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Abstract

The rising global rates of type 2 diabetes and obesity present a significant economic and
social burden, underscoring the importance for effective and safe therapeutic options.
The success of glucagon-like-peptide-1 receptor agonists in the treatment of type 2
diabetes, along with the potent glucose-lowering effects of bariatric surgery, highlight
the gastrointestinal tract as a potential target for diabetes treatment. Furthermore,
recent evidence suggests that the gut plays a prominent role in the ability of metformin
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to lower glucose levels. As such, the current review highlights some of the current and
potential pathways in the gut that could be targeted to improve glucose homeostasis,
such as changes in nutrient sensing, gut peptides, gut microbiota and bile acids.

A better understanding of these pathways will lay the groundwork for novel
gut-targeted antidiabetic therapies, some of which have already shown initial promise.

Introduction

The incidence of type 2 diabetes has more than doubled
since 1980, with over 382 million affected individuals
worldwide, in conjunction with an increase in obesity
rates and the spread of a western lifestyle (Scully 2012).
Given that type 2 diabetes has many comorbidities,
such as hypertension, dyslipidaemia and cardiovascular
disease, which contribute to the ever-rising economic
burden, it is of utmost importance to develop successful
therapeutic options. Chronic hyperglycaemia is a
hallmark characteristic of type 2 diabetes and is, therefore,
a main target for diabetes treatment. As such, metformin
remains the most prescribed drug for type 2 diabetes due
to its potent antihyperglycaemic effect, largely from a
reduction in hepatic glucose production (Rojas & Gomes
2013). Although its mechanism of action still remains
largely debated, recent evidence suggests a major role
of the gastrointestinal tract in mediating metformin’s
glucose-lowering effect (Duca et al. 2015, Buse et al. 2016).

Journal of Endocrinology
(2016) 230, R95-R113

Interestingly, this is not the only evidence for a
therapeutic role of the gut in diabetes treatment. Over
the past decade, incretin-based therapies including
glucagon-like peptide-1 (GLP-1) receptor agonists
and dipeptidyl peptidase-IV (DPP-IV) inhibitors have
demonstrated powerful glucose-lowering efficacy, and
are now commonly prescribed, usually in conjunction
with metformin (Deacon & Lebovitz 2016, Madsbad
2016). Furthermore, despite being prescribed for the
treatment of morbid obesity, metabolic/bariatric surgery
results in rapid and sustained remission of diabetes, and
is potentially more effective than conventional therapy
(Mingrone et al. 2012, Mingrone et al. 2015).

The success of these treatments has expanded
the classical view of the gastrointestinal (GI) tract
from a ‘digestion and absorption’ organ to a major
contributor to metabolic homeostasis. The GI tract
exhibits crucial negative feedback signals, of both
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hormonal and neural origin, in response to incoming
nutrients, preventing nutrient excess by suppressing
food intake and endogenous nutrient production (Cote
et al. 2014). The current review aims to highlight the
current and potential therapeutic role of the GI tract in
treating type 2 diabetes.

Gut peptide signalling in regulating glucose metabolism

Ingestion of nutrients leads to complex and integrative
negative feedback mechanisms, which originate from the
gut and contribute to the control of food intake, glucose
metabolism, energy expenditure and thermogenesis,
among other potential metabolic pathways (Bauer et al.
2016). In the case of glucose metabolism, postprandial
gut-derived signals can lower hepatic glucose production,
increase insulin production and secretion, reduce
glucagon levels and alter glucose uptake. These signals
are thought to originate from preasbsorptive nutrients
being sensed on the apical surface of enteroendocrine
cells (EECs) (Reimann et al. 2008), given the ‘open-type’
structure of these specialized epithelial endocrine cells.
However, it is still unclear whether nutrient sensors of
EECs are predominantly located on the apical side, with
the possibility of basolateral nutrient sensing having been
recently proposed (Christensen ef al. 2015). Nonetheless,
EECs can secrete gut peptides on their basolateral side
in response to direct nutrient stimulation via binding
to nutrient receptors localized on EECs, by intracellular
metabolism and through neuroendocrine mechanisms
(see Psichas et al. 2015a for extensive review). For
example, fatty acids are potent secretogogues for both
GLP-1 and CCK, potentially via activation of free
fatty acid receptors (FFAR, FFAR1, FFAR4, activated by
medium- to long-chain free fatty acids (Briscoe et al. 2003,
Hirasawa ef al. 2005), and FFAR2 and FFAR3, activated by
short-chain fatty acids (Tolhurst et al. 2012, Psichas et al.
2015b)) localized on EECs, although the mechanisms of
action appear to be more complex than originally thought.
In the case of lipids, while Ffar knockout (KO) animals have
severely impaired release of both GLP-1 (Edfalk et al. 2008)
and CCK (Liou et al. 2011b) in response to a triglyceride
challenge, it was recently demonstrated that LCFAs
activate the FFAR1-G, signalling pathway to induce only
a modest release of GLP-1 (Hauge et al. 2015). However,
both oleoylethanolamide and 2-monoacylglycerols,
which are derived from triglycerides, activate a
GPR119-G, signalling cascade (Overton et al. 2006,
Hansen et al. 2012b), leading to the hypothesis that
triglyceride-induced gut peptide signalling is likely due
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to a combined effect of direct LCFA-FFAR1-G, signalling
and activation of the G, signalling pathway in EECs
(Hauge et al. 2015). In addition to a direct action on
FFARs, fatty acids are also taken up by the intestine, and
mice lacking absorptive proteins such as CD36 or FAT4
results in impaired gut peptide release (Poreba et al. 2012,
Sundaresan et al. 2013). This may be due to intracellular
metabolism and activation of PKC-{ or PKC-8 to induce
GLP-1 or CCK release, respectively (Iakoubov et al. 2007,
Breen et al. 2011), or via alteration of cellular respiration
and stimulation of glycolysis (Clara ef al. 2016). The same
complexity in nutrient-induced gut peptide stimulation
is observed for carbohydrates. For example, carbohydrates
can be sensed by the T1R2/T1R3 sweet taste receptor
found in the gut (Jang et al. 2007), although the
physiological relevance of sweet taste receptor activation
on gut peptide signalling in humans remains debated
(Parker et al. 2009). Conversely, recent work suggests that
GLP-1 release occurs via uptake of glucose coupled with
Na+ through the sodium/glucose cotransporter member 1
(SGLT1), inducing small currents triggered by increased
Na+* which leads to membrane depolarization and voltage-
gated Ca2+ entry, ultimately resulting in GLP-1 secretion
(Gribble et al. 2003, Kuhre et al. 2015). Less is known
about intestinal protein sensing, with GPR93, CaSR and
PepT1 all being suggested to mediate protein-induced gut
peptide release (Nemoz-Gaillard et al. 1998, Darcel et al.
2005, Liou et al. 2011a,c).

