Review

229:2 R43-R56

The first decade of estrogen
receptor cistromics in breast cancer
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Abstract

The advent of genome-wide transcription factor profiling has revolutionized the
field of breast cancer research. Estrogen receptor a (ERa), the major drug target in
hormone receptor-positive breast cancer, has been known as a key transcriptional
regulator in tumor progression for over 30 years. Even though this function of ERa is
heavily exploited and widely accepted as an Achilles heel for hormonal breast cancer,
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only since the last decade we have been able to understand how this transcription
factor is functioning on a genome-wide scale. Initial ChIP-on-chip (chromatin
immunoprecipitation coupled with tiling array) analyses have taught us that ERa is an

enhancer-associated factor binding to many thousands of sites throughout the human
genome and revealed the identity of a number of directly interacting transcription
factors that are essential for ERa action. More recently, with the development

of massive parallel sequencing technologies and refinements thereof in sample
processing, a genome-wide interrogation of ERa has become feasible and affordable
with unprecedented data quality and richness. These studies have revealed numerous

additional biological insights into ERx behavior in cell lines and especially in clinical
specimens. Therefore, what have we actually learned during this first decade of

cistromics in breast cancer and where may future developments in the field take us?

Introduction

Breast cancer is the most prevalent form of cancer in
women, with approximately 1.7 million annual new
diagnoses (Ferlay et al. 2015). Despite the improvement
of breast cancer treatment, still over half a million
women die of this disease every year (Ferlay et al. 2015).
Approximately 70% of breast tumors are estrogen
receptor o (ERa) positive, and tumor cell proliferation is
thought to be dependent on the activity of this hormone-
mediated transcription factor (Hayashi et al. 2003,
Dahlman-Wright et al. 2006).

The first evidence for a link between estrogens
(produced in the ovaries) and breast cancer was reported
by George Thomas Beatson in 1896 with a case report
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describing a premenopausal breast cancer patient with
metastatic disease (Beatson 1896). Although not aware
of the exact mechanisms of hormonal action in human
physiology, Beatson was familiar with a procedure
performed in cattle in which lactation after giving birth
can be extended by removal of the ovaries. Inspired
by this phenomenon, Beatson performed a bilateral
oophorectomy on his patient, which initially resulted
in a complete remission of the disease (Beatson 1896,
Thomson 1902). The protein responsible for this clinical
benefit was found almost 80 years later, with the seminal
discovery of the estrogen receptor (ER) in 1973 by Elwood
Jensen (Jensen & DeSombre 1973). After first being cloned
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in 1985 (Walter et al. 1985), in 1986 a complementary
DNA clone of the translated mRNA of the ER from MCF-7
human breast cancer cells was sequenced and upon
expression gave rise to a functional protein (Greene et al.
1986).

Today, ERa is recognized as the major drug target in
hormonal breast cancer. In the adjuvant treatment of ERa-
positive disease, receptor inhibition is achieved by either
a direct blockage of ERa activation through competitive
inhibition of estradiol association using tamoxifen
(Katzenellenbogen et al. 1985, Jordan & Murphy 1990,
Arpino et al. 2009) or by preventing estrogen synthesis
using aromatase inhibitors (Fabian 2007). Despite the
extensive use of these treatment modalities in adjuvant
therapy, a significant number of patients still develop a
recurrence (Early Breast Cancer Trialists’ Collaborative
et al. 2011). Although cross-resistance between the
different endocrine therapy options can occur, patients
that relapse on one type of endocrine therapy can still
benefit from a different treatment modality (Vergote et al.
2006, Wang et al. 2009, Yoo et al. 2011), suggesting that
multiple resistance mechanisms can exist that may be
treatment selective. In order to directly administer the
right drug to the right patient, it is vital to increase our
knowledge about ERa functioning as well as its selective
responses to prolonged exposure to hormonal agents.

