are significantly reduced in the pancreatic islets
(Gonzalez et al. 2011b). This was confirmed in the islets
of Goto-Kakizaki (GK) rats, a model of type 2 diabetes.
However, the opposite was observed in mice with diet-
induced obesity and as a consequence type 2 diabetes
(Gonzalez et al. 2011b). Finally, islets from patients with
type 2 diabetes exhibited a reduction in Nucb2 mRNA
compared with islets from healthy donors; this correlated
significantly with insulin secretion capacity (Riva et al.
2011). However, the difference was not that marked and
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as the sample size was small, the observations should be
treated with some caution (Riva et al. 2011). The data on
NUCB2/nesfatin-1 in plasma of type 2 diabetic patients
are unequivocal as for type 2 patients, both increased
(Zhang et al. 2012) and decreased (Li et al. 2010) levels
were reported, whereas plasma NUCB2/nesfatin-1 in
type 1 diabetic patients was unchanged compared with
healthy individuals (Li et al. 2010). It should be noted
that plasma NUCB2/nesfatin-1 most likely does not
reflect pancreatic production and release but is rather
derived from major sources as gastric mucosa (Stengel
et al. 2009b) and adipose tissue (Ramanjaneya et al.
2010). In particular, the variable contribution of the
latter might account for the conflicting findings in type
2 diabetic patients in different studies.

A few studies have addressed the effects of glucose
challenge on plasma nesfatin-1 levels. Although in
rats, in an i.p. glucose tolerance test, NUCB2/nesfatin-1
initially decreased and then returned to basal levels in
GK rats and even overshot in healthy Wistar rats (Foo
et al. 2010), gavaging with a high-carbohydrate diet
was without effect on serum NUCB2/nesfatin-1 in mice
(Mohan et al. 2014). In the latter, chronic exposure to a
high-carbohydrate diet, however, altered the circadian
pattern of serum nesfatin-1/NUCB (Mohan et al. 2014). In
humans, oral glucose administration in healthy humans
did not significantly affect plasma NUCB2/nesfatin-1
levels (Li et al. 2010).

Although glucose levels have an impact on Nuch2
mRNA and NUCB2/nesfatin-1 protein release in
pancreatic islets (Foo et al. 2010), on the other hand,
nesfatin-1 enhances glucose-induced insulin secretion
by promoting Ca2+ influx through L-type channels
(Nakata et al. 2011). This process, unlike nesfatin-
1’s actions on hypothalamic neurons (Brailoiu et al.
2007), is independent of PKA (Nakata et al. 2011).
Furthermore, phospholipase A, (PLA,), which releases
the putative second messenger arachidonic acid, crucial
for glucose-stimulated insulin release (Jones & Persaud
1993), is neither involved in nesfatin-1’s insulinotropic
effects (Nakata et al. 2011). Like in other areas, further
advances are hampered by the not yet identified
putative nesfatin-1 receptor. Of note, insulin release
from pancreatic islets is only stimulated by nesfatin-1
in concentrations that exceed the plasma levels of
lean subjects (Tsuchiya et al. 2010, Nakata et al. 2011).
However, the local production of nesfatin-1 in the
B-cells and its increased secretion by elevated glucose
levels (Foo et al. 2010) might either intracellularly or
in an autocrine and/or paracrine fashion, participate/
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facilitate insulin release upon elevated blood glucose
independently from circulating NUCB2/nesfatin-1
levels.

In vivo results from rodents are more complex and
thus more difficult to interpret: continuous s.c. infusion
of nesfatin-1 in rodents improved glucose utilization
by enhancing insulin secretion (Gonzalez et al. 2011a,
Li et al. 2013a). At the same time, due to an activation
of intracellular insulin signaling, glucose uptake is
ameliorated by increasing insulin sensitivity in liver,
muscle and adipose tissue of mice (Li et al. 2013a).
However, another study in rats could only confirm
the effects on glucose uptake for the adipose tissue
(Gonzalez et al. 2011a) without detecting changes in
insulin signal transduction (Gonzalez et al. 2011a). Also
in the myocardium, nesfatin-1 augments insulin receptor
signaling to increase glucose uptake by mobilization
of the glucose transporter, supposedly due to local
nesfatin-1 production, which is dependent on diet and
coronary health (Feijoo-Bandin et al. 2013). Interestingly,
in normoglycemic fasted db/db or freely fed wild-type
mice (Su et al. 2010), blood glucose was not affected by
intravenous nesfatin-1, suggesting that nesfatin-1 is able
to correct a pathological hyperglycemic state, but is not of
relevance in the normoglycemic range.