In the traditional view, the proximal intestine
contains I-cells, which secrete CCK, and GIP-releasing
K-cells, while L-cells cosecrete PYY and GLP-1 and are
located mainly in the distal intestine (Little et al. 2006).
However, recent work has challenged these classical views,
as individual enteroendocrine cells have been shown
to express a variety of gut peptides (Egerod et al. 2012,
Habib et al. 2012, Svendsen et al. 2015, Grunddal et al.
2016), while the proximal small intestine has been shown
to secrete significant amounts of GLP-1 (Theodorakis
et al. 2006). Once released, gut peptides can act locally
on afferent neurons innervating the GI tract that signal
to the caudal brainstem or enteric neurons, and/or they
can enter the circulation to act centrally, or on peripheral
targets, to regulate glucose metabolism (Cote et al. 2014).
For example, GLP-1 receptors (GLP-1Rs) are located on
vagal afferents that innervate the gut in close proximity
to L-cells (Richards et al. 2014), indicating a possible
paracrine gut-brain axis for mediating its glycaemic
effects. However, GLP-1Rs are also located on neurons
innervating the portal vein (Vahl et al. 2007), on p cells
of the pancreas (Pyke et al. 2014), and in the central
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nervous system (Shimizu et al. 1987, Heppner et al. 2015),
all possible targets for GLP-1 action (described in more
detail below). Nonetheless, most studies demonstrate
that vagal neural transmission is necessary for nutrient-
induced gut feedback as anaesthetics, neurotoxins or
vagotomy abolishes nutrient-induced reductions in food
intake (Schwartz 2011), and in the case of lipid-induced
CCK release, the lowering of hepatic glucose production
(Wang et al. 2008a).

In response to lipids, CCK is released from EECs in a
process dependent on intracellular esterification of long-
chain fatty acids to long-chain fatty acyl-CoA via acyl-
CoA synthase-3 (Sundaresan et al. 2013) and upon PKC-5
stimulation (Breen et al. 2011, Kokorovic et al. 2011).
Released CCK activates the CCK receptor (CCK1-R) on
vagal afferents innervating the small intestine (Raybould
et al. 1988), which leads to PKA activation and vagal
afferent firing (Rasmussen et al. 2012). Vagal afferent
activation enhances N-Methyl-p-aspartate (NMDA)
receptor-mediated neuronal transmission in the nucleus
of the solitary tract (NTS) to lower glucose production
via the hepatic vagal branch (Rasmussen et al. 2012).
Interestingly, the ability of intestinal lipids and CCK
to reduce glucose production is diminished in rats fed
a 3-day high-fat diet (Wang et al. 2008a, Cheung et al.
2009), highlighting the pathophysiological relevance of
this pathway. Although preliminary studies demonstrate
that preabsorptive lipids may not potently inhibit hepatic
glucose production in humans (Xiao et al. 2015), this
lipid-CCK pathway requires much more extensive and
thorough testing. Furthermore, 8weeks of treatment
with the bile acid sequestrant, colesevelam, improves
glycaemic control in humans with impaired glucose
tolerance through a mechanism dependent on prevention
of bile acid absorption and increased local CCK secretion
(Marina et al. 2012), suggesting this aforementioned CCK
gut-brain-liver axis could be of therapeutic relevance.
Additionally, cotreatment of a CCK receptor agonist with
a GLP-1R agonist has demonstrated initial therapeutic
promise (Irwin et al. 2015; see section below).

GLP-1 has been widely studied for its incretin effect,
where it stimulates an increase in insulin secretion at the
level of the pancreas (Kreymann et al. 1987, Mojsov et al.
1987). Interestingly, recent evidence suggests that GLP-1
may additionally exert its effect via activation of visceral
afferent neurons (Yamamoto et al. 2003), challenging the
conventional model of GLP-1 action. GLP-1 is rapidly
degraded by dipeptidyl peptidase-IV (DPP-1IV) in the
portal vein and liver, leaving only 10-15% of secreted
GLP-1 for entry into the systemic circulation (Holst &
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Deacon 2005). As a result, studies hypothesize that effects
on insulin release, as well as other glucoregulatory effects
of GLP-1, such as decreased glucose production, increased
glucose utilization and regulation of counter-regulatory
hormones, are mediated at least in part by a gut-brain-
periphery axis (Burcelin et al. 2001). Complicating this
model further, GLP-1 can also act centrally to regulate
food intake (Tang-Christensen et al. 1996), energy
expenditure (Lockie et al. 2012), GI function (Seeley
et al. 2000) and importantly, glucose homeostasis (Knauf
et al. 2005, Gustavson et al. 2008). However, in contrast
to these studies, others suggest that the glucoregulatory
effects of GLP-1 are primarily mediated by pancreatic
GLP-1R activation (Lamont et al. 2012, Smith et al.
2014). Nonetheless, GLP-1 plays an important role in the
regulation of metabolism and glucose homeostasis, and as
a result, some of the latest drugs to come onto the market
have aimed to exploit the GLP-1R signalling pathway. Two
main drug classes have emerged, degradation-resistant
GLP-1R agonists and DPP-IV inhibitors.

Incretin-based drug

GLP-1R agonists

GLP-1R agonists commonly fall into two categories
based on their duration of receptor activation: short-
acting compounds, which deliver short-lived GLP-1R
activation, and long-acting compounds, which activate
their receptor continuously at their recommended
dose (Madsbad 2016). Short-acting compounds include
exenatide (Byetta), which was the first GLP-1R agonist
approved for clinical use, and lixisenatide (Lyxumia),
which has subsequently been approved for use in Europe,
but not in the USA. Exenatide exhibits approximately
50% amino acid identity with human GLP-1 and has an
affinity for the GLP-1R that is equivalent to native GLP-1.
It contains a glycine residue at position 2, which provides
resistance to degradation by DPP-IV and an increased
circulating half-life (Furman 2012). Exenatide is the most
widely studied of the GLP-1R agonists, with over 7 years
of continuous clinical follow-up data. Early clinical trials
examining the efficacy of exenatide showed that twice-
daily 10pg injections effectively lowered both fasting
and postprandial glucose concentrations in diabetic
individuals after 30 weeks of treatment (Buse et al. 2004,
DeFronzo et al. 2005, Kendall et al. 2005).

