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Abstract

Animal oviducts and human Fallopian tubes are a part of the female reproductive
tract that hosts fertilization and pre-implantation development of the embryo. With
an increasing understanding of roles of the oviduct at the cellular and molecular
levels, current research signifies the importance of the oviduct on naturally conceived
fertilization and pre-implantation embryo development. This review highlights

the physiological conditions within the oviduct during fertilization, environmental
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regulation, oviductal fluid composition and its role in protecting embryos and
supplying nutrients. Finally, the review compares different aspects of naturally
occurring fertilization and assisted reproductive technology (ART)-achieved fertilization
and embryo development, giving insight into potential areas for improvement in

this technology.

Introduction

Fertilization is a complex process that enables the
reproduction and continuation of the species. In
mammals, successful fertilization requires that sperm
should survive the extremely harsh environment
of the female reproductive tract and reach the
site of the newly released egg(s) in the oviduct (or
Fallopian tube in humans). The oviduct, a part of
the female reproductive tract, is a tube-like structure
that connects the ovary to the uterus. The oviduct is
composed of the following three main regions ordered
from the ovary toward the uterus: the infundibulum
(fimbria in humans), in which most cells are ciliated
epithelial cells; the ampulla, which contains large
numbers of ciliated epithelial cells and is the site of
fertilization; and the isthmus, which contains a large
number of secretory epithelial cells. With these three
distinct structures, the oviduct serves as a passage that
transports gametes and the embryo as well as provides
important structural, environmental and nutritional
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support for early embryonic development. Unlike the
ovary and uterus, which have been extensively studied
and relatively well understood, the oviduct is less well
understood for its contribution in reproduction. Yet,
dysregulation or disruption of oviductal function can
result in infertility or life-threatening conditions such
as ectopic pregnancy.

This review focuses on the oviductal function in
establishing successful pregnancy, with new insights
based on recent discoveries. This article first explains
the oviductal function before fertilization during
sperm and egg transport. Then, it describes oviductal
function in fertilization, embryo development, embryo
transport and abnormalities of the oviduct that could
disrupt these processes. Because assisted reproductive
technologies (ARTs), such as in vitro fertilization (IVF) and
intracytoplasmic sperm injection (ICSI), can bypass the
human Fallopian tubes entirely, this review also outlines
the possible adverse outcomes of IVF/ICSI to emphasize
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the importance of the oviduct during fertilization and
embryo development.

The path to fertilization

At intercourse, sperm entering the vagina have to survive
a hostile vaginal microenvironment, including strong
acidic conditions (Oberst & Plass 1936), before entering
the cervix. The cervical mucus flow flushes out pathogens
and removes non-motile sperm (Tung et al. 2015), as
recently reviewed in Suarez (2016). The flow naturally
selects for healthier sperm to advance to the uterus,
where phagocytosis continues to remove weaker sperm.
Then, the sperm undergo hyperactivation, a process
that is required to complete their physiological change
to become competent for fertilizing the egg (reviewed
in Tosti & Menezo 2016). Only hyperactivated sperm
generate a strong counter-beating flagellum to overcome
the viscoelastic mucus created by oviductal epithelial
cells (Suarez et al. 1991, 1992). Details for sperm transport
through the female reproductive tract are discussed in the
following sections.

Oviduct guides sperm to the fertilization site

There are three potential mechanisms that guide the sperm
through the oviduct, including rheotaxis, thermotaxis
and chemotaxis.

Rheotaxis

Once sperm enter the oviduct, they will have direct
contact with the oviductal fluid, which is generated by
the transudate fluid from the systematic circulation
and the secretory epithelial cells of the oviduct (Leese
1988). The fluid current is generated by ciliated epithelial
cells and tubal contraction, which provides significant
support to transport eggs and embryos. For sperm, the
contact with epithelia and fluid to cause fertilization
requires morphological changes to overcome this
upcoming obstacle. One of the tubal current functions is
to conduct a rheotaxis mechanism to guide the sperm to
the site of fertilization (Fig. 1) (Miki & Clapham 2013).
Rheotaxis is a mechanism whereby capacitated sperm can
move against the direction of the current.

Soon after the sperm enter the isthmic region of the
oviduct, the sperm heads attach to the oviductal epithelial
cells. The studies using scanning electron micrographs of

232:1 R2

Ampulla

Cumulus
cells

Thermotaxis sensors
(TRPM8 and Opsins)

Uterus (!
{ 852329’5 Fimbria

Isthmus

Cooler
37°C (98.6°F)

l Thermotaxis

g O Chemotaxis

Rheotaxis

Sperm hyperactivation

Symmetrical Asymmetrical
beating beating
Figure 1

Oviduct-guided fertilization. The oviduct regulates fertilization through
sperm guidance and sperm hyperactivation. The sperm guidance is
achieved through rheotaxis, thermotaxis and chemotaxis. Rheotaxis is
created by tubal fluid, which generates a current flow from the ampulla
toward the isthmus of the oviduct. Sperm swim against this current based
on the physical rotation of the flagella upon CatSper (Cation channel of
Sperm) activation. Thermotaxis is mediated through a Ca2+-sensing
transient receptor potential channel (TRPM8) and G protein-coupled
receptor (opsins). This thermal sensibility of human sperm can detect a
difference of 0.006°C (Bahat et al. 2012). Temperatures depicted (37°C vs
39°C) are from the finding in rabbits (Bahat et al. 2003). Chemotaxis is
driven through progesterone (P,) released from the cumulus cells and
through small cytokines found in the follicular fluid. Together, these
processes provide guidance for sperm to swim toward the eggs and be
competent for fertilization. COC, cumulus-oocyte complex.

bovine sperm illustrate the physical interaction between
the sperm head and cilia on the apical surface of oviductal
epithelial cells (Pollard et al. 1991). Interaction between
oviductal epithelial cells and sperm has also been observed
in rabbit (Smith & Nothnick 1997), horse (Dobrinski
et al. 1997) and human (Morales et al. 1996). In mice, the
sperm attach to and detach from the oviductal epithelial
cells several times before reaching the ampulla (Chang
& Suarez 2012). Additionally, recent findings indicate
that there are dynamic differences between the physical
interactions between the sperm and the oviductal
epithelial of the ampullary and isthmic regions (Ardon
et al. 2016). Ultimately, the attachment of the sperm and
the epithelial cells create a deposition or a reservoir of
sperm within the oviduct.

Sperm-oviductal epithelial interaction causes the
modification of sperm surface proteins and subsequently
induces the hyperactivation of the sperm by activating
the CatSper (Cation channels of Sperm) on the flagella
(Ren et al. 2001, Quill et al. 2003, Chung et al. 2011, Miki
& Clapham 2013). Upon CatSper activation, a large Ca?+
ion influx in the sperm flagella is triggered, subsequently
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altering the beating pattern from symmetrical to
aggressive asymmetrical propulsion (Fig. 1). Asymmetrical
beating of the flagella produces greater amplitude of
force and subsequently aids its speed toward the end
of the journey. Studies have demonstrated that CatSper
activation and the physical rotation of the sperm flagella
are the mechanisms behind rheotaxis (Miki & Clapham
2013). The sperm from male mice lacking CatSper cannot
be hyperactivated, and the males are sterile (Ren et al.
2001). Therefore, the activation of the CatSper channel
and the downstream physiological changes are required
for sperm to become fertile.

Thermotaxis

In addition to the CatSper channel, a Ca?*-sensing
transient receptor potential channel (TRPMS8) (De Blas
et al. 2009) and a G protein-coupled receptor well known
for its role in photon sensing in the retina (opsins) (Perez-
Cerezales et al. 2015) are also present on the sperm.
Combined with other recent studies on human sperm, it
is possible that sperm have the ability to detect shallow
temperature differences of less than one-hundredth of
a degree (in Celsius) (Bahat et al. 2012). Thermosensing
ability allows sperm to be directionally guided according
to the oviduct temperature gradient, as previously
observed in rabbit, mouse, pig, cow and human (Hunter
et al. 2000, Bahat et al. 2003, 2005, Hunter 2012). Despite
the studies conducted concerning the thermosensing
channels and the temperature difference in the oviduct,
some evidence suggests that the temperature gradient
in the oviduct serves to influence gene expression and
protein modification of the egg and embryo (Grinsted
et al. 1985, Ye et al. 2007); however, thermotaxis may play
a minor role in sperm guidance compared with rheotaxis.