In the CNS, nesfatin-1’s function with regard to
glucose metabolism is less well investigated, but it is
implied to be involved both in glucose sensing as well as
in the control of glucose metabolism. For instance, the
excitability of glucose responsive neurons is modulated by
nesfatin-1 in the ventromedial and lateral hypothalamus
(Chen et al. 2012) and the PVN, where about 27% of
NUCB2/nesfatin-1 immunoreactive neurons respond
to either glucose and/or insulin (Gantulga et al. 2012),
the latter implying a physiological role for NUCB2/
nesfatin-1 in the modulation of glucose sensing. This
seems to be specific to hypothalamic nuclei as in the
NTS, another important structure for glucose sensing in
the brain (Routh 2002), the response of glucose-sensing
neurons is not modulated by NUCB2/nesfatin-1, despite
its local expression (Mimee & Ferguson 2015).

In both normal chow and high-fat diet fed rats,
reduction of central NUCB2/nesfatin-1
availability by adenoviral-mediated RNA interference
induced peripheral insulin resistance, leading to an
increase in hepatic glucose flux and a decrease in glucose
uptake in peripheral tissues (Wu et al. 2014).

Fittingly, nesfatin-1 administered i.c.v. acts in the
hypothalamus to increase whole-body insulin sensitivity
by stimulating insulin receptor signaling in the liver to

nervous
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inhibit hepatic gluconeogenesis and in the muscle to
improve glucose uptake (Yang et al. 2012). However,
two other studies failed to observe effects of central
nesfatin-1 on blood glucose, glucose tolerance and
insulin sensitivity (Su et al. 2010, Li et al. 2013a).

For a compilation of nesfatin-1’s effects on glucose
homeostasis please refer to Table 2.

Other systems

Cardiovascular actions

Besides its well-described actions on the regulation of
energy homeostasis, the central nervous administration
of nesfatin-1 exerts cardiovascular effects. For example,
it was shown that that i.c.v. administration of nesfatin-1
increases mean arterial pressure (MAP) (Yosten & Samson
2009, 2010, 2014, Tanida & Mori 2011, Tanida et al. 2015);
heart rate was also found to be increased (Tanida et al.
2015); ERK phosphorylation CRF neurons of the PVN is
involved in these effects (Tanida et al. 2015). Until now,
it is not clear whether central nervous nesfatin-1 activates
cardiac sympathetic innervation, but it was shown that
it increases renal sympathetic nerve activity (Tanida &
Mori 2011, Tanida et al. 2015), known to be involved in
blood pressure regulation through the renin-angiotensin
system (Nakamura & Johns 1995).

Electrophysiological studies have identified the
median NTS as a potential site through which nesfatin-1
exerts is cardiovascular actions (Mimee et al. 2012).
Nucb2 mRNA and NUCB2/nesfatin-1 protein expression
was observed in this nucleus (Brailoiu et al. 2007, Foo
et al. 2008) and both central nervous and peripheral
administration of nesfatin-1 induce c-fos expression in
its neurons (Maejima et al. 2009, Shimizu et al. 2009a).
Local injection of nesfatin-1 into the median NTS
increased both blood pressure and heart rate (Mimee et al.
2012). In contrast, site-specific injection into the nucleus
ambiguus, a key site for parasympathetic cardiac control
(Mendelowitz 1999), induced bradycardia, although MAP
was not affected (Brailoiu et al. 2013). The existence of
NUCB2/nesfatin-1 immunoreactivity in this nucleus in
rodents (Goebel ef al. 2009a, Goebel-Stengel et al. 2011)
implies a physiological function of the peptide.