The success of exenatide led to the development of
new long-acting GLP-1R agonists with pharmacokinetic

properties designed for once-daily or once-weekly
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administration. Liraglutide (marketed as Victoza) is
a modified form of GLP-1 that contains a Ser34Arg
substitution and has a C16 palmitoyl fatty acid side
chain at Lys26, which allow binding to serum albumin
and provide resistance to DPP-IV degradation (Lovshin &
Drucker 2009). Liraglutide thus exhibits a prolonged
half-life with stable plasma levels for up to 13h after
injection. Liraglutide administration
(1.8mg once daily) results in 24-h glucose control when
prescribed as monotherapy or in combination therapy
with oral glucose-lowering agents (Buse et al. 20009,
Garber et al. 2009, Marre et al. 2009, Nauck et al. 2009,
Russell-Jones et al. 2009). Other long-acting GLP-1R
agonists include the once-weekly formulations of
exenatide (Bydureon), albiglutide (Eperzan and Tanzeum)
and dulaglutide (Trulicity) (Madsbad 2016). Differences in
the duration of action largely account for differences in
glucose control between GLP-1R agonists. For example,
delayed gastric emptying is more strongly associated with
short-acting GLP-1R agonists, resulting in greater effects
on postprandial plasma glucose when compared with
long-acting agonists (Drucker et al. 2008, Ji et al. 2013,
Kapitza et al. 2013, Meier et al. 2015). On the other hand,
the longer half-lives of long-acting GLP-1R agonists allow
a greater improvement in 24-h glucose control, including
fasting plasma glucose, when compared with short-acting
agonists (Drucker et al. 2008, Buse et al. 2009, Blevins et al.
2011, Kapitza et al. 2013).

Despite the popularity of GLP-1R agonists,
considerable mystery surrounds the main site of action
for GLP-1R agonist antidiabetic effects. Exenatide
readily crosses the blood-brain barrier, even more
efficiently than native GLP-1 (Kastin & Akerstrom
2003), and it has been shown to activate brain regions
involved in food reward and glucose homeostasis when
administered subcutaneously (Daniele et al. 2015). The
effects of exenatide on food intake may be mediated
by its central action, as exenatide-induced reductions
in energy intake in humans have been associated with
increased hypothalamic connectivity (Schlogl et al.
2013), and intracerebroventricular injection of the
GLP-1R antagonist, exendin-9, blocks the inhibitory
effects of exenatide on energy intake in rodents (Kanoski
et al. 2011). However, the effects of exenatide on glucose
regulation do not appear to be dependent on central
GLP-1R activation (Lamont et al. 2012), and evidence
suggests that exenatide may exert its effects on glycaemia
through direct action on the pancreas (Smith et al. 2014).
There has also been evidence that the anorexic effects of
exenatide are mediated, at least in part, by the activation

subcutaneous
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of GLP-1R expressed on peripheral vagal afferents.
However, studies suggest that although the early effects
of exenatide require vagal afferent signalling, the later
effects do not (Kanoski et al. 2011, Labouesse et al. 2012).
Similar to exenatide, the main site of action of liraglutide
remains unknown. Interestingly, liraglutide has been
shown to improve insulin sensitivity in humans, as
assessed by the hyperinsulinaemic euglycaemic clamp
(Jinnouchi et al. 2015), indicating that in addition
to its effects on insulin secretion, liraglutide also
exhibits beneficial extrapancreatic effects on glycaemia.
Liraglutide also passes the blood-brain barrier and it
has been shown to bind to neurons within the arcuate
nucleus and other sites within the hypothalamus (Secher
et al. 2014). Evidence suggests that the anorectic effects
of liraglutide are mediated via GLP-1Rs expressed both
centrally and on vagal afferent neurons (Kanoski et al.
2011, Secher et al. 2014). However, whether liraglutide
mediates its glucose-lowering effects through a manner
similar to its anorectic effects requires attention. Some
studies suggest that liraglutide-induced improvements in
glucose tolerance do not require central or vagal GLP-1R
(Sisley et al. 2014) and that its effects on glycaemia are via
direct action on the pancreas (Smith et al. 2014). Thus,
although the effects of liraglutide on glycaemia appear to
be primarily dependent on the activation of pancreatic
GLP-1R, central and vagal GLP-1R signalling should not
be overlooked given their importance in lowering food
intake and body weight, which is a primary treatment
strategy for type 2 diabetes. A better understanding of
the exact mechanisms for the glucose-lowering effects
of GLP-1R agonists could result in more targeted drug
designs to exploit the specific pathways.

DPP-1V inhibitors

DPP-1V inhibitors, also referred to as ‘incretin enhancers’,
lower blood glucose levels through a prolongation of the
action of GLP-1, and to a lower extent, GIP (a second
incretin hormone produced in the small intestine)
(Hansotia et al. 2004). Typically, DPP-IV inhibitors reduce
DPP-1V activity by about 80%, which corresponds to a
twofold increase in biologically active GLP-1 (Heine et al.
2005). This is associated with an increase in insulin and
decrease in glucagon secretion and reduced fasting and
postprandial glucose levels in individuals with diabetes
(Heine et al. 2005).

Sitagliptin was the first DPP-IV inhibitor approved for
use in 2006. It is a nonpeptide heterocyclic compound
with rapid onset and a long duration of action, which
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facilitates once-daily dosing (Lovshin & Drucker 2009).
Vildagliptin and saxagliptin were approved for use soon
after sitagliptin; these compounds are cyanopyrrolidines
with a slow onset and prolonged action upon binding
to DPP-IV (Lovshin & Drucker 2009). The shorter half-
life of vildagliptin requires twice-daily dosing (Lovshin
& Drucker 2009). However, saxagliptin is suitable for
once-daily dosing as a result of the presence of the active
metabolite BMS-510849, which also inhibits DPP-IV
(Trujillo & Nuffer 2014). The most recent DPP-IV inhibitors
to reach the market are linagliptin (a methylxanthine)
and alogliptin (a heterocyclic aminopiperidine), which
are also administered once daily due to their relatively
longer half-lives (Trujillo & Nuffer 2014, Handelsman
et al. 2015). Each DPP-IV inhibitor elevates GLP-1 and
improves glycaemia to a similar degree (Trujillo & Nuffer
2014, Handelsman et al. 2015). Once DPP-IV is maximally
inhibited, glycated haemoglobin (HbAlc) reductions
plateau; therefore, improvements are consistent across
this drug class and there is no basis for differentiation
regarding efficacy (Lovshin & Drucker 2009).