Chemotaxis

Chemotaxis of sperm has been studied in different species
and is most well known in sea urchins via resact, a peptide
released from the egg (Ward ef al. 1985). In Xenopus,
egg jelly also produces allurin as chemotaxis for sperm
attraction (Olson & Chandler 1999, Olson et al. 2001).
In humans, freshly released cumulus-oocyte complexes
(COCs) can secrete progesterone (P,) as a chemoattractant
for sperm (Teves et al. 2006, Oren-Benaroya et al. 2008).
Chemokine receptors — CCR1, CCRS and CCR6 - have
been identified on human sperm (Isobe et al. 2002,
Caballero-Campo et al. 2014). CCL20 ligands found in
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the follicular fluid can bind to CCR6 and alter sperm
directional movement (Caballero-Campo et al. 2014). The
merging of follicular fluid and the oviductal fluid after
ovulation may provide sufficient chemoattractants to
ensure the arrival of sperm at the ampulla.

Atrial natriuretic peptide (ANP) and its precursor A
(NPPA) are found in pig, mouse, rat and rabbit oviducts
(Kim et al. 1997, Zhang et al. 2006, Bian et al. 2012). ANP
receptor (NPR1), however, is expressed on the sperm. Upon
ANP and NPR1 binding, ANP activates the cyclic GMP-
dependent protein kinase pathway (PKG) and induces
acrosome reactions in pig, cow and human sperm (Zamir
et al. 1995, Rotem et al. 1998, Zhang et al. 2006). This
reaction might provide additional evidence regarding the
role of ANP as a human sperm chemoattractant (Zamir
et al. 1993, Anderson et al. 1995).

Anandamide (AEA), a phospholipid signaling
molecule, acts through cannabinoid receptors 1 and 2
(encoded by Cnrl and Cnr2 genes) and was previously
identified to regulate neurological signaling and memory
(Subbanna et al. 2013, Basavarajappa et al. 2014). AEA has
been found in oviductal fluid, whereas CNR1 is present
on the sperm (Aquila et al. 2010, Gervasi et al. 2013). AEA
regulates sperm metabolism through insulin secretion
(Aquila et al. 2009), implying the possibility that AEA
from the oviduct externally facilitates the metabolism
of sperm. Recently published studies suggested that AEA
in the oviduct activates CNR2 and transient receptor
potential vanilloid 1 (TRPV1) to induce Ca?* influx into
the sperm, which become hyperactivated and are released
from oviductal epithelia (Gervasi et al. 2011, 2016,
Osycka-Salut et al. 2012, Amoako et al. 2013).

Overall, the oviduct guides sperm toward the
fertilization site through various comprehensive
mechanisms. Most importantly, the oviduct facilitates the
hyperactivation of sperm to become fertile.

Egg entering the oviduct

Unlike sperm, eggs are released from the ovary during
ovulation and enter the infundibulum (or fimbria). The
cumulus cells surrounding the egg form the cumulus-
oocyte complex or COC. Once inside the oviduct, the
cumulus cells serve as a nutrient support for the egg.
The cumulus cells use glucose for their own energy
production (Sutton et al. 2003) and also produce energy
sources (pyruvate and cysteine) that are needed for
the cellular functions of the eggs (Tanghe et al. 2002,
Sutton-McDowall et al. 2010). Cumulus cells also bridge
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the communication between the environment and the
egg through gap junctions (Simon et al. 1997, Li et al.
2007, Huang & Wells 2010).

The initial attachment of the egg to the oviduct
epithelia is accomplished through COC-oviduct epithelia
interaction. The filaments of the extracellular matrix
from cumulus cells adhere to the glycocalyx at the
entrance of the ciliary crowns at the epithelial cells of the
infundibulum (Lam et al. 2000). Then, the COC is drawn
into the oviduct and is ready for fertilization.

Other aspects of oviduct-guided fertilization

Sperm orient themselves by reacting to the oviduct
environment to continue along the path of fertilization.
The oviduct also reacts to the presence of the sperm and
optimizes the microenvironment within the oviductal
lumen by regulating fluid viscosity, oviductal muscular
contraction and by promoting sperm-egg recognition.

Oviductal fluid

Sperm is bathed in oviductal fluid to advance toward the
site of fertilization. The oviductal fluid is generated from
secretory cells of the oviduct and is regulated by estrogen
(E,) and other hormones (discussed in detail in a later
section). The oviductal protein concentration is the
lowest at ovulation and highest around menstruation
(Lippes et al. 1981). Changes in protein concentration
and its content can alter fluid viscosity,
influencing the flow rate of the fluid. Oviductal epithelial
cells sense the change of fluid viscosity by transient
receptor potential vanilloid 4 (TRPV4) channel (Andrade
et al. 2005, Teilmann et al. 2005, Lorenzo et al. 2008).
TRPV4 detects phospholipase in the oviductal fluid and
regulates ciliary beat frequency (CBF) to enhance the
fluid movement when it is too viscose, as observed in the
respiratory tract. The oviduct can also sense the presence
of sperm and adjust the protein content by increasing
heat shock protein 70 (HSP70) and antioxidants in the
oviductal fluid, possibly to help reduce sperm stress
(Georgiou et al. 2005).

hence

Smooth muscle contraction

The smooth muscle contraction in the oviductisregulated
by prostaglandins (PGs) through prostanoid receptors,
which are modulated by E, (Spilman & Harper 1975,
Ball et al. 2013, Huang et al. 2015). In humans, the
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oviductal PGs are mainly PGE and PGF produced by
epithelial cells (Lindblom et al. 1983). PGE, and PGF,,
increase muscle contraction, whereas PGE; decreases
muscle contraction (Wanggren et al. 2008). Evidence
indicates that the contraction is possibly regulated by
both E, and P,, as estrogen and progesterone receptors
(ESR and PGR) are expressed in the interstitial Cajal-
like cells in the muscle cell layer of the oviduct (Cretoiu
et al. 2009). The function of the muscle contraction is
generally recognized to be for sperm transport purposes
(Overstreet & Cooper 1978a). Suarez and coworkers
suggested that the muscle contraction mainly helps the
sperm to pass through the cervix, rather than acting as
a rapid transport for sperm to reach the fertilization site
(Suarez & Pacey 2006). This idea is strongly supported
by experiments in rabbits, in which the sperm that
reached the end of the oviduct within a few minutes
were damaged (Overstreet & Cooper 1978a,b).

Fertilization

Recent studies demonstrated that heat shock proteins
are involved with sperm-egg recognition. Heat shock
protein member A2 (HSPA2) is present in the human
spermatozoa and binds with arylsulfatase A (ARSA) and
sperm adhesion molecule 1 (SPAM1) (Redgrove et al.
2012, 2013, Bromfield et al. 2016). Both ARSA and SPAM1
are detected in the rabbit and mouse oviduct (Vitaioli
et al. 1996, Griffiths et al. 2008). HSPA2 can also bind
with angiotensin-converting enzyme (ACE) and protein
disulfide isomerase A6 (PDIA6) to form a complex, and
then engage in sperm-zona recognition. Interestingly,
oxidative stress of sperm can significantly reduce the
binding ability of the ARSA/SPAM1/HSPA2 complex to
the zona pellucida (Bromfield et al. 2015).

