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Abstract

Biologically active steroids are transported in the blood by albumin, sex hormone-

binding globulin (SHBG), and corticosteroid-binding globulin (CBG). These plasma 

proteins also regulate the non-protein-bound or ‘free’ fractions of circulating 

steroid hormones that are considered to be biologically active; as such, they can be 

viewed as the ‘primary gatekeepers of steroid action’. Albumin binds steroids with 

limited specificity and low affinity, but its high concentration in blood buffers major 

fluctuations in steroid concentrations and their free fractions. By contrast, SHBG and 

CBG play much more dynamic roles in controlling steroid access to target tissues and 

cells. They bind steroids with high (~nM) affinity and specificity, with SHBG binding 

androgens and estrogens and CBG binding glucocorticoids and progesterone. Both are 

glycoproteins that are structurally unrelated, and they function in different ways that 

extend beyond their transportation or buffering functions in the blood. Plasma SHBG 

and CBG production by the liver varies during development and different physiological 

or pathophysiological conditions, and abnormalities in the plasma levels of SHBG and 

CBG or their abilities to bind steroids are associated with a variety of pathologies. 

Understanding how the unique structures of SHBG and CBG determine their specialized 

functions, how changes in their plasma levels are controlled, and how they function 

outside the blood circulation provides insight into how they control the freedom of 

steroids to act in health and disease. Journal of Endocrinology  
(2016) 230, R13–R25
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Introduction

Upon their release from steroidogenic cells, biologically 
active steroids are transported in the blood largely by 
albumin, sex hormone-binding globulin (SHBG), and 
corticosteroid-binding globulin (CBG). Additionally, these 
proteins regulate the non-protein-bound or ‘free’ fraction 
of steroid hormones in plasma, and control their ability 
to leave the blood vessels within tissues and to access their 
target cells (Siiteri et al. 1982).

Albumin binds all classes of steroids with low (µM) 
affinity, but its very high plasma concentrations and 
ligand-binding capacity allow it to buffer fluctuations 
in steroid levels and their distribution between other 
steroid-binding proteins and the free fraction in 
plasma. Unlike aldosterone, which is bound primarily 
by albumin, other steroid hormones bind to CBG and 
SHBG with high (nM) affinity and specificity, with SHBG  
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binding the major androgens and estrogens, and 
CBG binding the glucocorticoids and progesterone, 
preferentially (Westphal 1986). Although CBG and 
SHBG are present in much lower concentrations in 
plasma than albumin, their high affinity and specificity 
for steroids enables them to play much more dynamic 
roles in determining the plasma concentrations of their 
main ligands. In addition, they control the amounts of 
free steroids that passively diffuse into cells, and they 
accomplish this in distinct and diverse ways (Hammond 
2011, Perogamvros et al. 2012).

The liver is responsible for plasma SHBG and CBG 
production, but their genes are also expressed in several 
other tissues where their protein products function 
differently than in the blood (Hammond 2002, 2011). 
Programmed fluctuations in plasma SHBG and CBG 
levels occur throughout development (Scrocchi et  al. 
1993a,b, Hammond 2011), and abnormal plasma 
levels of both proteins have been linked to the risk of 
diseases and their associated pathologies (Hammond 
et  al. 2012, Perogamvros et  al. 2012). Therefore, 
understanding how the unique structures of SHBG 
and CBG determine their specialized functions, how 
changes in their plasma levels are controlled, and how 
they function outside the blood circulation is integral 
to understanding how they function as the ‘primary 
gatekeepers of steroid action’.

Free steroids are active steroids

The free hormone hypothesis provides a foundation for 
understanding how steroids act at the target cell level by 
postulating that only free steroids that are not bound by 
proteins passively diffuse through the plasma membranes 
of cells (Mendel 1989). Steroids that are loosely and non-
specifically bound to albumin have also been proposed 
to be accessible to tissues (Pardridge 1988), but steroids 
still have to dissociate from albumin before they diffuse 
into cells and exert their activities. Numerous reports 
of the facilitated uptake of SHBG-bound steroids have 
also surfaced (Bordin & Petra 1980, Pardridge 1988, 
Porto et al. 1991, Hammes et al. 2005), but have never 
been substantiated in physiologically relevant contexts. 
At present, the proposition that only free steroids 
diffuse into cells therefore still best explains the clinical 
manifestations of either steroid hormone excess or 
deficiency, and knowledge of free steroid concentrations 
in plasma is critical to understanding their biological 
activities.

Access of plasma steroids to target tissues 
and cells

While measurements of free steroid concentrations remain 
the most robust indicator of the biological activities of 
plasma steroids (Vermeulen et al. 1999), adoption of the 
free hormone hypothesis as a universal explanation for 
how steroids access their target cells in different tissues 
and organ systems is overly simplistic (Mendel 1989). 
This is because steroid-target cells in multicellular organ 
systems are often compartmentalized and separated from 
the blood vasculature. Moreover, tissues and organ systems 
vary enormously in terms of their vascular permeability 
and the nature of their blood supply, including blood flow 
and transit time. Extreme examples include the highly 
fenestrated aspect of the blood vasculature in the liver, 
where hepatocytes are essentially bathed in blood, vs cells 
within the brain and testis that are separated by blood 
barriers. In addition, sex steroid-sensitive epithelial cells 
in organs such as the prostate, breast, and endometrium 
are separated from blood capillaries by complex basement 
membranes, and are compartmentalized together with 
other cell types (e.g., stroma and adipocytes), in which 
steroids may either act directly or are metabolically 
converted into more active hormones in intracrine or 
paracrine fashions. Thus, the locations of target cells in 
relation to the blood supply, the endothelial vascular 
permeability, the composition of the extravascular fluids 
and extracellular matrix, as well as the juxtaposition of 
different cell types within a tissue all dictate the ultimate 
ability of steroids to access their target cells. This review 
provides examples of how albumin, CBG, and SHBG 
function in concert with each other, as well as separately, 
to control the actions of steroid hormones in both the 
blood and extravascular tissue compartments.