Nesfatin-1 involvement in cardiovascular regulation
is not surprising as many neuropeptides involved in
conveying nesfatin-1’s anorexigenic signal are also
known to contribute to the control of cardiovascular
function, e.g. the melancortin system (Cone 2005).
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Hyperstimulation of this system may underlie the
development of hypertension in several animal models
(da Silva et al. 2013, Segal-Lieberman & Rosenthal 2013).
Consequently, studies aimed at dissecting the
downstream mechanisms of nesfatin-1’s cardiovascular
action focused on these neuropeptides by blocking their
respective receptors. In particular, work from the Samson
group has clarified that upon i.c.v. administration,
nesfatin-1 acts through sequential activation of POMC
neurons (Yosten & Samson 2009, Tanida & Mori 2011),
followed by oxytocin (Yosten & Samson 2010) and then
CRF (Yosten & Samson 2014) neurons to increase blood
pressure (Yosten & Samson 2009, 2014). This circuit
matches with nesfatin-1’s downstream events involved
in the regulation of food intake (Yosten & Samson 2014).

In addition to its central nervous actions, intravenous
administration of nesfatin-1 possesses a hypertensive
effect (Yamawaki et al. 2012), potentially through acting
both at the central nervous, but also at the peripheral
level by modulating arterial resistance (Yamawaki et al.
2012). Both NUCB2 and nesfatin-1 protein have been
detected in the heart and nesfatin-1 can directly control
heart performance in vitro (Angelone et al. 2013).

The actions of nesfatin-1 on the cardiovascular system
are summarized in Table 3.

Anxiety, behavior and depression

A role of nesfatin-1 in
depressive-like behaviors has suggested. As
mentioned previously, NUCB2/nesfatin-1
immunoreactivity was detected in brain areas known to
be involved in anxiety-like behavior and stress response,
such as amygdaloid nuclei, bed nucleus of the stria
terminalis, PVN and hippocampus (Brailoiu et al. 2007,
Fort et al. 2008, Goebel et al. 2009a, Goebel-Stengel et al.
2011). The i.c.v. administration of nesfatin-1 was shown
to increase both adrenocorticotropic hormone (ACTH)
and corticosterone plasma levels in rats (Konczol et al.
2010, Yoshida et al. 2010), suggesting that nesfatin-1
might play a role in the modulation of the hypothalamus-
pituitary-adrenal (HPA) axis activity. Moreover, bilateral
adrenalectomy increased Nuch2 mRNA expression in the
PVN, indicating that its expression is regulated by HPA
axis activity (Konczol et al. 2010).

In line with these data, central administration of
an anorexigenic dose of nesfatin-1-induced anxiety-like
behavior in rats tested in the elevated-plus maze (the gold
standard test to measure unlearned anxiety response) and
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fear conditioning test (learned anxiety response) (Merali
et al. 2008). In addition, when animals were exposed to
a novel environment, nesfatin-1 not only increased the
latency to eat palatable food but also decreased the amount
consumed (Merali et al. 2008). In an open field test, both
an acute central nervous (Yosten & Samson 2009) and
a peripheral chronic administration of nesfatin-1 (Ge
et al. 2015) increased anxiety-like behavior. The latter
was accompanied by reduced brain-derived neurotrophic
factor (BDNF) and ERK 1 and 2 phosphorylation in the
prefrontal cortex and hippocampus (Ge et al. 2015).
Moreover, nesfatin-1-induced anxiety was blocked by the
co-administration of SHU9119 (Yosten & Samson 2009),
indicating that nesfatin-1 participates in stress response
mechanisms by recruiting the central melanocortin
system. However, the contribution of the hypothalamic
(HPA) and extrahypothalamic circuitries (e.g. amygdaloid
nuclei, where nesfatin-1 is abundantly expressed (Goebel
et al. 2009a, Goebel-Stengel et al. 2011)) in inducing
anxiety- and fear-related behaviors has yet to be dissected.

Rats exposed to restraint stress did not show altered
NUCB2/nesfatin-1 plasma levels (Yoshida et al. 2010).
On the other hand, in a recent study, NUCB2/nesfatin-1
plasma levels were increased in a water avoidance test (Xu
etal. 2015b). Such a discrepancy could be explained by the
different stress tests (physical vs psychological) or other
methodological differences (Yoshida et al. 2010, Xu et al.
2015b). Interestingly, NUCB2/nesfatin-1 plasma levels
were positively correlated with those of corticosterone;
in addition, hypothalamic Nuchb2 mRNA expression levels
were also found to be increased and positively correlated
with those of Crf after water avoidance stress acute
exposure (Xu et al. 2015b).