Soon after the egg and sperm convene at the ampulla,
fertilization occurs. With the penetration of the sperm
into the egg, ovastacin is released from the egg’s cortical
granules and cleaves the zona pellucida 2 protein (ZP2)
(Burkart et al. 2012), leading to zona hardening and
preventing polyspermy. In a recent study, ZP2 peptide-
treated beads, deployed in the mouse female reproductive
tract, act as a decoy to attract sperm and form binding,
resulting in female infertility (Avella et al. 2016). These
ZP2 peptide beads efficiently provide a contraceptive
mechanism without any pathological defect in the female
reproductive tract. Another newly discovered sperm-egg
interaction is that of Izumo1 and Juno. Izumol is present
on the sperm and interacts with the Juno receptor on
the egg, causing a rapid shedding of Juno to prevent
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polyspermy (Bianchi et al. 2014). Juno is a species-specific
protein and may contribute to the prevention of cross
species sperm-egg recognition (Han et al. 2016).

After sperm-egg recognition, the gametes fuse and the
pronuclei form. This event leads to embryogenesis, and
the next chapter of development begins. Embryogenesis
is a very early stage of the development in which the
embryo undergoes a few cellular divisions before entering
the uterus. It usually takes 3-4 days for human and mouse
embryos to develop into the 8-cell (human) or 16-cell
(mouse) stage in the oviduct. Those early cell divisions
do not increase cell size but rather equally allocate the
cytoplasm from the original zygote (Pelton et al. 1998).
The embryo is transported from the site of fertilization
toward the end of the oviduct during the early cleavage
stage. At the end of the oviduct, embryos prepare to
enter the uterus at the morula and blastocyst stages. The
simultaneous embryo development and transport in
the oviduct is an inseparable mechanism under normal
physiological conditions.

Oviductal influence on embryo development

The pre-implantation embryo is housed inside the oviduct,
exposed to and surrounded by oviductal secretory fluid
and in contact with the oviductal epithelial cells. The
microenvironment within the oviduct provides a stable
temperature, optimal pH and dynamic fluid secretions to
support embryo development.

Before fertilization, the oviductal fluid serves in the
following three major functions: gamete protection,
sperm guidance and egg guidance (Ballester et al. 2014,
Kumaresan et al. 2014). After fertilization, the oviduct
assists the development of pre-implantation embryos
by producing the factors required for embryo cleavage
(discussed in following sections). This phenomenon
was first described in the sheep model where the
oviductal epithelial cells were cultured with the embryos
(Gandolfi & Moor 1987). Gandolfi and coworkers found
that the blastocyst cleavage rate was at 80% when the
embryos were cultured with oviductal epithelial cells, in
comparison to a 33% cleavage rate when cultured with
fibroblast cells. This finding indicates that the presence
of oviductal epithelial cells, and not just any type of
somatic cell, is crucial for blastocyst development. The
improvement of embryo development after culturing
with oviductal epithelial cells or explanted oviduct has
also been demonstrated in several species, including
mouse (Sakkas & Trounson 1990), pig (White ef al. 1989),
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cattle (Eyestone & First 1989) and human (Yeung et al.
1992). These findings indicate that the oviduct epithelia
and the oviductal fluid provide the pre-implantation
embryos an ideal physiological and biochemical
environment to sustain development.

To determine the possible factors secreted from the
oviductal epithelial cells that support and promote embryo
development, we have outlined the fluid constituents
during the early stage of pregnancy. Oviductal fluid is
generated by two compositions: (1) the transudation of
the systemic circulation and (2) the active biosynthesis
from the secretory epithelial cells of the oviduct (Leese
1988). The fluid is composed of albumin, transferrin,
glycoproteins,  galactose, immunoglobin, glucose,
pyruvate, amino acid, lactate, cytokines, many growth
factors and a monitored gas composition (Beier 1974,
Leese 1988). The functions of these factors in the oviduct
are discussed in the following sections.

Oviductal fluid: influence on embryo
nutrient and growth

Nutrients

Early embryos usually stay in the oviduct for 3-4 days
(Croxatto 2002). During this time, the fertilized embryos
transition from oxidative metabolism to glycolic
metabolism (Folmes & Terzic 2014). This transition is
accompanied by (1) different nutrient compositions as
the embryo travels through the oviduct, (2) maturation
of the mitochondria to enable the embryo to establish
its own metabolism and (3) a change in oxygen tension
parallel to this shift in metabolism (Gardner et al. 1996,
Absalon-Medina et al. 2014).

After the cumulus cells fall off in post-fertilization,
the pre-implantation embryos use oxidative metabolism
to acquire energy, mostly from pyruvate and lactate
as the main sources of energy (Gardner & Leese 1990,
Dumollard et al. 2007a,b, Absalon-Medina et al. 2014).
Pyruvate, lactate, lipids and amino acids are present
in the oviductal fluid, and the levels of these nutrients
fluctuate through the estrous cycle in mice, rabbits, pigs
and humans (Nieder & Corder 1982, 1983, Nichol et al.
1992, Leese et al. 1993, Tay et al. 1997). The carboxylic
acids are processed through immature mitochondria
(characterized by the short and less formed cristae,
shown in Fig. 2A) (Motta et al. 2000, Trimarchi et al. 2000,
Dumollard et al. 2007a). Several studies in pigs and cattle
showed that fatty acids (in a form of acyl-coA) are used
as an energy source for the embryo (Sturmey et al. 2009,
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Figure 2

The influence of the oviduct on embryo development. (A) The main energy supply for the embryos is pyruvate and lactate. During the very early stage
of embryo development, pyruvate and lactate are provided by the oviductal fluid as energy sources for oxidative metabolism. The oviduct can also
supply the glycogen as an energy source for the embryos during the cleavage stage. Amylase (AMY2B) is produced within the oviductal epithelial cells
and converts glycogen to sugar. At this stage, the mitochondria of the embryos are immature and do not function. During morula and blastocyst stages,
the mitochondria are fully mature and can use oxygen and glucose to produce their own energy via glycolysis as they leave the oviduct. (B) At the same
time, oviductal epithelial cells provide embryotrophic factors, such as growth factors, to promote cleavage and embryo development. EGF, epidermal
growth factor; FGF, fibroblast growth factor; IGF, insulin-like growth factor; TGF, transforming growth factor.

Sutton-McDowall et al. 2012). Acyl-CoA diffuses through
the mitochondrial membrane in the presence of carnitine
(as a cofactor) through carnitine palmitoyl transferase
1B (CPT1B) and is used for p-oxidation, resulting in the
production of acetyl-CoA (Sutton-McDowall et al. 2012).

As embryos continue developing, glycolytic
metabolism slowly takes over as the mitochondria
become mature. However, in human, the metabolic
switch is not complete until the blastocyst stage
(Sathananthan & Trounson 2000). This glycolytic
metabolism requires supplies of glucose and simple
sugars. Glycogen granules are present in the ampulla
and isthmic secretory cells of the oviduct in monkey
and human (Odor et al. 1983, Schultka & Cech 1989).
In pigs, the glycogen level increases after ovulation
(Lindenbaum et al. 1983, Gregoraszczuk et al. 2000).
This evidence suggests that oviduct secretion prepares
embryo metabolism transit during the pre-implantation

stage. Additionally, enzyme amylase (AMY2B) plays a
major role in converting glycogen into sugar. Several
studies indicated that there is an upregulation of AMY2B
in the human Fallopian tube (Mc et al. 1958, Hochberg
1974, Hayashi et al. 1986, Groot et al. 1990, Marquez
et al. 2005). Therefore, it is likely that the compact
polysaccharide can be converted into a simple sugar by
AMY2B in the oviduct, and these simple sugar molecules
can be used in cellular metabolism by both the oviduct
and the cleaving embryo.