Albumin

Albumin is the most abundant protein in the blood and 
it binds steroids and other small lipophilic molecules 
non-specifically. Its plasma concentrations are normally 
relatively constant and approximately 1000 times greater 
than those of the other major steroid-binding proteins 
(Dunn et al. 1981). However, albumin’s affinity for steroids 
is 3–4 orders of magnitude lower than those of CBG or 
SHBG (Dunn et al. 1981), the plasma concentrations of 
which undergo much greater fluctuations than albumin, 
as will be illustrated below. However, reductions in 
plasma albumin concentrations, which are often seen in 
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patients with severe malnutrition, cirrhosis, the nephrotic 
syndrome, and other critical illnesses, have been 
predicted to alter the plasma distribution of testosterone 
(Dunn et al. 1981). Although the mathematical models 
used in latter study indicated that changes in plasma 
albumin levels predict only a small effect on the plasma 
distribution of cortisol, a recent study in critically ill 
patients has indicated that this introduces a bias in 
calculations of plasma free cortisol levels (Molenaar et al. 
2015). Under most conditions, however, where plasma 
albumin levels are with normal ranges, its main function 
is to buffer changes in the plasma distribution of steroids 
when their concentrations increase transiently, or when 
the production or function of CBG or SHBG change under 
different physiological conditions or during disease.

Corticosteroid-binding globulin

Apart from fish, all other vertebrate classes have a plasma 
protein that binds glucocorticoids and progesterone with 
high affinity (Westphal 1986). The primary structure of 
CBG defines it as a clade A serine proteinase inhibitor 
(SERPINA) family member (Hammond et al. 1987) and 
examination of recent genome databases (www.ncbi.
nlm.nih.gov; www.ensembl.org) reveals that SERPINA6 
is in synteny with several other SERPINA genes in all 
mammals; thus, supporting the notion that CBG arose as 
a result of gene duplications within this cluster of SerpinA 
genes (Billingsley et al. 1993). Unlike other SERPINAs 
encoded by genes within this syntenic gene cluster, CBG 
(SERPINA6) is not known to inhibit proteases. However, 
as described in detail below, the specific cleavage of CBG 
by proteases within a distinct structural domain serves 
to promote the targeted delivery of CBG ligands to their 
sites of action.

The most obvious function of CBG in the blood is 
to transport glucocorticoids (Brien 1981, Perogamvros 
et al. 2012) and recent studies have confirmed that CBG 
is the primary determinant of circulating plasma cortisol 
levels in humans (Bolton et  al. 2014). Perturbations in 
the plasma distribution of cortisol in patients with CBG 
variants with reduced affinity for cortisol, for example, 
CBG D367N (Emptoz-Bonneton et al. 2000), or inactive 
CBG, as observed for CBG G237V (Perogamvros et  al. 
2010) or CBG W371S (Hill et al. 2012), illustrate the key 
role that CBG plays in regulating the free fraction of 
cortisol in the blood circulation, and how albumin acts to 
buffer the plasma distribution and free fraction of cortisol 
in cases of CBG deficiencies (Fig. 1A).

In addition to the liver, Serpina6 is expressed at 
relatively high levels in several other tissues, such as the 
endocrine pancreas and proximal convoluted tubules of 
the kidney during early development in mice (Scrocchi 
et al. 1993a,b). These extrahepatic sites of CBG synthesis 
do not contribute to plasma CBG levels, and the functions 
of CBG in these locations appear to be distinct from that 
of plasma CBG. For instance, the CBG produced by the 
developing rodent kidney is secreted luminally into the 
proximal convoluted tubules (Scrocchi et  al. 1993a). In 
this extravascular compartment, it is likely that CBG acts 
to control the activities of unconjugated corticosterone 
excreted by the kidneys of immature rodents, at a time 
when plasma CBG levels are very low due to a delay in 
their postnatal resumption of hepatic CBG production 
(Smith & Hammond 1991, Scrocchi et  al. 1993a). 