Exposure to restraint stress increased corticosterone
serum levels (Xu et al. 2010) and c-fos expression in
NUCB2/nesfatin-1 neurons of several brain areas such
as PVN, SON, ARC, NTS, locus coeruleus (LC), raphe
pallidus (RP) and ventrolateral medulla (VLM) (Goebel
et al. 2009b, Yoshida et al. 2010). Furthermore, it
increased Nucb2 mRNA expression in the PVN and VLM
(Konczol etal. 2010). Thus, the NUCB2/nesfatin-1 system
is recruited under stress conditions. Together with the
finding, that i.c.v. administration of nesfatin-1 increased
c-fos expression in PVN, SON, NTS, LC, DR and medial
raphe (Yoshida et al. 2010), central nervous NUCB2/
nesfatin-1 appears to be involved in orchestrating
autonomic, neuroendocrine and behavioral responses
to stress.

Matching these findings from rodent experimental
models, recent data in humans also suggest that a

232:1 R58

relationship between nesfatin-1 and stress-related mood
disorders might exist. NUCB2/nesfatin-1 plasma levels
of patients affected by major depressive disorders were
higher than those in healthy subjects (Ari et al. 2011).
Moreover, a positive correlation was found between
circulating NUCB2/nesfatin-1 levels and anxiety in
women diagnosed with anorexia nervosa (Hofmann
et al. 2015a) or obesity (Hofmann et al. 2013, 2015b),
whereas this relationship was inversed in obese men
(Hofmann et al. 2015b). Intriguingly, drug-free suicide
male victims displayed higher Nuch2 mRNA expression
in the Edinger-Westphal nucleus than in controls,
whereas levels were lower in female victims (Bloem
et al. 2012).

For nesfatin-1's effects in the context of anxiety,
behavior and depression, please see Table 3.

Epilepsy

The findings on nesfatin-1 altering neuronal excitability
(Price et al. 2008a,b, Mimee et al. 2012, Li et al. 2014,
Chen et al. 2015) led researchers to investigate the
role of this peptide in neurological disorders such
as epilepsy, characterized by imbalanced excitatory
and inhibitory neuronal inputs. Subjects diagnosed
with primary generalized epilepsy had higher
saliva and serum nesfatin-1 levels than control
(Aydin et al. 2009). This increase could be reduced
by antiepileptic drug treatment (Aydin et al. 2009).
In addition, serum nesfatin-1 levels were found to be
higher in epileptic patients up to 48h after an
epileptic attack than in healthy subjects (Aydin et al.
2011). Fittingly, kainic acid-induced epileptic seizures
increased plasma NUCB2/nesfatin-1 levels in rats
(Liu et al. 2011). Whether NUCB2/nesfatin-1 plays a
facilitative or inhibitory role in triggering epilepsy
seizures and in the pathophysiology of epilepsy remains
to be determined.

Sleep

As the discovery of co-expression of NUCB2/nesfatin-1
and melanin-concentrating hormone protein (MCH) in
the THA (Fort et al. 2008), a central nervous structure,
which is closely related to the regulation of rapid
eye movement (REM) sleep (Luppi et al. 2006), a few
studies have aimed at investigating potential functional
connections between NUCB2/nesfatin-1 protein or Nucb2
mRNA expression and sleep.
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It was shown that abolishment of REM sleep reduces
Nucb2 mRNA and NUCB2/nesfatin-1 protein expression
in the dorsal lateral hypothalamus, whose lateral
hypothalamus subsection (Papp & Palkovits 2014)
is among others involved the regulation of the sleep
and wake cycle. REM sleep rebound in turn activates
NUCB2/nesfatin-1 neurons (Vas et al. 2013). Data on
REM sleep alterations upon nesfatin-1 i.c.v. injection
are unequivocal as both a reduction (Vas et al. 2013)
as well as a slight increase (Jego et al. 2012) have been
published; in line with the latter observation, blockade
of endogenous nesfatin-1 expression negatively affects
REM sleep (Jego et al. 2012).

Besides these few functional studies, in human sleep
apnea syndrome an inverse correlation between NUCB2/
nesfatin-1 in peripheral circulation and the severity of
disease was observed (Aksu et al. 2015, Araz et al. 2015,
Shen et al. 2015), whether there is a functional link
remains to be elucidated.

Reproduction

Reproductive maturation and function are closely linked
to the availability of energy, thereby placing priority to
survival of the individual over the thriving of a population.
Known endocrine mediators linking metabolic state
and reproduction are, e.g., insulin and leptin. Both
act at the hypothalamic level to convey information
about the metabolic state to gonadotropin-releasing
hormone (GnRH) neurons in the PVN and thus in turn
control the hypothalamic—pituitary—gonadal (HPG) axis
(Hill et al. 2008).