When human embryos develop into blastomeres,
mitochondria are equally divided into each of the cells
and are elongated and matured (Fig. 2A). The mature
mitochondria can now use oxygen and glucose in
glycolysis to provide ATP for further embryo development
(Sathananthan & Trounson 2000). In mice, this is evident
with the timing of embryo oxygen consumption, which
peaks at the blastocyst stage (Leese 2012).
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In addition to energy substrates, CO, also serves as a
carbon source for RNA synthesis (Quinn & Wales 1974,
Pike et al. 1975). In mouse and rabbit, CO, fixation has
been demonstrated in early developing embryos (Quinn
& Wales 1974, Pike et al. 1975). The level of CO, is
inversely proportional the HCO,;- concentration, which
is modulated by the carbonic anhydrase (CA) enzyme
expressed in the oviductal epithelial cells (Lutwak-Mann
1955, Ge & Spicer 1988) as well as a Cl-/HCO;- exchanger
(solute carrier family 26) expressed in pre-implantation
embryos (Lu et al. 2016). The HCO,- level in the oviduct is
relatively high compared with other tissues (Vishwakarma
1962, Maas et al. 1977), and it has been previously
shown that HCO;- is indispensable for the cleavage of
pre-implantation embryos (Kane 1975). These studies
indicate that a balance of CO, and HCO;- concentration
needs to be fine-tuned not only for optimal pH conditions
but also for RNA synthesis and the normal cleavage of the
pre-implantation embryo development.

Growth factors

Embryotrophic factor-3 from human oviductal cells plays
a significant role in enhancing pre-implantation embryo
development by promoting proliferation and inhibiting
apoptosis (Xu et al. 2004). Epidermal growth factor (EGF)
(Adachi et al. 19995), transforming growth factor (TGF)
(Chegini et al. 1994), insulin-like growth factor (IGF)
(Carlsson et al. 1993, Pfeifer & Chegini 1994, Daliri et al.
1999) and fibroblast growth factor (FGF) are all detected
in human Fallopian tissues (Fig. 2B). Mouse embryos
cultured with EGF, TGF and IGF have an increased number
of blastocyst development from 2-cell embryos (Paria
& Dey 1990). The co-cultured 2-cell stage embryo and
the Fallopian tube epithelial cells significantly increase
the cleavage rate and enhance blastocyst development
(Takeuchi et al. 1992). However, in similar co-culture
conditions, inhibition of EGF and TGF will attenuate
the development of embryo from the cleavage stage to
blastocyst. IGF receptor is also detected in 8-cell stage
buffalo embryos (Daliri et al. 1999). This suggests that
embryotrophic factors, including growth factors in the
tubal fluid, can have a direct positive impact on cleavage
stage embryo development.

In addition to the growth factors listed previously,
hormone-like lipids such as prostaglandins also promote
embryo development. In mice, the oviduct produces 10
times more prostaglandin I, (PGI,) at day 2 than day 4
after coitus (Huang et al. 2004). The spiked production of
PGI, is timed with the early cleavage stages of the embryo,
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and then the production drops around the time embryos
hatch in the uterus. This finding suggests that PGI,
potentially plays a role in early embryo development.
Additionally, several studies demonstrated that addition
of transferrin, albumin and selenium can improve bovine
and goat embryonic development (Hammami et al. 2013,
Wydooghe et al. 2014, Xie et al. 2015, Guimaraes et al.
2016). These findings suggest that the presence of growth
factors in the tubal fluid may play an important role in
promoting and enhancing embryogenesis.

Oviductal fluid: protection against
embryo stress

Tubal fluid protects gametes from environmental stress
to ensure embryo quality and pregnancy outcome. After
the shedding of the cumulus cells, the embryo depends
on tubal fluid and internal antioxidant activities to gain
protection against reactive oxygen species (ROS)-induced
stress (Fig. 3). Two major systems are involved in this
process: non-enzymatic and enzymatic antioxidants
(reviewed in Guerin et al. 2001).

Reduced glutathione (GSH), taurine, hypotaurine
and cysteamine (CSH) are the main non-enzymatic
antioxidants in the oocytes and embryos (Guerin et al.
2001). GSH reduces ROS level in the oocytes and increases
the hatching rate of mouse blastocysts when added into
the culture medium (Gardiner & Reed 1994). Moreover,
considerable amounts of GSH are detected in the mouse
oviduct and uterine flushing (Gardiner et al. 1998). CSH is
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Figure 3

Oviduct-mediated embryo protection against stress and immune
responses. Oviductal epithelial cells produce heat shock protein family
(HSP25 and HSP70) to handle heat stress. Oviductal fluid also contains
catalase, superoxide dismutases (SOD1/2) and glutathione peroxidase
(GPX4) to reduce stress of the embryos from reactive oxygen species. In
addition to stress, the oviduct also protects the embryos against their
own immune system, partly through the E,/ESR1 signaling, by inhibiting
the production of antimicrobial peptides and excess protease activity.
ESR1, estrogen receptor .
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present in the secretions of the female reproductive tract
(Guyader-Joly et al. 1998) and is proposed to act through
the hydroxyl radical (OH*) scavenging pathway (Guerin
etal. 2001). The OH" scavenging pathway may also covert
CSH into hypotaurine, a sulfinic acid neutralizing OH*
activity, and generate taurine as a byproduct (Guerin
& Menezo 1995). Both hypotaurine and taurine are
present at high levels in the embryo environment and
are produced by the oviduct epithelial cells of cow, sheep,
goat and rabbit (Guerin et al. 1995, Guerin & Menezo
1995). In addition, albumin and transferrin are highly
abundant in the oviductal fluid. Transferrin acts as a
metal chelator to prevent the formation of OH* from Fe2+
ions (Nasr-Esfahani & Johnson 1992, Guerin et al. 2001),
whereas albumin is shown to prevent lipid peroxidation
in the sperm (Alvarez & Storey 1983), suggesting that both
transferrin and albumin may provide indirect protection
for the embryos against oxidative stress.

In the enzymatic pathway, catalase, superoxide
dismutases (SODs) and glutathione peroxidases (GPXs)
are the major enzymes involved in embryo protection
(Guerin et al. 2001). Catalase is one of the enzymes
that converts ROS into H,O and O, (Harvey et al. 1995).
Similarly, SOD1 and SOD2 bind to ROS byproducts and
turn the byproducts into O, and hydrogen peroxide
(El Mouatassim et al. 2000, Jang et al. 2010). Catalases,
SOD1 and SOD2 are found in the oviduct of mice, cows
and humans. Glutathione also plays a similar role in
embryonic development and protection (Salmen et al.
2005, Hansen & Harris 2015). GPX4 is well known for
its function in suppressing cell death and reduction in
hydrogen peroxide (Imai et al. 1996, Agbor et al. 2014).
Increase in E, induces the GPX4 production in bovine
oviduct (Lapointe et al. 2005). This evidence indicates
that E, and the oxidative stress preventing enzymes act
in concert to protect the embryos against ROS exposure.

In addition to oxidative stress, embryos also
encounter physical stress from the environment. The 1-
to 2-cell stage mouse embryo expresses HSP70, which is
regulated by heat shock factors (HSFs) (Christians et al.
1995, 1997). HSP70 family proteins play an important
role in protecting the cell from heat stress by ensuring
correct protein folding. Interestingly, the oviduct
expresses HSF25 and 70 (Fig. 3), which can potentially
provide heat stress protection at the molecular level to
ensure correct protein folding in the newly fertilized
embryo (Mariani et al. 2000, 2003). Mice lacking
Hsfs had significant increases in cell death when the
embryos experienced heat stress for 2h (Le Masson &
Christians 2011). A study in water buffalo indicated
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that when the embryos are exposed to heat stress for a
prolonged period of time (24 h), the heat also decreases
embryo cell numbers (Ashraf et al. 2014). These studies
suggest that there is a tolerable limit of heat stress that
the embryo can handle.