Figure 1
(A) Influence of CBG on the plasma distribution of cortisol. (B) Estimated 
proportional occupancy of plasma CBG by its major ligands, cortisol and 
progesterone, in blood samples taken from women before and during 
pregnancy, and the invervillous compartment of the placenta at term. 
(A) The plasma distribution of cortisol in individuals with normal CBG 
(WT); a CBG D367N variant with a four-fold reduction in affinity for 
cortisol (Emptoz-Bonneton et al. 2000), or after heat denaturation to 
inactivate CBG in a normal human sample (Siiteri et al. 1982), were 
determined by centrifugal ultrafiltration dialysis (Hammond et al. 1980). 
Note that the cortisol distribution in plasma with inactive CBG is expected 
to resemble that in patients homozygous for naturally occurring CBG 
variants with undetectable steroid-binding activity, for example, CBG 
G237V (Perogamvros et al. 2010) or CBG W371S (Hill et al. 2012). 
(B) Proportional occupancy of CBG in serum from women during the 
luteal phase of the menstrual cycle vs the third trimester of pregnancy as 
estimated computationally from data of serum CBG, cortisol and 
progesterone levels (Dunn et al. 1981).
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Remarkably, although SERPINA6 (CBG) mRNA levels in 
the developing mouse kidney are greater than in any other 
tissue, including the liver, at any stage of development 
(Scrocchi et al. 1993a), there are no reports of abnormal 
renal development or function in Cbg-deficient mice. 
Moreover, while some CBG-deficient humans present 
with hypotension (Emptoz-Bonneton et  al. 2000, Torpy 
et al. 2001), there is also no evidence that they suffer from 
renal disease.

There is information on the tissue-specific expres-
sion of CBG in other animal models during develop-
ment (Smith & Hammond 1991, Berdusco et al. 1995), 
including baboons (Pepe et al. 1996), but changes in SER-
PINA6 expression in liver or any other tissues during early 
human development are unknown. However, as in other 
mammals, plasma CBG levels are relatively low in human 
neonates and remain so for the first month (Scott & Wells 
1995). The reductions in plasma CBG levels in fetuses and 
neonates either just before or just after delivery may be 
important because this will increase the free glucocorti-
coid levels required for the maturation of organ, such as 
the lung (Smith & Hammond 1991).

It is widely recognized that CBG regulates the circu
lating levels and plasma distribution of glucocorticoids 
in mammals. However, during the second and third 
trimesters of human pregnancy, the large amounts of 
progesterone produced by the placental trophoblast are 
capable of displacing glucocorticoids from CBG, and 
under these circumstances CBG will assume the role of 
a major plasma progesterone transport protein at least 
during late gestation (Fig. 1B). In support of this, it has 
been reported that plasma CBG may influence circulating 
progesterone levels during human pregnancy and serves 
as a local regulator of progesterone levels and activity at 
the maternal–fetal interface (Benassayag et al. 2001). This 
was further illustrated in a study of pregnant Chinese 
women with a relatively common (frequency of 1:37 in 
Han Chinese) non-synonymous SNP (rs146744332) that 
results in the production of a secretion-deficient CBG 
A51V variant (Lin et  al. 2012). In the latter study, CBG 
levels correlated with amounts of circulating progesterone 
during the first two trimesters of pregnancy, as well as 
the amounts of progesterone in the intervillous blood 
(Lei et al. 2015). As also reported previously (Benassayag 
et al. 2001), the CBG levels in intervillous blood samples 
taken from placentas at term vary by almost 10-fold in 
this study, while the corresponding progesterone levels 
varied by only three-fold (Lin et  al. 2012). Moreover, 
plasma levels of CBG in some intervillous blood samples 
at term were similar to the corresponding maternal 

circulating levels, while in others they were as much as 
four times lower (Lin et al. 2012). Importantly, in those 
intervillous samples with very low CBG levels, the levels 
of progesterone were about two to three times higher 
than in the peripheral blood (Lin et al. 2012). When this is 
considered in relation to the estimates of the proportional 
occupancy of CBG by progesterone in maternal blood in 
late gestation (Fig. 1B), it can be reasonably predicted that 
even greater proportions of the CBG in intervillous blood 
will be occupied by progesterone with more displacement 
of cortisol, as compared with the maternal circulation, 
and this will be especially evident in those intervillous 
samples with low (~100 nM) CBG levels.

Although such large differences in intervillous blood 
levels of CBG must also translate into large differences in 
the free fractions of both cortisol and progesterone at the 
maternal interface at term, the physiological significance 
of this remains obscure, especially because there were 
no obvious differences in pregnancy outcomes or the 
health of neonates in CBG-deficient pregnant women as 
compared with women with normal plasma CBG levels 
(Lei et al. 2015). However, the sex ratio of offspring deliv-
ered by women with the secretion-deficient CBG variant 
(CBG A51V) was significantly female skewed (Lei et al. 
2015). This latter observation is of interest because stress 
during pregnancy causes elevations in plasma cortisol, and 
has been associated with female skewing of the sex ratio 
at birth (Navara 2010), which may be exacerbated in the 
offspring of CBG-deficient women. It should also be noted 
that CBG may act differently in regulating progesterone 
and or cortisol bioavailability at human fetal–maternal 
interface in different species, including rodents, where the 
placenta does not make large amounts of progesterone. In 
those species, there is a compensatory sustained produc-
tion of high levels of progesterone by the corpus luteum 
until close to term, and it is possible that CBG plays a role 
in transporting progesterone of ovarian origin and regu-
lating its actions during early pregnancy, at a time when 
progesterone has an essential role in supporting blastocyst 
implantation in all species (Graham & Clarke 1997).