Recent data suggest that also NUCB2/nesfatin-1 is
involved in the interaction between energy status and
reproduction (Garcia-Galiano & Tena-Sempere 2013,
Navarro & Kaiser 2013), particularly with respect to the
regulation of female pubertal transition, during which
Nucb2 mRNA and protein expression were significantly
increased in the hypothalamus (Garcia-Galiano et al.
2010). In contrast, during this developmental stage,
a negative energy balance decreased both Nucb2
mRNA and protein expression (Garcia-Galiano et al.
2010). Furthermore, central nervous administration of
nesfatin-1-induced luteinizing hormone (LH) secretion
in freely feeding and to an even greater extent also in
short-term fasted pubertal female rats (Garcia-Galiano
et al. 2010). Fittingly, morpholino oligonucleotide-
induced knockdown of hypothalamic Nucb2 mRNA
expression delayed pubertal transition and reduced LH
levels and the weights of the ovaries. Food intake was
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not affected in these animals, suggesting a direct effect
of NUCB2/nesfatin-1 on pubertal maturation (Garcia-
Galiano et al. 2010).

To date, there is only limited information
available on whether nesfatin-1 is also involved in
the regulation of the adult HPG axis: in adult female
rats, 50pmol nesfatin-1 i.c.v. did not affect plasma LH
(Garcia-Galiano et al. 2010). Preliminary data, which
were only presented at two conferences,
that upon i.c.v. administration of a very high dose of
nesfatin-1 (1 nmol), plasma LH and follicle-stimulating
hormone (FSH) were increased in male rats (Tadross et al.
2010, Patterson et al. 2011). Conversely, in the pituitary,
Nucb2 mRNA expression is regulated by 17-estradiol and
progesterone sex steroids, suggesting the existence of a
feedback-mechanism in the NUCB2/nesfatin-1-HPG-
axis interaction (Garces et al. 2014).

In a recently published study, however, i.c.v.
administration of nesfatin-1 significantly reduced the
expression of GnRH mRNA in the hypothalamus and
FSH and LH mRNA in the pituitary (Gao et al. 2016),
suggesting an inhibitory role of nesfatin-1 on the
HPG axis. Matching observations were also made in fish
after peripheral administration of nesfatin-1 (Gonzalez
et al. 2012).

The downstream mediators of nesfatin-1 in the context
of reproduction have not yet been identified; however,
neuropeptides such as oxytocin and a-MSH are known to
regulate GnRH action and thus are potential candidates
(Parent et al. 2008, Roa & Herbison 2012). Furthermore,
the recently discovered neuropeptide phoenixin, which
is colocalized with NUCB2/nesfatin-1 in a number of
hypothalamic nuclei (ARC, PVN, ventromedial and lateral
hypothalamus) (Palasz et al. 2015) has been suggested as
a potential mediator for nesfatin-1’s action with regard to
reproduction. Phoenixin increases GnRH, GnRH receptor
and Kiss1 gene expression (Yosten et al. 2013, Treen et al.
2016) and potentiates GnRH-stimulated LH release in vitro
(Yosten et al. 2013). These findings were substantiated by
an in vivo study demonstrating that i.c.v. phoenixin dose
dependently increased plasma LH in diestrus female rats
(Stein et al. 2016).

In the periphery, NUCB2/nesfatin-1 immunoreactivity
has been detected in rodent and human testes’ Leydig
cells; in rat testes, Nuch2 mRNA and NUCB2/nesfatin-1
are controlled by the pituitary (Garcia-Galiano et al.
2012). During pubertal transition, NUCB2/nesfatin-1
protein (but not mRNA) was significantly increased and
was suppressed by short-term food deprivation (Garcia-
Galiano et al. 2012), resembling the findings in the
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hypothalamic of female rats under the same conditions
(Garcia-Galiano et al. 2010). Furthermore, Nucb2 mRNA
and NUCB2/nesfatin-1 protein expression in rat placenta
and also plasma NUCB2/nesfatin-1 decrease in the course
of gestation (Garces et al. 2014).

Supplementary data
This is linked to the online version of the paper at http://dx.doi.org/10.1530/
JOE-16-0361.
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