Despite the success of DPP-IV inhibitors, the cellular
site that is responsible for their glucoregulatory effects has
yet to be determined. Indeed, it is likely that increased
endogenous GLP-1 could reach the pancreas and brain
to exert the aforementioned effects. Studies in rodents
indicate that a dose of sitagliptin that is sufficient to
inhibit intestinal, but not systemic, DPP-IV activity is
sufficient for improving glucose tolerance and insulin
levels. This effect is associated with increased activity
of the vagal nerve, suggesting that DPP-IV inhibitors
may regulate glycaemia predominantly through local
inhibition of intestinal DPP-IV activity and activation of
neuronal GLP-1Rs (Waget et al. 2011).

Cocktail therapy

Despite the early beneficial effects of gut peptide-based
therapies, the signalling pathways involved are redundant
and thebody can adjust. Therefore, it follows that the design
of multitarget peptides capable of modulating more than
one hormonal pathway could have distinct therapeutic
benefits for the treatment of type 2 diabetes. Combination
therapy with long-acting GIP and GLP-1 mimetics has been
considered in preclinical studies with some success (Irwin
& Flatt 2009); however, issues of separate drug formulation
and dosing limits the therapeutic success. As such, a single
hybrid peptide, MAR701, has been developed that can
directly activate both GIP receptor and GLP-1R and appears
to have beneficial effects in rodents (Finan et al. 2013).
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Further studies have investigated the effects of GLP-1R
agonism combined with either glucagon receptor agonism
(Pan et al. 2006, Day et al. 2009, 2012) or antagonism
(Pocai et al. 2009). Although contradictory in nature,
these contrasting regimens utilize both the beneficial
glucose-lowering effects of GLP-1, combined with either
inhibition of glucagon-mediated gluconeogenesis and
glycogenolysis (Sinclair & Drucker 2005), and activation
of glucagon pathways involved in energy turnover and
weight loss (Pocai et al. 2009). Another modified hybrid
peptide, ZP3022, involves a combined GLP-1-gastrin
agonist (Fosgerau et al. 2013), which activates GLP-1R and
CCK2-R and improves glycaemic control in db/db mice
through enhancement of p cell mass (Fosgerau et al. 2013).
Perhaps a more appealing peptide would be one that
targets the GLP-1R and CCK1-R given the involvement of
the CCK1-R in the activation of the gut-brain-liver axis.
Indeed, combined administration of long-acting GLP-1R
and CCKI1-R agonists has shown pronounced synergistic
metabolic benefits in rodent models of type 2 diabetes,
including improved glycaemic control and loss of body
weight (Irwin et al. 2013, Trevaskis et al. 2015). As such, a
novel CCK/GLP-1 hybrid peptide based on the chemical
structures of the CCKI1-R agonist, (pGlu-Gln)-CCK-8,
and exenatide has recently been described and shown
to have significant therapeutic potential in high-fat-fed
mice (Irwin et al. 2015). This molecule clearly warrants
further study as a potential new treatment option for
type 2 diabetes.

Considering the evident therapeutic efficacy of dual
target peptide therapies, single compounds with the
ability to activate three or more regulatory peptides could
potentially provide even greater metabolic benefits. As
a result, modified peptides with the ability to activate
glucagon, GLP-1 and GIP receptors have been developed
and have been shown to produce dramatic improvements
in glucose homeostasis and overall metabolic control in
high-fat-fed mice (Bhat ef al. 2013a,b, Finan et al. 2015).
Despite the clear potential of these tri-agonists, issues
regarding the ratio of GIP, GLP-1 and glucagon receptor
activation still requires investigation. As such, a recent
study has reported the distinct beneficial effects of a
balanced glucagon, GLP-1 and GIP receptor tri-agonist
for the correction of obesity and diabetes in high-fat-
fed mice (Finan et al. 2015). There is, therefore, a clear
and attractive rationale for further testing of multitarget
peptides for the treatment of type 2 diabetes in humans.
In addition, given the recent findings that EECs coexpress
a variety of gut peptides (Egerod et al. 2012, Habib et al.
2012, Svendsen et al. 2015, Grunddal et al. 2016), it may be

http://joe.endocrinology-journals.org
DOI: 10.1530/JOE-16-0056

© 2016 Society for Endocrinology
Printed in Great Britain

Published by Bioscientifica Ltd.


http://dx.doi.org/10.1530/JOE-16-0056

possible to develop a drug that promotes the cosecretion of
multiple gut peptides from EECs. For example, infusion of
bombesin, the phosphodiesterase inhibitor 3-isobutyl-1-
methylxanthine, or peptone stimulates the cosecretion of
GLP-1, PYY, neurotensin and CCK (Svendsen et al. 2015),
and interestingly, neurotensin acts synergistically with
GLP-1 to regulate metabolism (Grunddal et al. 2016). This
suggests that stimulating the release of an endogenous
gut peptide ‘cocktail’, similar to engineering poly-agonists
that mimic these peptides (Day et al. 2009, 2012, Finan
et al. 2013, 2015), could be a useful alternative approach
for improving metabolic control in type 2 diabetes.

The potential treatment of diabetes via mimicry
of gut peptide signalling is bolstered by the success
of bariatric surgery. Indeed, bariatric surgery has
demonstrated great efficacy in normalizing blood
glucose levels and ameliorating diabetes in obese
populations, which has been suggested to be due in
part to improvements in intestinal nutrient sensing and
subsequent modulation of the secretion and biological
action of numerous gut-derived peptides (see below).
The following section aims to not only describe the
various surgical procedures demonstrated to improve
glucose regulation, but to introduce some of the major
hypothesized mechanisms, in addition to intestinal
nutrient sensing, underlying the success of bariatric
surgery and to highlight the current therapeutic
strategies directly targeting these mechanisms.