Crystal structure analyses of human and rat CBG 
showed that the steroid-binding site is located close to 
the surface of the protein (Klieber et al. 2007, Gardill et al. 
2012, Bolton et al. 2014), rather than being buried within 
its core as previously thought (Defaye et  al. 1980, Lin 
et al. 2010), and revealed how different steroids interact 
with specific residues in the steroid-binding site (Lin 
et  al. 2010). These experiments also demonstrate how 
different steroids bind to CBG with high affinity, how 
proteolysis of its ‘reactive center loop’ (RCL) promotes 
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the irreversible loss of high-affinity binding activity (Lin 
et al. 2009, 2010), and how naturally occurring mutations 
of critical residues cause abnormalities in the ability of 
CBG to bind its ligands (Lin et  al. 2010, Simard et  al. 
2015). As many as 15 human SERPINA6 polymorphisms 
have been characterized with defects in the production or 
steroid-binding activity of CBG (Simard et al. 2015), and 
these are listed in Table 1. In addition, numerous SerpinA6 
mutations have been reported in animals that were used 
to study the actions of glucocorticoid in health and 
disease (Moisan 2010). Knowledge of these CBG variants 
is important because the algorithms used to calculate free 
glucocorticoid concentrations in blood samples rely on 
the assumption that the steroid-binding affinities of CBG 
in a particular species are constant, and this highlights the 
need to develop accurate methods to directly determine 
free plasma glucocorticoid concentrations.

The observation that C57BL/6J mice are much 
more sensitive to an acute inflammatory challenge 
with TNFα when compared with DBA/2J mice enabled 
the mapping of this response to the murine Cbg gene 
locus in a reference panel of recombinant inbred (BXD) 
mouse strains derived by crossing C57BL/6J and DBA/2J 
mice (Libert et  al. 1999). This early indication that a 
pathological response to acute inflammation was linked 
to CBG made sense because plasma CBG levels in both 
male and female C57BL/6 had been reported to be about 
50% lower than those in DBA/2J mice (Jones et al. 1998). 
The link between low plasma CBG levels and this clinical 
phenotype was later substantiated in Cbg (SerpinA6)–/– 
mice that were shown to be much more sensitive to 

an acute inflammatory challenge than their wild-type 
counterparts (Petersen et al. 2006). Recently, we have also 
found that plasma CBG deficiencies in different colonies 
of Sprague–Dawley rats, which are widely used in 
studies of glucocorticoid-dependent stress responses and 
inflammation, are associated with a greater sensitivity to 
an acute inflammatory challenge (Bodnar et al. 2015).

A role for CBG in controlling the activities of gluco-
corticoids during infectious and inflammatory diseases 
was suspected from early studies that revealed dynamic 
reductions in plasma CBG levels in patients with acute 
infections, traumatic injuries, or severe inflammation 
(Savu et al. 1981, Zouaghi et al. 1985, Pugeat et al. 1989, 
Bernier et al. 1998), and similar changes were observed 
in animal studies (Savu et al. 1980, Faict et al. 1983, 
Garrel et al. 1993). The discovery that the gene encod-
ing human CBG is located within a cluster of closely 
related SERPINA genes (Underhill & Hammond 1989, 
Seralini et al. 1990), many of which control proteases 
or other aspects of inflammatory responses, provided 
insight into the evolutionary origins of CBG. This also 
helps to understand why specific proteases target CBG 
and disrupt its ability to bind steroids, thereby facilitat-
ing the release of anti-inflammatory steroids at sites of 
tissue damage or inflammation (Hammond et al. 1987, 
1990, 1991, Hammond 1990).

It is now known that several endogenous proteases, 
including neutrophil elastase (Hammond et  al. 1990) 
and chymotrypsin (Lewis & Elder 2014), and a protease 
(LasB) produced by the opportunistic bacterial pathogen, 
Pseudomonas aeruginosa (Simard et  al. 2014), specifically 

Table 1  Non-synonymous SERPINA6 polymorphisms linked to abnormalities in CBG production or steroid-binding activity.

SNP (ID) MAFa Amino acidb Effect on production or steroid binding References

N/A N/A L(5)CfsX26 Translation stop/no production Torpy et al. (2012)
rs777245398 <0.00001 W(11)Stop Translation stop/no production Torpy et al. (2001)
rs148218218 0.0004 H14R Produced/Decreased capacity Simard et al. (2015)
rs143058829 0.0002 H14Q Produced/Decreased affinity Simard et al. (2015)
rs370353870 0.00008 I48N Low secretion Simard et al. (2015)
rs146744332 0.004 A51V Low secretion Lin et al. (2012)
rs187253929 0.0004 H89Y Produced/Decreased affinity Simard et al. (2015)
rs113418909 0.0022 L93H Produced/Decreased affinity Smith et al. (1992)
rs202107375 0.00007 E102G Produced/Decreased capacity Lin et al. (2012)
rs754814260 <0.00001 G237V Produced/No binding activity Perogamvros et al. (2010)
rs201880274 <0.00001 P246L Produced but not secreted Simard et al. (2015)
rs267604111 N/A R260L Produced/No binding activity Simard et al. (2015)
rs374191911 0.00008 1279F Produced/Decrease affinity Simard et al. 2015
rs28929488 0.0004 D367N Produced/Decreased affinity Emptoz-Bonneton et al. 