Estrogen-mediated embryo protection
against immune system

E, and its nuclear receptors (estrogen receptors) play a
major role in the reproductive system, from regulating
the hormonal cycle, ovulation and sexual behavior
to cancer development (Couse & Korach 1999).
Numbers of studies demonstrated that E, is required
for immunoprotection in the female reproductive
tract, including the vagina and uterus (Wira et al. 2005,
Haddad & Wira 2014). However, the actions of E, in
regulating the immune functions in the oviduct are
unclear. Recently, a study indicated another important
property that E, possesses—embryo protection. E,
acts through estrogen receptor a (encoded by Esrl
gene) in the oviductal epithelial cells, which protects
embryos from the attack of the maternal immune
system. Loss of ESR1 in the oviductal epithelial cells
in female mice results in excess protease activity and
increased expression of antimicrobial peptides such as
defensins. These changes, due to a lack of ESR1 in the
oviduct, dampen the plasma membrane integrity of the
embryos and ultimately cause embryonic death before
the 2-cell stage (Winuthayanon et al. 2015). The study
demonstrated that the epithelial ESR1 is required to
suppress innate immune systems (Fig. 3) by changing
gene expression related to inflammation responses in
the oviduct during day 1 and 2 of pregnancy. This result
suggests that without E, signals through ESR1 on the
oviductal epithelial cells, newly fertilized embryos will
not be able to overcome the mother’s immune system.
These findings infertility
that previously has not been demonstrated, in which
the disruption of E, signaling or ESR1 action in the
Fallopian tube can cause infertility.

reveal another scenario

Gas in the oviduct

Little is known about the gas composition in the
oviduct or the oviductal fluid. Compared with the 20%
oxygen level in the atmosphere, the concentration of
oxygen in the oviduct of monkeys, hamsters and rabbits
is between 2% and 8% (Mastroianni & Jones 1965,
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Yedwab et al. 1976, Fischer & Bavister 1993). The
relatively low oxygen concentration in mammalian
oviducts could result in minimal ROS levels and protect
embryos from stress, as high concentrations of oxygen
can lead to an increase in ROS and oxidative stress
(Catt & Henman 2000).

Dysregulation of H,S gas in the Fallopian tubes has
been linked to impaired embryo transport in humans.
H,S is abundant in the Fallopian tube epithelial
cells and synthesized intrinsically through the cell
cytoplasm. This signaling pathway is upregulated
during pregnancy and is mainly responsible for
spontaneous oviduct contraction, which
provides a positive factor to the embryo movement
toward the uterus (Ning et al. 2014). Nitric oxide
has been identified in the Fallopian tube; it mediates
tubal muscle contraction, with possible roles in
the regulation of sperm motility (Ekerhovd et al.
1997, Kobayashi et al. 2016). Dimethylarginine
dimethylaminohydrolase 2 (DDAH2), an enzyme
regulating nitric oxide synthesis, is also expressed
in the oviduct in the presence of egg and embryo
(Georgiou et al. 2005). Therefore, H,S and nitric oxide
could contribute to the regulation of tubal contraction
during fertilization and embryo transport.

muscle

Embryo transport

It is necessary to mention embryo transport, as embryo
development and transport occur simultaneously.
Embryo transport from the oviduct to the uterus takes
approximately 1-10 days, depending on the species
(reviewed in Croxatto 2002). In mammals, unfertilized
eggs and embryos are transported to the uterus at
different rates. In horses, only embryos are transported
to the uterus, whereas the unfertilized eggs are retained
in the oviduct (Betteridge & Mitchell 1974, Flood et al.
1979, Freeman et al. 1992). Several studies indicated
that horse embryos produced prostaglandin E, (PGE,),
which mediates an acceleration of the transit to the
uterus (Weber et al. 1991a,b). In rats and hamsters,
fertilized eggs reach the uterus at higher rates compared
with the unfertilized eggs (Villalon et al. 1982, Ortiz
et al. 1986). These findings illustrate that embryo
transport is an interactive process between the embryos
and the oviduct. Here, the three major elements
regulating embryo transport are listed: the beating of
ciliated epithelia, tubal fluid flow and tubal muscle
contraction (Fig. 4).
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Figure 4

Roles of the oviduct during embryo transport. Embryo transport is
composed of tubal muscle contraction and the motility of ciliated
epithelial cells. Estrogen (E,) generally increases the tubal muscle
contraction, tubal fluid secretion, and ciliary beat frequency (CBF), which
accelerate the embryo transport rate. Opposite to E,, progesterone (P,)
causes muscle relaxation and decreases CBF to reduce the embryo
transport rate. In addition, P, also inhibits E,-induced tubal fluid
production. Prostaglandins (PGs) can be produced in the oviductal
epithelial cells or induced by E, treatment. PGE, and PGF,, stimulate
muscle contraction in both human and bovine oviducts. Endothelin 1 and
2 are expressed and contribute to the oviduct contraction. IP3, inositol
triphosphate; PGE,, prostaglandin E,; PGF,,, prostaglandin F,; PGR,
progesterone receptor.

Ciliary beating

Ciliated epithelial cells have a multiciliated structure on
the apical plasma membrane. The beating of the cilia
generates the movement of the fluid in the oviduct,
which promotes the movement of the embryo.

P, and E, are the key players in regulating ciliary
beat frequency (CBF). P, reduces CBF through classical
progesterone receptors (PGRs) expressed on the ciliated
epithelial cells in a dosage-dependent manner in humans
and mice (Mahmood et al. 1998, Bylander et al. 2010,
2013). A non-classical PGR is expressed in the lower part
of the cilia stalk in mouse oviducts (Teilmann et al. 2006).
Recent studies in mice indicated that low dosage of P,
and short activation time (within 30min) are sufficient
to reduce oviductal CBF (Bylander et al. 2010, 2013).
Therefore, extra-nuclear signaling of CBF through non-
genomic actions of P, without involving a long-delayed
genomic regulation may be the cause of direct CBF
regulation.

E, is required to accelerate the transport of the eggs
(Orihuela et al. 2001). E, acts via a non-genomic pathway
through protein phosphorylation of PKC and PKA in
rats and cows (Orihuela & Croxatto 2001, Orihuela
et al. 2003, Wen et al. 2012). Moreover, in the oviductal
secretory cells, E, induces the production of cAMP, which
promotes adrenomedullin activation (Liao et al. 2013). In
rats, adrenomedullin increases CBF by acting through the
calcitonin-gene-related peptide (CGRP) receptor in the
oviductal epithelial cells (Liao et al. 2011).
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The findings from muscarinic receptor-knockout
(Chrm1~~, Chrm3-/-, Chrm4-/- and Chrm5-/-) mice suggest
that the cholinergic neuromuscular system is not required
for the ciliary beat function, as the particle transport rate
in the oviduct remains unchanged compared with their
control littermates (Noreikat et al. 2012).

Tubal muscle contraction

The embryos move back and forth along the oviduct due
to the contraction of myosalpinx, with the net progress
toward the uterus (Talo 1991). However, studies in
rabbits and rats showed that inhibition of muscle
contractility does not affect the transport of the embryos
(Halbertetal. 1976, 1989). It suggests that at least in these
species, ciliary beating alone is capable of transporting
the embryos from the oviduct to the uterus. In humans,
oxytocin, P,, PGs and nitric oxide participate in the
tubal muscle relaxation and contraction (Ekerhovd et al.
1997, Jankovic et al. 2001, Wanggren et al. 2008). P,,
through PGR-A and PGR-B relaxes muscle contraction
in mice (Conneely et al. 2003). Administration of P, in
the ex vivo culture of human Fallopian tube reduces both
amplitude and frequency of tubal muscle contraction
(Wanggren et al. 2006); however, treatment with PGR
receptor antagonist, mifepristone, has a minimal effect
on the contraction. Nevertheless, the exact signaling
pathway, beyond the ligand-receptor interaction,
through which P, is involved in directing muscle
relaxation remains unclear.

E, can induce the production of inositol triphosphate
(IP3) to smooth muscle contraction and
accelerate egg transport in the rat oviduct (Orihuela et al.
2006). Additionally, E,, P, and endothelin-1 stimulate
the release of PGs (PGE, and PGF,,) in bovine oviduct
(Wijayagunawardane et al. 2001). Both PGE, and PGF,,
are shown to stimulate muscle contraction in human
and bovine oviducts (Wijayagunawardane et al. 2001,
Wanggren et al. 2008). Endothelin-2 alone can also induce
muscle contraction in the rat oviduct through endothelin
receptor type A (Al-Alem et al. 2007). These findings
indicate that ovarian hormones have both direct effects
on stimulating the tubal muscle contraction and indirect
effects via the induction of PGs.