Bariatric surgery

The long-term success of bariatric surgery to reverse
diabetes in obese patients underscores the need for
identifying the mechanisms of action. Bariatric surgery
encompasses many surgical procedures that are either
restrictive in nature, by altering the stomach size or
nutrient flux into the stomach, or involve the rerouting
of the intestinal tract (Fig. 1).
bypass surgery (RYGB) is one of the most commonly
performed bariatric surgical procedures and involves
a reduction in the size of the stomach, by creating a
gastric pouch out of the upper portion of the stomach,
and rerouting the intestinal tract by connecting the
proximal jejunum to the stomach and thus excluding
the duodenum (Ward & Prachand 2009). RYGB induces
substantial effects on diabetes remission (Buchwald
et al. 2004) and produces metabolic benefits that are
maintained for over 1Oyears (Karlsson et al. 2007).
However, the biliopancreatic diversion with duodenal

Roux-en-y gastric
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switch (BPD-DS) procedure, which involves a pylorus-
preserving vertical sleeve gastrectomy (VSG) (as
opposed to the original BPD procedure, which involved
a distal gastrectomy sacrificing the pylorus (Scopinaro
et al. 1979)) and creation of a Roux limb, a long
biliopancreatic limb and a short common channel,
achieves diabetes resolution rates that are significantly
better than RYGB (90% vs 70%) (Buchwald et al. 2004,
2009). However, despite its long-term metabolic success
(Buchwald et al. 2004, 2009), the technical difficulty
and meticulous patient surveillance have limited
the use of this surgical technique to about 17% of all
bariatric surgeries (Buchwald et al. 2009), although it
is the metabolic surgery of choice for some surgeons
(Marceau et al. 2015). Interestingly, VSG alone has
substantial weight loss effects and appears to induce
rapid and long-term diabetes resolution in obese type 2
diabetics (Bayham et al. 2012, Madsbad et al. 2014),
which has been attributed to much more than simply
restriction (see below or Seeley et al. 2015 for review).

To evaluate the relative contribution of gastric
restriction vs rearrangement of the intestinal tract
to the antidiabetic effects of bariatric surgery, an
experimental procedure entitled duodenal-jejunal
bypass (DJB) was developed. This procedure involves
repositioning the intestinal tract without restriction
or exclusion of the stomach. Although DJB does not
elicit the same weight loss effects as RYGB or BPD,
this procedure has been shown to produce glucose-
lowering effects in nonobese rodents (Rubino et al.
2004), and in a small subset of nonobese or mild-obese
humans with type 2 diabetes, independent of weight
loss (Cohen et al. 2007, 2012, Lee et al. 2010, Geloneze
et al. 2012). Moreover, in Asia, a novel surgery similar
to a BPD-DS has been developed that involves a DJB
with VSG, and has demonstrated initial success in the
treatment of diabetes (Kasama et al. 2009, Lee et al.
2014). Lastly, another experimental metabolic surgery
still in early human trials is ileal interposition (with or
without VSG), which involves resection of 10-20 cm of
the distal ileum and its transposition into the proximal
jejunum. This procedure results in weight loss, reduced
food intake and improved glycaemic regulation in
both rodents and humans (Wang et al. 2008b, Gagner
2011, Zhang et al. 2011, Grueneberger et al. 2013,
Grueneberger et al. 2014, Ramzy et al. 2014).

Surgical intervention remains one of the most
successful treatment options for the remission of
diabetes. However, itisimportant that the best metabolic
procedure is selected with benefits vs risks assessed for
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Figure 1

Effectiveness of bariatric surgery yields possible ‘gut-centered’ treatment options for type 2 diabetes. Bariatric surgery, in the form of vertical
sleeve gastrectomy, roux-en-Y gastric bypass, biliopancreatic diversion with duodenal switch, duodenal-jejunal bypass or ileal transposition, have
all been demonstrated to exert beneficial effects on glucose homeostasis, hypothesized to be due to changes in nutrient sensing, gut peptide
signalling, gut microbiota and/or bile acids. Current gastrointestinal-based therapeutic options for type 2 diabetes involve drugs or treatments

targeting these pathways.

each individual patient (Castagneto Gissey et al. 2016).
Despite the relative risks associated with procedures
like RYGB and BPD-DS, a better understanding of these
surgeries may continue to lead to less invasive and
risky surgical procedures that equal in effectiveness.
Moreover, noninvasive devices mimicking bariatric
surgery could provide substantial benefits, such as the
duodenal endoluminal sleeve, which involves inserting
a flexible tube that inhibits the interaction of nutrients
with the duodenum and has been shown to improve
glucose regulation (Habegger et al. 2014). Ultimately,
elucidation of the mechanisms underpinning the
resolution of diabetes following bariatric surgery
could lead to the discovery of novel pharmacological
bariatric mimetics that could one day replace the
need for bariatric surgery altogether. Therefore, the
following sections describe some of the more developed
hypotheses regarding the success of bariatric surgery,
mainly the role of intestinal gut peptide signalling, gut

microbiota and bile acids, and highlight the therapeutic
potential of directly targeting these pathways.