(2000)
rs267607282 N/A W371S Produced/No binding activity Hill et al. (2012)

aMinor allele frequency (MAF) report as the highest frequency among current databases; bResidue numbering is from the amino-terminus of the mature 
polypeptide sequence (i.e., does not include the 22 residue leader sequence). Amino acids within the leader sequence are indicated in parenthesis.
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target and cleave the protease-sensitive RCL of CBG 
disrupting its ability to bind steroids with high affinity. 
While the significance of RCL cleavage by chymotrypsin 
is unclear, neutrophil elastase and LasB are present at 
sites of inflammation and infection, and their ability to 
specifically target and cleave the RCL of CBG is thought to 
promote the release of glucocorticoids at these locations.

Plasma CBG levels decrease rapidly in patients and 
animals undergoing acute inflammation (Savu et al. 1981, 
Garrel et al. 1993, Garrel 1996), and it is assumed that 
this reflects an initial proteolysis of the RCL that will 
cause a rapid plasma redistribution of glucocorticoids 
with increases in the albumin-bound and free fractions 
both locally and systemically. Furthermore, any increases 
in adrenal glucocorticoid production driven by adreno-
corticotrophic hormone (ACTH)-mediated responses 
to stress can be expected to overwhelm the reduced 
CBG steroid-binding capacity and accentuate systemic 
increases in plasma free cortisol levels. It is also known 
that glucocorticoids (Smith & Hammond 1992) and the 
pro-inflammatory cytokine, interleukin (IL)-6 (Bartalena 
et al. 1993), downregulate hepatic CBG production, and 
increases in their production will act to maintain low 
plasma CBG levels during the course of inflammation. 
At some point during the recovery from inflammation, 
plasma CBG levels are expected to gradually rebound to 
maintain a normal homeostatic balance of plasma gluco-
corticoid levels and bioavailability.

Importantly, this model provides a framework for 
studies of how plasma CBG might be used as a biomarker 
of the severity of inflammation, and the time course 
of infectious or acute inflammatory diseases, as well as  
studies of how pre-existing deficiencies in either the 
production of CBG or its steroid-binding properties 
might contribute to poor responses to these diseases. 
Moreover, given the growing number of human SERPINA6 
polymorphisms that compromise the production or 
function of CBG (Cizza et al. 2011, Simard et al. 2015), 
and the increased frequency of some of these mutations 
in specific ethnic groups/geographic locations (Cizza et al. 
2011, Lin et al. 2012), the impact of CBG deficiencies on 
the onset of acute inflammation, as well as the recovery 
process, needs to be investigated in specific patient groups 
and animal models.

Sex hormone-binding globulin

Despite species differences in the way the SHBG gene is 
expressed in the liver during postnatal life, all mammals 

produce plasma SHBG during critical phases of gonadal 
and reproductive tract development (Hammond 2011). In 
human blood, high SHBG levels during childhood likely 
serve to restrict the premature actions of sex steroids 
until SHBG declines in both sexes as puberty advances 
(Hammond 2011, Hammond et al. 2012). Serum SHBG 
levels are generally higher in women than in men, and 
there is a marked difference in the relative occupancy of 
SHBG steroid-binding sites between the sexes, with only 
~20% of the sites being occupied in women while ~80% 
of sites are occupied primarily by the much higher plasma 
testosterone concentrations in men (Dunn et al. 1981).

The steroid occupancy of SHBG is further reduced 
in women taking oral contraceptives that promote large 
increases in serum SHBG levels, while simultaneously 
preventing ovarian sex steroid production. It is assumed 
that the increases in SHBG levels in women taking oral 
contraceptives reflect increased hepatic SHBG production, 
because similar five- to ten-fold increases in serum SHBG 
levels occur in concert with increases in estrogen levels 
during human pregnancy (Anderson 1974). Increases 
in serum SHBG in women under these conditions 
undoubtedly influence the plasma distribution of both 
androgens and estrogens, and this property has been 
exploited therapeutically to reduce androgen exposures in 
women with symptoms of hyperandrogenism (Dewis et al. 
1985). How estrogens mediate increases in hepatic SHBG 
expression remains to be determined but they most likely 
function via the estrogen receptor α (ERα (ESR1)) because 
their abilities to increase SHBG production in HepG2 
cells, which are known to be ERα deficient, is increased in 
a HepG2 cell line (Hep89) engineered to overexpress ERα 
(Nader et al. 2006, Hammond et al. 2008). Although the 
significance of the large increases in maternal plasma SHBG 
is unclear, transient androgenization has been reported in 
a pregnant woman with a SHBG deficiency. The fact that 
androgenic symptoms resolved in this patient, postpartum, 
suggested that this may be due to an exposure to fetal 
adrenal androgens that escape placental metabolism, and 
which would normally be bound by elevated SHBG levels 
during pregnancy (Hogeveen et al. 2002).

Our understanding of the structure and function of 
SHBG advanced considerably after the crystal structure 
of the N-terminal laminin G-like domain of SHBG was 
resolved in complex with a variety of sex steroid ligands 
(Grishkovskaya et  al. 2000, 2002). These high-resolution 
structures confirmed that androgens and estrogens 
interact competitively with the same steroid-binding site, 
but are positioned in opposite and inverted orientations 
(Grishkovskaya et al. 2002), and that each subunit of 
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the SHBG homodimer contained a steroid-binding site 
(Avvakumov et  al. 2001). The crystal structures also 
revealed the location of a calcium-binding site suspected 
as being essential for both the dimerization and steroid 
binding of SHBG, and provided insight into how the 
chelation of calcium in EDTA-treated plasma disrupts these 
critical structural and functional properties of the molecule 
(Grishkovskaya et al. 2000). In addition, they showed that 
a zinc atom, positioned at what appears to be an entrance 
to the steroid-binding site of human SHBG, reduces its 
affinity for estrogens specifically (Avvakumov et al. 2000). 
This zinc-binding site of plasma SHBG is unlikely to be 
fully occupied because free zinc concentrations in plasma 
are very low, but it may be occupied in extravascular 
tissue compartments, such as the prostate and the male 
reproductive tract, where zinc levels are exceptionally high.