Cannabinoid receptor 1 and 2 (Cnrl and
Cnr2), which are G protein-coupled receptors, play
crucial roles in pregnancy. Cnrl~- and Cnrl-/-/Cnr2-/-
double-knockout mice have significantly higher
number of embryos retained in the oviduct (35-46%
retained embryos in the oviduct) compared with

increase
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WT control (0% in oviduct) (Wang et al. 2004). This
suggests that CNR1 and CNR2 are important for normal
embryo transport.

Tubal fluid flow

Studies assessing the movement of microspheres showed
that the orientation of fluid is toward the uterus in rabbits,
sheep, cows and guinea pigs, whereas the flow is oriented
toward the ovary in the pigs (Gaddum-Rosse & Blandau
1973, 1976). These results showed that the tubal fluid
flow is oriented differently depending on the species.
In sheep and rabbits, the oviductal fluid secreted from
secretory epithelial cells is increased by female steroid
hormones, especially E, (Hamner & Fox 1968, McDonald
& Bellve 1969). The fluid production is attenuated when
P, is co-administered with E,, suggesting that P, opposes
E,-induced fluid secretion (Fig. 4). In rabbits, ovariectomy
causes decreased secreted fluid in the oviduct, and this
fluid level can be restored by E, treatment (Bishop 1956),
suggesting that E, is the major regulator for secretory fluid
production within the oviducts. A recent study in mice
demonstrated that inhibition of prolactin, a hormone
secreted from the anterior pituitary after mating, using
bromocriptine severely reduced the oviductal fluid
volume and flow (Miki & Clapham 2013). The increased
oviductal fluid secretion is mostly due to the increased
water availability, which is related to the function of the
transmembrane water transport proteins, aquaporins
(AQPs). In rats, expression of Agp5, Aqp8 and Agp9 is
regulated by both E, and P, (Branes ef al. 2005). These
findings indicate that E,, P, and prolactin play a major
role in fluid production in the oviduct. In summary, an
overall action of E, is to increase the embryo transport
rate by stimulating muscle contraction, inducing fluid
production and flow, and increasing the CBF, whereas
P, has an opposite effect of E, by reducing the embryo
transport rate.

Recently identified pathways affecting
embryo transport

The incidence of ectopic pregnancy is one in every
50 normal pregnancies, and 95% of ectopic pregnancies
are associated with defective Fallopian tubes (Tenore
2000). Recent studies demonstrate that some novel
pathways contribute to the pathological conditions
of Fallopian tubes, with potential ramifications in
human infertility.
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Pathways crucial for normal oviduct development

In the majority of mammals, including rodents and
rabbits, a healthy oviduct is a rather coiled tube with
no obstructions within to ensure an open passage for
eggs, sperm and embryos (Stewart & Behringer 2012).
In humans and non-human primates, however, the
coiled structure is not present in the Fallopian tubes.
Due to difficulties in obtaining human tissues, scientists
have been using genetically engineered mice as a model
organism to study the roles of proteins of interest during
oviduct development. The recent findings demonstrated
that the morphological changes leading to a less coiled
or uncoiled oviduct and formation of cysts within the
oviduct can result in infertility. Wingless-type integration
family member 4 (WNT4) signaling is critical for the
development of the female reproductive tract, as female
mice lacking Wnt4 expression showed a non-coiled
oviduct that lacked folding (Prunskaite-Hyyrylainen
et al. 2016). Moreover, overexpression of Notch in the
reproductive tract produced similar phenotypes whereby
the oviduct failed to coil (Ferguson et al. 2016).

Dicer, an endonuclease responsible for microRNA
(miRNA) function, is also crucial for the development
of the female reproductive tract. Loss of Dicer in the
mouse reproductive tract disrupts oviduct organization
by reducing both the length and coiling (Nagaraja et al.
2008, Gonzalez & Behringer 2009). Additionally, mice
lacking Dicer also developed oviductal cysts and severe
inflammation in the oviduct at the uterotubal junction.
These phenotypes lead to degeneration of the eggs and
embryo transport failure. WNT7a is another critical
signaling pathway involved in early female reproductive
tract development, as a loss of Wnt7a results in female
sterility due to an abnormal development of uterus and
oviduct (Parr & McMahon 1998). These findings indicate
that signaling molecules involved in WNT, Notch
and miRNA regulation play critical roles in oviductal
development and coiling.

Pathways crucial for ciliogenesis and ciliary function

In addition to organ morphology, disruption of
ciliogenesis and ciliated cell differentiation at a cellular
level can lead to embryo transport defects. Ciliated
epithelial cells in oviducts create tubal currents and are
responsible for the transportation of the embryo (Lyons
et al. 2006). A comprehensive review regarding cellular
and molecular mechanisms governing ciliogenesis is
provided in Choksi et al. (2014).
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Several recent studies discovered that epithelial cells
in the female reproductive tract contain a subpopulation
of stem-cell-like LGRS (leucine-rich repeat-containing
G-protein-coupled receptor S)-positive cells (Ng et al.
2014). The LGRS-positive cell population has been
identified in other tissues, such as the kidney (Barker et al.
2012), intestine (Barker et al. 2007) and stomach (Barker
et al. 2010). LGRS-positive cells reside much like regular
epithelial cells in the tissue, but the characteristics of
these cells remain undifferentiated. The LGRS-positive
population can be activated to divide and differentiate
into designated cell types and is responsible for tissue
renewal and regeneration. In the Fallopian tubes, these
stem-like adult epithelial cells are concentrated at the
fimbria (Paik et al. 2012, Snegovskikh et al. 2014).

Notch and WNT signals not only modulate the
oviductdevelopmentbutalsomediate the differentiation
of adult epithelial stem cells into other cells in Fallopian
tubes (Kessler et al. 2015). Inhibition of Notch signaling
by a y-secretase inhibitor, dibenzazepine, in the oviduct
and the stem-like epithelia leads to a genetic signature
of cell differentiation into ciliated epithelium.
Inhibition of Notch signaling reduces the number of
stem cells in human Fallopian tube 3D organoids, while
increasing ciliated cell number. LGRS also regulates the
WNT/p-catenin signaling pathway and can be used as
a marker for adult oviduct epithelial stem cells (Capel
2014, Ng et al. 2014, Vieira et al. 20135). Studies in mice
showed that the deletion of Lgr5 in female mice resulted
in significantly fewer live births (Sun et al. 2014).
These findings suggested that the number of ciliated
epithelial cells in the Fallopian tubes is also controlled
by the local stem-cell population via the WNT and
Notch signaling pathways.

miRNAs also participate in oviductal ciliogenesis.
Lacking miRNA-34 and miRNA-499 genes resulted in a
loss of cilia in the trachea and oviduct epithelial cells
(Wu et al. 2014). Additionally, serine/threonine protein
kinase (STK36), a regulator of the hedgehog pathway,
modulates a central pair construction of the cilia (the two
center microtubules in the 9+2 microtubule axonemal
structure). A lack of Stk36 causes an impairment of
the cilia orientation and results in a failure to form
the directional movement of the cilia in the oviduct
(Nozawa et al. 2013). Moreover, a global deletion of
Kif19a, a kinesis family member involved in cilia length
regulation, causes female infertility due to elongated cilia
in the oviduct (Niwa ef al. 2012). Elongated cilia in the
Kif19a-/- oviduct lead to excess mucus and cell debris in
the oviductal lumen and blockage of the egg passage.
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In addition, female mice lacking Celsr1 (Celsr1-/-), a planar
cell polarity gene, showed defective ciliary polarity, which
resulted in a random orientation of cilia directionality. The
impaired cilia were unable to transport beads in a uniform
direction, which disrupted the transportation function of
the oviduct (Shi et al. 2014). In conclusion, the presence,
proper length, proper structure and directionality of the
cilia are crucial for the oviduct transport function to
support the gametes and embryos.