Gut peptide and nutrient sensing

Given that many patients have exhibited postsurgical
changes in gut hormone secretion (Rodieux et al. 2008),
many studies have investigated whether changes in
nutrient sensing mediate the weight loss and glucose-
lowering effects of this procedure. One of the leading
candidates for the success of bariatric surgery is altered
gut peptide signalling, mainly GLP-1 (Salehi et al. 2011,
Jimenez et al. 2013). Indeed, after RYGB, there is an
increase in the number of gut peptide-expressing EECs
(Mumphrey et al. 2013) and consequently, increased
postprandial gut peptide secretion (Madsbad et al.
2014). In the case of GLP-1, many studies have shown
an increase in circulating GLP-1 levels following RYGB
and VSG (Rodieux et al. 2008, Chambers et al. 2011,
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Salehi et al. 2011, Jimenez et al. 2013), and postprandial
GLP-1 levels are increased as early as 2days postsurgery
(le Roux et al. 2007) and have persisted as long as 10years
postsurgery (Dar et al. 2012). Improvements in glucose
tolerance following RYGB or VSG in rats are abolished
with exendin-9 administration (Chambers et al. 2011), all
suggesting a role for GLP-1 in the glucose-lowering success
of RYGB. Some studies argue against this (Clements ef al.
2004, Rubino et al. 2004, le Roux et al. 2007), whereas
some have shown that GLP-1 levels do not rise accordingly
(Salinari et al. 2014), inhibition of GLP-1 signalling has no
effect on glycaemia following RYGB (Jimenez et al. 2013,
Shah et al. 2014) and GLP-1R deficient mice still exhibit
improved glycaemia following RYGB and VSG (Wilson-
Perez et al. 2013, Mokadem et al. 2014). As such, other gut
peptides have been implicated as potential contributors
to improved glycaemia following bariatric surgery.
Plasma PYY levels are increased following RYGB (le
Roux et al. 2006, 2007, Rodieux et al. 2008) and DJB
(Zhang et al. 2011, Liu et al. 2012, Imoto et al. 2014), and
a causal link between PYY signalling and weight loss has
been suggested for both humans (le Roux et al. 2007,
Morinigo et al. 2008) and rodents (Chandarana et al.
2011), although studies investigating the role of PYY in
the antidiabetic effects of these bariatric procedures are
lacking. Interestingly, PYY action has been correlated
with increased sensitivity to GLP-1 and improved glucose
tolerance following bariatric surgery (Chandarana et al.
2013), suggesting that studies investigating the role of
PYY in the glucoregulatory effects of bariatric surgery are
warranted. Another gut peptide identified as a possible
mediator of the beneficial effects of bariatric surgery is
ghrelin. Plasma ghrelin levels are substantially reduced
following VSG (Chambers et al. 2013); however, VSG is
equally effective in improving glucose tolerance and
lowering food intake and body weight in ghrelin-deficient
and wild-type mice (Chambers et al. 2013), indicating that
the beneficial effects of VSG are not dependent on reduced
ghrelin signalling. Other factors have been shown to be
altered following one or more of these procedures such as
CCK, GIP and glucagon (Jacobsen et al. 2012, Rhee et al.
2015). Therefore, improvements in glycaemia following
bariatric surgery may not be dependent on changes in
the action of a single gut peptide, and it is very possible
that an adaptive shift increases postingestive feedback,
contributing to the rapid lowering of glucose levels.
Given that the rearrangement of the intestinal tract
results in an increased flux of nutrients into the jejunum,
it was hypothesized that increased jejunal nutrient
sensing could mediate the improvements in glucose
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regulation. Indeed, intrajejunal nutrients lower hepatic
glucose production via a gut-brain-liver neuronal axis,
independent of changes in circulating insulin levels,
while inhibition of these jejunal nutrient sensing
pathways altered the rapid glucose-lowering effect of DJB
in streptozotocin (STZ)-induced uncontrolled diabetic
rats during refeeding (Breen et al. 2012). While lowering
of glucose in STZ-induced uncontrolled diabetic rats
following DJB was associated with increased circulating
GLP-1 levels, this was not the case following DJB in BBdp
rats (Breen et al. 2012), Zucker diabetic fatty rats (Patel
et al. 2014) or Goto-Kakizaki rats (Salinari et al. 2014),
further arguing against the importance of GLP-1 in DJB.
Interestingly, in a follow-up study, it was shown that
direct leptin infusion into the jejunum activates jejunal
leptin receptor-phosphoinositide-3-kinase signalling
to lower endogenous glucose production through a
neuronal network, while blocking jejunal leptin receptor
signalling abolished the improvements in glucose
homeostasis of DJB-diabetic rodents during refeeding
(Rasmussen et al. 2014). However, it is important to note
that for these studies, the testing period was only 2 weeks
following DJB, and while this demonstrates that the rapid
remission of diabetes following GBP may be due in part
to nutrient- and hormonal-jejunal sensing mechanisms,
the long-term potential of these sensing mechanisms
remains unknown. The cell-type mediating the effect of
jejunal leptin following DJB has not been characterized,
the nodose ganglia contains leptin receptors (Li et al.
2011b) and studies suggest that leptin receptors on vagal
afferents, rather than intestinal epithelial cells, play a
role in the development of obesity and hyperglycaemia
(de Lartigue et al. 2014). Thus, it is likely that leptin is
acting on vagal afferents innervating the gut to regulate
glucose homeostasis. However, whether this pathway
can be exploited to treat hyperglycaemia remains to
be explored. Interestingly, while leptin treatment in
obesity is generally unsuccessful due to leptin resistance,
cotreatment of leptin with peptides that promote weight
loss and leptin sensitivity, such as amylin and CCK,
has been shown to be effective in improving glucose
homeostasis in rodents (Sadry & Drucker 2013, Trevaskis
et al. 2015). Furthermore, human analogues of amylin
and leptin were successful in lowering body weight in
clinical trials (Ravussin et al. 2009); however, safety
concerns lead to the discontinuation of development.
Nonetheless, studies investigating not just
leptin receptor activation, but rather vagal signalling in
general, may hold promise for the development of novel
antidiabetic therapies.