Crystal structures of human SHBG have also provided 
unprecedented insight into its ligand-binding site, and 
how some naturally occurring SHBG variants (Table  2) 
are produced or function abnormally (Wu & Hammond 
2014). Several of these naturally occurring SHBG variants 
exhibit differences in their relative affinities for either 
androgens or estrogens, and their positions within 
the SHBG crystal structure suggest that androgens and 
estrogens enter or exit the steroid-binding pocket in 
different ways (Wu  &  Hammond 2014). The latter 
observations may explain why androgens and estrogens 
are oriented so differently within the steroid-binding site 
(Grishkovskaya et al. 2002).

It has been proposed that SHBG leaves the blood 
circulation in some tissues and interacts directly with 
proteins on the plasma membranes of specific cell types, 

and that this may contribute to either the delivery of 
SHBG-bound sex steroids via endocytotic mechanisms 
or to cell membrane receptor-mediated signaling (Rosner 
et  al. 2010). We have been unable to confirm these 
observations, but our studies of mice expressing human 
SHBG transgenes have shown that SHBG does exit the 
blood vessels in some tissues, and accumulates within 
extracellular tissue compartments, such as the stroma 
of the endometrium and epididymis (Ng et  al. 2006). 
Moreover, we obtained evidence that this involves a 
steroid ligand-dependent interaction between SHBG and 
two members of the fibulin family of extracellular matrix-
associated proteins, fibulin-1D and fibulin-2 (Ng et  al. 
2006). The biological significance of this remains to be 
determined, but it provides in  vivo evidence that SHBG 
has the capacity to act in extravascular compartments, 
extending its functions beyond that of a transport protein 
that regulates free sex steroids levels in the blood.

Ever since it was realized that the proportions of free 
testosterone and estradiol in blood samples are inversely 
related to those of SHBG (Anderson 1974), serum SHBG 
and testosterone measurements have been used in algo-
rithms to calculate free testosterone levels in patients 
with suspected hyperandrogenism or hypoandrogenism 
(Vermeulen et al. 1999). Similar relationships between 
SHBG and free estradiol levels explain how serum SHBG 
levels contribute to abnormal estrogen exposures in 
lean women who have high SHBG levels and at risk for 
osteoporosis (Davidson et al. 1982, Devine et al. 2005) 
vs obese postmenopausal women who have low SHBG 
levels and are at high risk for endometrial cancer (Nisker 
et al. 1980).

Table 2  Non-synonymous SHBG polymorphisms linked to abnormalities in SHBG production or steroid-binding activity.

SNP (ID) MAFa Amino acidb Effect on production or steroid binding References

rs373254168 0.00008 T7N Produced/Loss of O-glycosylation Wu & Hammond (2014)
rs143521188 <0.00008 T48I Inefficient dimerization/impaired Ca2+ 

binding/reduced affinity for DHT
Wu & Hammond (2014)

rs373769356 0.00008 R123C Reduced affinity for DHT/Increased 
affinity for E2

Wu & Hammond (2014)

rs143269613 0.00008 R123H Reduced affinity for DHT/increased 
affinity for E2

Wu & Hammond (2014)

rs368589266 0.00008 R135C Produced/Increased affinity for E2 Wu & Hammond (2014)
rs6258 0.006 P156L Produced/Reduced affinity for T Ohlsson et al. (2011)
rs145273466 0.0005 L165M Produced/Increased affinity for E2 Wu & Hammond (2014)
rs372114420 0.00008 E176K Produced/Increased affinity for E2 Wu & Hammond (2014)
rs146779355 0.00008 G195E Low secretion/reduced affinity for DHT Wu & Hammond (2014)
N/A N/A G195R No secretion Vos et al. (2014)
rs6259 0.09 D327N Produced/Additional N-glycosylation site/

normal steroid binding
Power et al. (1992)

aMAF report as the highest frequency among current databases; bResidue numbering is from the amino-terminus of the mature polypeptide sequence 
(i.e., does not include the 29 residue leader sequence).
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The mathematical models used to calculate free 
plasma androgen or estrogen levels currently rely on SHBG 
measurements obtained using immunoassays (Vermeulen 
et al. 1999), and they are based on the assumptions that 
all SHBG molecules react similarly immunologically and 
have identical steroid-binding properties. These assump-
tions are fallible, however, because some SHBG variants 
are not recognized in immunoassays, while others have 
abnormal affinities for sex steroids (Wu & Hammond 
2014), including the SHBG P156L variant with a reduced 
affinity for testosterone that is present in ~1% of Cauca-
sians, and increases the free fraction of testosterone in 
the blood of male carriers (Ohlsson et al. 2011). These 
findings highlight the pressing need for sensitive mass 
spectrometric methods to measure both total and free sex 
steroid levels in the blood.