In vitro fertilization and embryo
development

With recent technological advancement such as IVF
and ICS], infertility clinics can now provide solutions to
allow infertile couples to conceive their own children.
Procedures can bypass the Fallopian tube entirely and
transfer the fertilized embryos directly into the uterus.
The presence of these technologies questions the role of
the oviduct and its necessity for human reproduction.
ARTs are common procedure worldwide, including IVF
and ICSI. However, not every couple has access to ARTs
due to economical limitation. Moreover, there are several
concerns regarding the use of ARTs, such as epigenetic
change in the embryos due to culture conditions and
controlled ovarian hyperstimulation (COH), complicated
pregnancy due to multiple gestation and a lack of natural
section (especially with ICSI). Therefore, the medical
research community should take precaution and study
possible complications with such technologies when
bringing hope to many couples experiencing infertility.

For many couples with fertility issues, IVF may be
their only hope to have offspring inheriting their genes.
It is a technique whereby the clinicians fertilize the eggs
with sperm outside the female reproductive tract and
incubate the fertilized embryos in a laboratory until
they are ready for implantation in the uterus. IVF has
been practiced for decades throughout the world and
has resulted in over 3.5-5million newborns across the
globe. The international committee for monitoring
ART reported that with one million documented cases,
the pregnancy rate of IVF/ICSI is 20-30% (Mansour
et al. 2014) compared with 45-85% after 3-12 month
conceived naturally (Luke et al. 2012).

A recent study from more than 178,000 women
who went through IVF treatment suggested that an
overall successful live birth rate through IVF pregnancy
is 43% (McLernon et al. 2016). When a woman is
over 38 years old, live birth success through IVF drops
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significantly to 21% (Stern et al. 2009). Compared
with natural conception, IVF/ICSI-conceived embryos
have a significantly higher risk of perinatal mortality,
low birth weight and preterm birth (Pandey et al.
2012, Pinborg et al. 2013, Marino et al. 2014). When
comparing IVF/ICSI with naturally conceived children,
there is a 3-4 times higher chance for imprinting
disorders, including Beckwith-Wiedemann syndrome,
Prader-Willi syndrome, Angelman syndrome, Silver—
Russell syndrome, transient neonatal diabetes mellitus,
McCune-Albright syndrome, familial nonchromaffin
paraganglioma, maternal hypomethylation syndrome
and retinoblastoma in IVF/ICSI children (Owen & Segars
2009, Lazaraviciute et al. 2014).

A study comparing 7- to 8-year-old children who were
conceived through IVF/ICSI and natural intercourse found
that there is no difference in their cognitive ability, but
there is an underlying gender difference (Punamaki et al.
2016). Naturally conceived boys showed more cognitive
developmental problems than girls, whereas no differences
were observed between boys and girls conceived through
IVE This study, however, is solely dependent on parental
reports and may have a bias between IVF and naturally
conceived parents. In terms of imprinting disorder, there
is increased evidence of Beckwith—-Wiedemann Syndrome
in the IVF/ICSI-conceived children (4%) compared with
naturally conceived children (0.7-1.2%) in a small cohort
of 149 children in the UK (Maher et al. 2003). There is
reduced methylation in KvDMR, an intronic CpG island
in the KCNQ1 (or KvLQT1) gene whose methylation
status is associated with Beckwith—-Wiedemann Syndrome
(Smilinich et al. 1999), in the embryonic tissues conceived
by the IVF method (Gomes et al. 2007).

With ever-improving biotechnology, more studies
are required to understand the implications of the health
and wellbeing of IVF individuals. As IVF-conceived
individuals are still in their reproductive ages, long-term
evaluation on transgenerational epigenetic outcomes
will be needed.

Epigenetics and environmental factors

Embryos go through epigenetic changes and result
in imprinting, which has a long-lasting effect in later
development. Cell fate is not determined in the embryo
before the morula stage. The early embryos repress
epigenetic modification by removing DNA methylation
and repressing histone modifications from the 2-cell
stage until the blastocyst stage in mice (Reik et al. 2001,
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Ma et al. 2012) and until the 8-cell stage in cows (Dean
et al. 2001). However, the demethylation timing of
DNA methylation in the embryo is on a gene-by-gene
basis (Messerschmidt et al. 2014). In humans, DNA
demethylation occurs much earlier compared with
other mammals, from fertilization to the 2-cell stage,
at which time, most genes tested have already lost
their methylation status (Guo et al. 2014, Okae et al.
2014). For example, 5’ long terminal repeat-containing
element is demethylated after fertilization (Smith et al.
2014). As embryos develop to the blastocyst stage,
repression is slowly reversed in the inner cell mass,
and methylation status becomes increased (Smith et al.
2012, Guo et al. 2014, Okamoto et al. 2016).

Epigenetics

A recent review discussed how ARTs influence the
epigenetics of early embryos and suggested that gene
expression in developing embryos could be altered
through the environment in which they interact (Lucas
2013). COH is one of the common hormonal regimens
used to induce ovulation, either alone or as part of the
IVF/ICSI procedures (Farhi & Orvieto 2010, Berker et al.
2011). Studies using in vitro maturated (IVM) human
oocytes (retrieved from gonadotropin-stimulated
patients) demonstrate that the wildly used oocyte
morphological maturation protocol may not necessarily
indicate an adequate maturation of gene expression
(Jones et al. 2008, Virant-Klun et al. 2013). These genes
are involved in meiosis (SYCP2, SGOL2 and MSH2) and
are upregulated in the IVM oocytes compared with in vivo
maturated oocytes. Ovarian-stimulated I[VM-derived
mouse embryos express incomplete DNA demethylation
at the 2-cell stage. Aberrant methylation in the mouse
embryo can be an indication of failure in embryo
development (Shi & Haaf 2002, Wang et al. 2010). The
evidence showed that in vitro pre-implantation mouse
embryo culture results in a selective loss of imprinting
gene expression of imprinted maternally expressed
transcript (H19) and small nuclear ribonucleoprotein
polypeptide N (SNRPN) due to a reduced methylation
on their control regions (Mann et al. 2004). Moreover,
several studies showed that the culture of mouse embryos
in different media compositions could lead to epigenetic
changes and contribute to developmental defects and
aberrant phenotypes in adulthood (Reik et al. 1993, Dean
et al. 1998, Khosla et al. 2001). These findings indicated
that media composition and COH could contribute to
epigenetic alterations in the embryos.
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A recent study using cord blood and placentas
collected from the children conceived by ART and
naturally conceived children showed that the source of
alteration in DNA methylation status is a result of ART
procedures, rather than the underlying fertility of the
parents (Song et al. 2015). Hiura and coworkers proposed
that imprinting disorders are a combination of heredity,
senescent, COH, ART procedures and culture medium
that potentiates the early onset of the diseases (Hiura et al.
2014). This evidence outlines the important link between
ARTs and epigenetic imprinting outcomes in children.

Oxygen tension

The physiological level of O, concentration is 8%
(Fischer & Bavister 1993). However, IVF embryos are
cultured in various oxygen concentrations in different
set-ups (5-20%) (Bontekoe et al. 2012), which can
impact the level of oxidative stress on the embryos.
Depends on the culture media composition, the
glutathione pool in human oocytes can be depleted,
resulting in high ROS and causing plasma membrane
damage to the oocytes (Martin-Romero et al. 2008). A
recent study using post-thawed human embryos found
that at 2% O, concentration in the culture, embryos
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Figure 5

Essential roles of the oviduct in assisting embryo development. Schematic
cross-section of the oviduct and the embryo with their interaction
regulating embryo development. The interactions are divided into five
domains: protection, cleavage and development, transport, nutrients and
epigenetic regulation. E,, estrogen.
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have a decreased survival rate and increased apoptotic
rate. On the contrary, when the O, level is slightly
below the physiological level (5-6%), the embryos did
not show any significant change in those parameters
(Yang et al. 2016). The authors suggested that the
culture condition at 5-6% O, concentration could
improve the survival rate of the embryos. However,
recent randomized control studies did not find a robust
correlation between the culture of human embryos at
5-6% O, concentration and the increase in the live
birth rate (Nastri et al. 2016).