future
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Bile acids

In addition to distal intestinal nutrient sensing and gut
peptide changes, rearranging the intestinal tract during
bariatric surgery profoundly alters bile acid levels and
composition, which has been suggested as key contributor
to its success (Seeley et al. 2015). Bile acids have been
implicated in the regulation of glucose homeostasis
through their effects on glucose production and glucose-
induced insulin secretion (Thomas et al. 2008, 2009).
Beyond acting as detergent for luminal fat digestion and
absorption, bile acids act as endocrine factors, activating
the G protein-coupled receptor TGRS, and a ligand-
activated transcription factor farnesoid X receptor (FXR)
(Fiorucci et al. 2009). In RYGB, bile acids flow undiluted
through the biliopancreatic limb and do not mix with
food until reaching the common channel of the distal
jejunum. As such, increased presence of bile acids in
this region could activate TGRS, which is localized on
EECs, and can stimulate the release of gut peptides such
as GLP-1 and PYY (Katsuma et al. 2005, Pournaras et al.
2012). However, increased gut peptide levels following
RYGB have been shown to be independent of changes
in bile acids (Bhutta et al. 2014, Jorgensen et al. 2015),
and recent evidence shows that increased GLP-1 levels
following VSG do not require TGRS signalling, although
TGRS was shown to contribute to the glucoregulatory
benefits of VSG in this study (McGavigan et al. 2015).
Interestingly, the effects of VSG on body weight and
glucose levels were abolished in Fxr knockout mice,
suggesting a role for FXR in the metabolic effects of this
procedure (Ryan et al. 2014). Indeed, FXR is essential
for normal glucose homeostasis (Ma et al. 2006), and
bile acid activation of FXR induces FGF19 (in humans
and its mouse orthologue FGF15) release from the ileal
intestinal epithelium (Zhang et al. 2013). Improvements
in glucose homeostasis following RYGB are associated
with changes in FGF 19/15 (Pournaras et al. 2012, Sachdev
et al. 2015), possibly via inhibitory effects on hepatic
glucose production and lipogenesis through reductions in
bile acid secretion (Gerhard et al. 2013). More recently,
it has been shown that central FGF 19 improves glucose
tolerance, suggesting a central role for the glucoregulatory
action of FGF 19 (Morton et al. 2013, Ryan et al. 2013,
Marcelin et al. 2014). These studies, therefore, suggest
that synthetic FXR agonists could act as potential diabetic
treatments. Indeed, obeticholic acid, a semisynthetic FXR
agonist, improves insulin sensitivity in type 2 diabetic
patients (Mudaliar et al. 2013), while GW4064 has been
shown to prevent insulin resistance in rodents (Ma et al.
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2013). Furthermore, treatment with a gut-specific FXR
agonist, fexaramine, reduces diet-induced increases in
hepatic glucose production in mice, likely due to a robust
increase in FGF 15 (Fang et al. 2015). In contrast, some
studies suggest that intestinal inhibition of FXR may in
fact be beneficial via a reduction in intestinally derived
ceramides (Li et al. 2013, Jiang et al. 2015), or via increased
GLP-1 signalling (Trabelsi et al. 2015), warranting further
research into FXR agonism/antagonism for the treatment
of diabetes. Interestingly, it has also been proposed
that FXR-mediated metabolic improvements are due to
alterations of the gut microbiota (Ryan et al. 2014).

Gut microbiota

The gut microbiota, which contains an estimated 100
trillion cells consisting of over 1000 different species of
known bacteria, has a major influence on host energy
homeostasis, and diabetes is associated with changes
in both the bacterial composition and genetic make-up
(see for review on gut microbiota and diabetes (Duca &
Lam 2014, Tilg & Moschen 2014)). Meanwhile bariatric
surgery drastically alters the composition and diversity
of the gut microbiota in humans, rats and mice (Zhang
et al. 2009, Furet et al. 2010, Li et al. 2011a, Liou et al.
2013, Osto et al. 2013, Ryan et al. 2014, Tremaroli et al.
2015, Yang et al. 2015). Interestingly, germ-free (GF) mice
colonized with the microbiota derived from humans,
who had underwent RYGB or vertical banded gastroplasty
exhibited reduced fat deposition when compared with
GF mice colonized with the microbiota of obese controls
(Tremaroli et al. 2015). This is in line with the fact that
GF animals inoculated with the gut microbiota of RYGB-
treated mice gained less weight and have a trend towards
improved insulin sensitivity when compared with GF
mice receiving sham microbiota (Liou et al. 2013).
Although the mechanisms for gut microbiota-
mediated improvements in glucose homeostasis are still
not completely understood (Duca & Lam 2014, Tilg &
Moschen 2014), alterations in short-chain fatty acid
(SCFA) production via fermentation of nondigestible
polysaccharides has been hypothesized (Vrieze et al. 2012,
Liou et al. 2013). For example, in the RYGB microbiota
transplant study described above, levels of propionate
were increased in both the RYGB-treated donor and the
recipient mice (Liou et al. 2013). Indeed, supplementation
with propionate or fermentable fibre is known to
reduce appetite and improve glucose tolerance, possibly
from inducing distal intestinal gut peptide secretion
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(Everard et al. 2011, Lin et al. 2012, Chambers et al. 2015,
Psichas et al. 2015b). Ileal propionate activates mucosal
FFAR2 to lower hepatic glucose production through a GLP-
1-dependent neuronal pathway (Zadeh-Tahmasebi et al.
2016), while increased concentrations of SCFA in the large
intestine have been shown to increase circulating levels
of GLP-1 and PYY and reduce postprandial insulin and
glucose levels (Tolhurst et al. 2012, Psichas et al. 2015b).
As such, it is possible that improvements in glucose
homeostasis following RYGB are due, at least in part, to
changes in the production of SCFA in the ileum and large
intestine. Although treatment with SCFAs is not feasible,
as they are very unpalatable and do not reach the distal
small and large intestine where they are endogenously
produced, prebiotic treatment (nondigestible fibre)
effectively increases distal intestinal SCFA production
and improves glucose homeostasis in rodents (Cani
et al. 2006b, Everard et al. 2011), which is thought to be
mediated through an increase in gut peptide release (Cani
et al. 2004, 2005, 2006b, Everard et al. 2011, Neyrinck
et al. 2012). While some evidence exists for the beneficial
effects of fermentable dietary fibre in humans (Archer
et al. 2004, Cani et al. 2006a, 2009, Parnell & Reimer
2009), intake of dietary fibre is generally low (Howarth
et al. 2003), and prebiotic treatment may not readily
increase propionate production (Chambers et al. 2015). As
such, a novel carrier molecule was developed to selectively
increase colonic propionate levels. Treatment with this
inulin-propionate ester for 24 weeks reduced weight gain
and adipose distribution, and prevented the decrease in
glucose tolerance and insulin sensitivity exhibited by the
control group (Chambers et al. 2015). In addition, faecal
microbiota transfer (FMT) represents another potential
mechanism to increase SCFA levels and improve glucose
homeostasis, as duodenal transfer of microbiota from lean
humans into those with metabolic syndrome results in
an increase in butyrate-producing bacteria and insulin
sensitivity 6 weeks after the transfer (Vrieze et al. 2012).
However, FMT is still experimental, and a more selective
change in distal bacterial composition through pre- or
probiotics may prove a safer and more efficacious option.