This is emerging as an important issue because 
several other relatively common variations in the human 
SHBG coding sequence are linked to abnormal plasma 
SHBG levels (Table  2). They include a common non-
synonymous SNP (rs6259) that causes a substitution 
of Asp327 with an Asn residue (D327N) and creates an 
extra N-linked glycosylation site (Power et  al. 1992), 
the utilization of which retards the plasma clearance of 
SHBG (Cousin et  al. 1998). Individuals who carry the 
rs6259 SNP have slightly elevated SHBG levels that have 
been negatively associated with the risk of developing 
breast cancer (Forsti et al. 2002, Cui et al. 2005) or type 
2 diabetes (Ding et al. 2009). Several polymorphisms in 
the non-coding regions of human SHBG also appear to 
influence the hepatic production or blood levels of SHBG 
(Hogeveen et al. 2001, Cousin et al. 2004), and numerous 
reports have associated them with a variety of hormone-
related or metabolically related diseases (Xita & Tsatsoulis 
2010). There is also a growing awareness that abnormal 
plasma SHBG levels, and the subsequent changes in the 
plasma levels and distribution of sex steroids, are not only 
predictive of numerous clinical conditions, including low 
bone density (Slemenda et al. 1997) and osteoporotic 
fracture (Cawthon et al. 2016) in men, and risk for the 
metabolic syndrome and its associated diseases in both 
sexes (Kim & Halter 2014), but may be directly implicated 
in the etiology of some of these diseases (Legrand et al. 
2001, Ding et al. 2009).

Despite the large number of SHBG measurements 
performed for diagnostic purposes, it is remarkable that 
there have been only two reports of complete SHBG 
deficiencies in humans. An early report of undetectable 
(<10 nM) plasma SHBG levels (Ahrentsen et al. 1982) has 

remained unsubstantiated, but a rare missense genetic 
mutation that produces a secretion defective SHBG variant 
(SHBG G195R) was recently reported in a young man 
and his sister, both of whom were homozygous for the 
mutant SHBG allele and had no detectable SHBG in their 
blood (Vos et al. 2014). As expected, plasma testosterone 
concentrations in the male proband were well below the 
normal range, yet his free testosterone levels were normal. 
Clinical assessments indicated fatigue, overt muscle 
weakness, and low body weight, and other symptoms 
of hypoandrogenism, but gonadal development and 
sperm production and function appeared to be normal. 
The proband’s affected sibling reported a late menarche 
and irregular menstrual cycles, but surprisingly had no 
signs of hirsutism or hyperandrogenism (Vos et al. 2014). 
Although this report provides an indication that plasma 
SHBG is not essential for male reproductive development 
and sperm production, the proband’s clinical phenotype 
suggests a more direct role for SHBG in supporting 
the anabolic activities of androgens. However, it was 
noted that this phenotype might be related to possible 
consanguinity in this pedigree (Vos et al. 2014).

Studies of SHBG expression in human liver 
cells in culture (Jänne & Hammond 1998), and in a 
transgenic mouse model (Jänne et  al. 1998) indicate 
that the transcription unit responsible for plasma SHBG 
production spans a 4.3 kb region within the short arm of 
human chromosome 17 (Berube et al. 1990). The sequence 
flanking exon 1 of this transcription unit lacks a typical 
TATA box, but the transcription factor hepatocyte nuclear 
factor 4 α (HNF4α) appears to substitute for the TATA-
binding protein in helping to recruit the transcriptional 
machinery to the promoter (Jänne & Hammond 1998). 
These pioneering studies also demonstrated that a related 
orphan nuclear hormone receptor (NHR) family member, 
COUP transcription factor (COUP-TF), competes with 
HNF4α for the same site in the proximal promoter. While 
HNF4α actively enhances transcription from this site, 
COUP-TF represses it, and it is evident that this particular 
cis-element in the SHBG promoter acts together with these 
two transcription factors as the main on–off switch for SHBG 
transcription (Jänne & Hammond 1998). This provided the 
first explanation for why low plasma SHBG is a hallmark of 
the metabolic syndrome and its associated diseases, such 
as type 2 diabetes and cardiovascular disease (Selva et al. 
2007). The latter study also challenged the assumption 
that elevated insulin levels are responsible for the 
downregulation of SHBG expression in hyperinsulinemic/
hyperglycemic patients. Instead, this comprehensive 
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study demonstrated that high levels of monosaccharides, 
especially fructose, repress SHBG transcription both in vivo 
and in vitro when administered exogenously, and showed 
that this is mediated by increasing palmitate levels in 
hepatocytes and a concomitant reduction in HNF4α levels 
(Selva et  al. 2007). The mechanism responsible for the 
loss of HNF4α in hepatocytes under these conditions is 
unknown, but may somehow be related to the fact that 
fatty acids, including palmitate (Hertz et  al. 1998), are 
ligands of HNF4α (Wisely et al. 2002). A direct correlation 
between hepatic HNF4-α and SHBG mRNA levels has been 
also observed in cancer patients, in whom hepatic HNF4-α 
and SHBG mRNA levels were reported to be inversely 
related to hepatic triglyceride levels and to decrease in 
relation to body mass index (Winters et al. 2014).