Yang and coworkers also found that cell death genes
(BAX), antioxidant genes (MnSOD) and stress protective
genes (HSP70) are elevated and apoptosis is increased
in human embryos that were cultured at a 20% O, level
(Yang et al. 2016). In addition, mouse embryos cultured
in 20% O, showed pre-implantation epigenetic changes
that altered metabolism later in life (Donjacour et al.
2014). Specifically, male mice displayed glucose
intolerance, heavier body weight and heart enlargement
compared with in vivo fertilized embryos. This evidence
indicates that the in vitro culture conditions during ART
procedures, either at low or high O, concentration,
could potentially alter embryo development and lead
to metabolic disease in mammals.

Environmental exposures

The pre-implantation period is critical for embryo
epigenetic control; this period normally occurs in the
oviduct or Fallopian tube in humans. Factors known
to be different between IVF and natural development
can cause epigenetic influence, including techniques,
embryo culture media and environmental exposures
such as tissue culture plastics (Ventura-Junca et al.
2015). Bisphenol A (BPA) is known for its action as an
endocrine-disrupting compound and a weak estrogen
agonist/antagonist. However, BPA is still being used as
part of the plastic containers for embryo cultures (Hunt
et al. 2003, Berger et al. 2010, Varayoud et al. 2011).
Studies indicated a broad range of effects on the embryos
upon BPA exposure, such as altered developmental
rate and cell death (Ferris et al. 2016) and toxicity to
the neural progenitor cells (Yin et al. 2015). BPA-free
replacement products from the industry still diffuse
out estrogenic chemicals, such as BPAF (the fluorinated
form of BPA) (Bittner et al. 2014), which may pose a
significant hazard to the embryos.

Together, we need to take extreme precaution to
monitor the in vitro environment of IVM and IVF/ICSI
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procedures and the possible unwanted consequences on
the long-term epigenetic imprints.

Developmental factors missing in vitro

The most distinct physiological difference between
IVF and naturally conceived birth is the artificial
fertilization and the omission of development in the
in vivo environments. IVF procedures cultivate fertilized
embryos in the culture conditions until the embryos
are ready for uterine implantation. Depending on the
procedures and institutional protocols, it can be anywhere
between 3 and 7 days of in vitro development. The culture
media is pre-determined and static compared with a
dynamic, interactive Fallopian tube environment. This
static environment at the current state cannot provide
an interactive response to ROS produced by embryos.
Moreover, the viability of the IVF embryos is subjective to
institutional procedures.

Of the factors influencing embryo development
in vitro, the foremost is the culture media used to culture
embryos. This media is meant to mimic the oviductal fluid
and its nutrient composition to support early cleavage
development. A data analysis study suggested that in
humans, the embryo culture media could affect the
birthweight of IVF babies (Zandstra ef al. 2015); however,
the underlying mechanism is not well understood.
The oviductal environment, the fluid and the embryo
interaction with the environment are difficult to replicate
in vitro. This factor could lead to the difference between
IVF and natural birth. A known example occurs in very
early embryo development; hyaluronan acid synthase 1
(HAS1) is highly expressed in the embryo at the 2- to
4-cell stage, but then quickly fades away (Marei et al.
2013). The oviduct reacts to this change by expressing
hyaluronidase-2 (HYAL-2) to degrade excessive hyaluronan
acid (HA). In vitro studies in bovine demonstrated that
mimicking this embryo-oviduct interaction by adding
HYAL-2 to the culture media improves embryo quality
(Marei et al. 2013).

Bovine embryos fertilized in vitro have lower quality
than those fertilized in vivo, as indicated by the difference
in the cellular junction, the presence of lipid droplets and
other subcellular changes. Co-culture of human embryos
with the Fallopian epithelia improved the quality of
embryos (Yeung et al. 1992, Vlad et al. 1996). However,
analysis in humans suggested that simply mimicking
the in vivo environment using an in vitro model did not
increase the baby delivery rate (Stern et al. 2009). This
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could be the result of a complex interaction among
embryo, tubal epithelia and tubal fluid. An extensive
review by Hess and coworkers discussed the important
roles of the oviduct in stabilizing the very early stage of
embryo development during transit (Hess et al. 2013).
Therefore, the oviduct-embryo interaction is necessary
for the quality of the developing embryo and lacking this
interaction could result in negative health effects.

Another difference between IVF and in vivo fertilization
is the zona pellucida hardening and monospermy during
fertilization (Mondejar et al. 2013, Anifandis et al. 2016,
Dadashpour Davachi et al. 2016). In a natural pregnancy,
the female reproductive tract acts as a passage for sperm
selection, by which it minimizes the number of sperm
reaching the fertilization site to ensure that polyspermy
occurs at a low rate. Current IVF techniques cannot
effectively select the most superior sperm, which occurs
naturally in the female reproductive tract. To overcome
this, one could use a co-culture condition of the egg
and oviduct epithelia. An experiment demonstrated
that co-culture of eggs and oviductal epithelial cells is
significantly better at preventing polyspermic fertilization
than the standard IVF counterpart (Dadashpour Davachi
et al. 2016). This suggests that fertilization in the oviduct
is part of a continuing interaction between gametes and
oviduct to optimize the fertilization outcome.

Lastly, gas is a factor that we have ignored in most
cases. Embryos experience somewhere between 2% and
8% O, concentrations in the human Fallopian tube
(Bontekoe et al. 2012). However, in the IVF procedures,
the embryos are incubated at different oxygen levels,
from 5% to 20%. The effect of these O, percentages in
the culture compared with in vivo has not been well
studied, but it would be wise to take precaution because
high oxygen concentration is linked to oxidation stress
(Fischer & Bavister 1993, Catt & Henman 2000).

The retrospective on IVF studies suggests that
Fallopian tubes not only serve as the passage for the
embryo to enter the uterus but also act as a cofactor to
cultivate and optimize embryo quality to ensure successful
implantation and later normal development.

Conclusion

The oviduct is essential in reproduction. Before
fertilization, the oviduct primes the sperm, protects both
gametes and guilds the fertilization process through
distinct mechanisms, including rheotaxis, thermotaxis

and chemotaxis. Increasing evidence indicates that
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processes that occur in the oviduct facilitate the path
to fertilization, but detailed molecular mechanisms
regarding each step are still largely unknown. Most
importantly, the oviduct provides the optimized physical
site for fertilization to occur.

After fertilization, the oviduct adjusts each of its
components to ensure the survival and the normal
development of the embryo, summarized in Fig. 5; the
current literature regarding these aspects is included in
Table 1. The oviductal fluid contains nutrients, growth
factors, antioxidants, sex hormones, proteases and many
other functional chemicals regulated by the presence of
gametes and embryos. The oviduct also transports the
embryo from the site of fertilization into the uterus.
Defective embryo transport can cause infertility or
ectopic pregnancy. Most recent findings suggested that a
few new pathways involved in this process, along with
ciliated cells, contribute a major role in this transport.
Together, the oviduct fine-tunes the oviductal fluid to
ensure that the embryos receive proper developmental
signals and nutrients as well as helps embryos overcome
environmental stress and protects embryos from our own
immune system.

The oviduct has been under-appreciated with its ‘non-
essential’ role in reproduction since the success of IVF
over 30 years ago. However, there have been more studies
probing the downside of the ARTs that link to some of
the critical functionalities of the oviduct to embryo
development. ARTs can be further improved with these
findings. At the same time, precautions should be taken,
as more research is needed for the roles and functions of
the oviduct in fertilization and embryo development to
benefit the health of future generations.
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