One of the more recently studied bacteria, Akkermansia
muciniphila, might hold promise as a probiotic treatment
for diabetes. A. muciniphila is a mucin-degrading, Gram-
negative bacterium that resides in the mucus layer, and
represents 3-5% of the microbial community (Derrien
etal. 2004). Levels of A. muciniphila are inversely correlated
with body weight, glucose tolerance and type 1 diabetes,
while RYGB increases A. muciniphila abundance (Zhang
et al. 2009, Hansen et al. 2012a, Everard et al. 2013,
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Liou et al. 2013, Shin et al. 2014, Schneeberger et al. 2015,
Dao et al. 2016). Furthermore, reduced A. muciniphila
levels in diet-induced obesity are normalized following
prebiotic feeding, which is associated with improvements
in metabolic dysregulation (Everard et al. 2013). In
humans, A. muciniphila abundance is inversely related to
fasting glucose and patients with increased A. muciniphila
abundance and gene richness exhibited improved
fasting plasma glucose levels and greater improvements
in insulin sensitivity following caloric restriction (Dao
et al. 2016). Direct chronic treatment in diet-induced
obese mice with alive, but not heat-killed A. muciniphila
reversed weight and fat mass gain, as well as insulin
resistance (Everard et al. 2013). Further, chronic treatment
with dietary phenols from grapes, or cranberry extract,
improved glucose tolerance and insulin sensitivity which
was hypothesized to be due to A. muciniphila abundance
(Anhe et al. 2015, Roopchand et al. 2015). Although
A. muciniphila remains to be tested in humans, this is one
example in an ever-expanding list of potential probiotics
that could help lower glucose levels in type 2 diabetes
(Le Barz et al. 2015, Stenman et al. 2015a). It is interesting
to note that metformin treatment has been shown to
alter the gut microbiota, with chronic treatment resulting
in A. muciniphila abundance, as well as changes in bile
acid levels, suggesting a gut microbiota-mediated role for
metformin treatment (Lien et al. 2014, Napolitano et al.
2014, Shin et al. 2014).

Metformin

As mentioned above, metformin is the first-line
medication for the treatment of type 2 diabetes, as it
potently reduces hyperglycaemia via a reduction in
hepatic glucose production (Foretz et al. 2014). Although
the main action of metformin was originally hypothesized
to be due to activation of hepatic AMP-activated kinase
(AMPK) (Shaw et al. 2005), an intracellular energy sensor,
via increased AMP levels resultant from inhibition of
the mitochondrial respiratory chain complex 1 (Owen
et al. 2000), recent work has readily challenged that.
Recent studies have demonstrated that metformin can
lower HGP by: suppressing glycolytic enzymes in an
AMPK-independent fashion (Foretz et al. 2010),
antagonizing hepatic glucagon action (Miller et al. 2013),
and via an alteration in mitochondrial and cytosolic
redox states (Madiraju et al. 2014). Furthermore, the
action of metformin in the gut has recently been
identified to play a role in its glucose-lowering ability
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Intestinal actions of metformin potentially regulating glucose homeostasis. Metformin can act in the gut to alter gut microbiota and bile acids, which
have been shown to contribute to glucose homeostasis. Furthermore, metformin increases GLP-1 release and can activate intestinal AMPK to lower

glucose production possibly via increased GLP-1 signalling.

(Fig. 2). Indeed, oral/intestinal treatment of metformin
results in a greater drop of blood glucose than IV or even
portal treatment (Stepensky et al. 2002). Interestingly,
delayed-release metformin, which is formulated to avoid
absorption and target the lower bowel, was more effective
at lowering fasting plasma glucose than currently available
metformin (Buse et al. 2016). One possible mechanism
may be in the ability of metformin to activate a gut-
brain-liver axis to lower hepatic glucose production.
Specifically, preabsorptive metformin activates small
intestinal mucosal AMPK, triggering a GLP-1R-protein
kinase A-dependent pathway to lower glucose production
(Duca et al. 2015). This is in line with the fact that
metformin can increase both acute and chronic levels
of GLP-1 (Foretz et al. 2014). Interestingly, when small
intestinal AMPK was virally knocked-down in diabetic
rodents, the glucose-lowering ability of acute metformin
treatment was diminished by about 50%, indicating a
potent and sustained contribution of intestinal AMPK
activation to metformin’s effect (Duca et al. 2015).
Additionally, this study highlights the potential for
more direct targeting of intestinal energy sensors to treat
diabetes. For example, in addition to AMPK, the NAD+-
dependent deacetylase sirtuin 1 (SIRT1) is expressed in
the small intestinal mucosa. Activation of small intestinal
SIRT1, via intraintestinal resveratrol infusion, triggers a
vagal gut-brain neuronal axis to improve hypothalamic
insulin sensitivity to lower hepatic glucose production
in high-fat-fed and diabetic rodents (Cote et al. 2015).
Interestingly, this effect was also dependent on AMPK
(Cote et al. 2015), indicating a possible interactive

dependency between these two molecules, although
it remains to be tested whether SIRT1 is required for
intraintestinal metformin in the gut. Nonetheless, it may
be efficacious to develop a ‘gut-targeted’ metformin-like
molecule that could activate intestinal mucosal AMPK
and/or other energy sensors to potently lower glucose
levels in diabetic individuals, given that intestinal AMPK
is reduced in diabetes (Harmel et al. 2014).

Conclusion

The metabolic potential of the GI tract is becoming
increasingly recognized. Drugs aimed at mimicking
gut-derived molecules, like GLP-1 receptor agonists, are
readily being tested and used for diabetic treatment.
As of now, most GLP-1R agonists are administered as
a complimentary therapeutic option to metformin,
but perhaps in the future, more specialized ‘cocktail’
treatments will be developed to provide a more complete
action on complex signalling pathways that often
compensate and limit long-term drug potential. Perhaps
an even better approach will be to alter endogenous levels
of gut-derived hormones, as is done with manipulation of
bile acids and gut microbiota following bariatric surgery.
Instead of surgery, drugs are also being developed to
directly influence the gut milieu, like bile acid sequestrants
and pre/probiotics. Although manipulation of a stable gut
microbiota has proven difficult, with more research into
how to effectively and favourably alter the microbiota in
the long-term, pre/probiotics could be a valuable tool in
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treating diabetes, possibly as a combination with frontline
treatments (Stenman et al. 2015b). Even more intriguing
is the possibility that future treatments may involve
genetically modified bacteria that contain therapeutic
factors to help treat metabolic disease (Chen et al. 2014).
Overall, the GI tract represents a promising avenue for the
development of successful targeted therapeutic options
for the treatment of diabetes.
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