A variety of hormones and drugs, as well as metabolic 
and nutritional factors, influence the expression of 
human SHBG and plasma SHBG levels (Table 3). When 
considered together, the HNF4α emerges as a central 
mediator of human SHBG production by liver cells. For 
instance, it mediates the induction of SHBG expression in 
response to thyroid hormone (Selva & Hammond 2009a). 
In this regard, it is interesting that luteinizing hormone 
(LH) levels rise in hyperthyroxinemic men (Ruder 
et  al. 1971) and are high in patients with spontaneous 
hyperthyroidism (Hudson & Edwards 1992), implying a 
role for SHBG in the feedback regulation of gonadotrophin-
releasing hormone (GNRH) secretion. Elevated plasma 
levels of pro-inflammatory cytokines (TNF-α and IL-1β) 
in obese individuals contribute to a reduced hepatic 
expression of SHBG and low plasma SHBG levels by 
reducing HNF4-α levels in the liver (Simo et al. 2012a,b). 
Furthermore, adiponectin appears to increase plasma 
SHBG production indirectly by reducing heptic lipid 

content and increasing HNF4-α levels in the liver (Simo 
et al. 2014). Thus, the low plasma levels of adiponectin 
that are typically seen in overweight individuals at risk 
of having the metabolic syndrome (Kadowaki et al. 2006) 
may further contribute to the low plasma SHBG levels 
in obese patients. By contrast, peroxisome proliferator-
activated receptor gamma (PPARγ) appears to interact 
with a different NHR response element in the SHBG 
proximal promoter to repress transcription in hepatocytes 
cultured in  vitro (Selva & Hammond 2009b), and this 
may explain the lower plasma SHBG levels in subjects 
with a hyperactive 12 Ala PPARγ variant (Mousavinasab 
et al. 2006) that has been linked with low risk for type 2 
diabetes and myocardial infarction (Regieli et al. 2009). 
Although this is counterintuitive because the use of 
potent synthetic PPARγ ligands such as insulin sensitizers, 
like pioglitazone, cause modest increases in plasma 
SHBG levels in individuals with the metabolic syndrome 
(Sridhar et  al. 2013), the effects of these potent drugs 
may be multifactorial. Their effects on hepatic SHBG 
production may be influenced by increases in plasma 
adiponectin that in turn may increase SHBG production, 
as previously mentioned. Furthermore, the NHR response 
element in the SHBG proximal promoter that binds PPARγ 
is also known to bind HNF4-α (Jänne & Hammond 1998), 
as well as several other orphan members of the NHR 
family, including constitutive androstane receptor (CAR) 
and liver X receptor (LXR), which can all potentially 
compete for binding at this site. This is probably relevant, 
because pioglitazone and other insulin sensitizers most 
likely alter the hepatic complement of these orphan 
NHRs, and these changes may certainly contribute to the 
modest increases in plasma SHBG levels observed after 
their administration.

Table 3  Hormonal, pharmaceutical, metabolic, and nutritional modifiers of hepatic SHBG production.

Effector Response Mediator

Ethinyl estradiol Increases SHBG expression Mediated by ERα mechanism unknown
Increases plasma SHBG levels

Thyroid hormone Increases SHBG expression Indirect via increased hepatic HNF4-α 
Increases plasma SHBG levels

Synthetic PPARγ ligands  
(thiazolidinediones)

Increase SHBG expression
Increase plasma SHBG levels

Indirect presumably via increased hepatic 
HNF4-α via reduced hepatic lipids and 
higher adiponectin levels

Monosaccharides  
(glucose and fructose)

Decreases SHBG expression
Decrease plasma SHBG levels

Indirect via increased hepatic lipid levels 
and decreased HNF4-α

Pro-inflammatory cytokines  
(TNF-α and IL-1β)

Decreases SHBG expression
Decrease plasma SHBG levels

Indirect via decreased hepatic HNF4-α

Adiponectin Increases SHBG expression
Increases plasma SHBG levels

Indirect via reduced hepatic lipid levels 
and increased HNF4-α
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Conclusion

Plasma CBG and SHBG are structurally unrelated and 
function in very different ways that extend well beyond 
simple transportation or buffering functions in the 
blood. Their crystal structures have demonstrated how 
they interact with their preferred steroid ligands, as well 
as providing insight into other functionally important 
properties, including the consequences of the RCL cleavage 
of CBG by specific proteases in the context of infectious 
and inflammatory diseases, and the impact of dimerization 
and the binding of divalent cations (Ca2+ and Zn2+) 
on the steroid-binding properties of SHBG. Knowledge 
of the structures together with the identification of 
naturally occurring variants of CBG and SHBG provide 
additional insight into their production and functions. 
They also illustrate the limitations of current methods for 
measuring their plasma concentrations, which are used in 
algorithms to calculate free steroid levels, and highlight 
the need for more direct methods to measure plasma free 
steroid concentrations. Recent insight into the molecular 
mechanisms responsible for regulation of hepatic CBG and 
SHBG production explain how abnormalities in their plasma 
levels are linked to the risk as well as the consequences of 
a variety of diseases related to abnormal steroid hormone 
exposures, and how they may be utilized as biomarkers 
of disease onset, severity, or recovery. Finally, this review 
provides several arguments for why CBG and SHBG should 
be regarded as the primary gatekeepers of steroid hormone 
action in the blood and extravascular tissue compartments.
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