Even though ERainhibitors have been used in theclinic
since the early 1980s, the direct mode of ERa’s genomic
action on a genome-wide scale has remained elusive for
many years. With the initial development of ChIP-on-
chip (chromatin immunoprecipitation coupled with tiling
array) technologies, this situation changed dramatically
with the interrogation of ERa action for the first time on a
human chromosome-wide scale (Carroll et al. 2005). With
the development of massive parallel high-throughput
sequencing techniques, a full genome coverage of ERa
became possible (and importantly affordable) through
ChIP sequencing (ChIP-seq) (Welboren et al. 2009). Now,
10 years after the first unbiased and systemic assessment
of ERa-binding sites in human cell lines, we will discuss
what we have learned from the cistromics of ERa and
where future developments might take us.

ER complex formation and its mode
of action

ERa is activated through the association of its natural
ligand estradiol with the receptors’ligand-binding domain,
which enables dissociation from chaperone protein Hsp90
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(Catelli et al. 1985, Pratt & Toft 1997, Devin-Leclerc et al.
1998) and facilitates ERa-chromatin interactions (Kumar
& Chambon 1988). Initial ChIP-on-chip experiments
have shown ERa to mainly bind enhancer regions (Carroll
et al. 2005). Computational DNA sequence motif analyses
of ERa-binding sites resulted in the identification of a
number of upstream transcription factors that facilitate
the binding of ERa to the chromatin, including pioneer
factor FOXA1 (Carroll et al. 2005, Hurtado et al. 2011)
and putative pioneer factors PBX1 (Magnani et al. 2011)
and AP-2y (Tan et al. 2011) (Fig. 1). Pioneer factors can
associate with compacted chromatin and trigger enhancer
competency by decondensing the chromatin, facilitating
the binding of additional chromatin-binding factors (Zaret
& Carroll 2011, Jozwik & Carroll 2012). Additionally,
ERa-cooperating transcription factor GATA3 is capable
of mediating enhancer accessibility at ERa regulatory
regions and has properties similar to FOXA1 (Kong et al.
2011, Theodorou et al. 2013). Besides binding directly
to the DNA, ERa can also associate with the chromatin
via other transcription factors, a mechanism also known
as tethering, including RUNX1 (Stender ef al. 2010) and
AP-1 (Umayahara et al. 1994, Kushner et al. 2000, Cheung
et al. 2005).

After activation, ERa undergoes a conformational
change (Paige et al. 1999), forming a coactivator-binding
pocket at the receptors’ carboxy-terminus (Shiau et al.
1998). This interaction surface subsequently leads to
the recruitment of the members of the p160 coactivator
family: SRC1 (NCOA1; Onate et al. 1995), SRC2 (NCOAZ2,
TIF2, GRIP1; Voegel et al. 1996, Hong et al. 1997), and
SRC3 (NCOA3, p/CIP, AIB1, ACTR; Anzick et al. 1997,
Chen et al. 1997, Torchia et al. 1997, Suen et al. 1998). The
binding of these SRCs to the coactivator-binding pocket
of activated ERa has been described to occur both in a
competitive manner (exclusive recruitment of one type
of SRC) (Shiau et al. 1998, Margeat et al. 2001, Carraz
et al. 2009) and in a joint manner, possibly through
heterodimerization (Zhang et al. 2004). Reports on the
exact stoichiometry within the p160/ERa complex are
conflicting, describing a single p160 to associate with an
ERa dimer (Margeat et al. 2001) or two SRCs per active ERa
complex (Zhang et al. 2004, Yi et al. 2015), although both
situations might occur side to side (Zhang et al. 2004).
Recently, it has been shown, for SRC3, that these ERa
interactions occur in a monomeric fashion, where two
ligand-bound ERa monomers individually recruit one
SRC3 protein, after which an ERa dimer (binding two SRC3
molecular) associates with a single p300 protein (Yi ef al.
2015). The p160 composition of the ERa transcriptional
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The ER «a transcriptional complex pathway. When activated by its natural ligand estradiol or by direct phosphorylations, ERa binds to enhancers made
accessible by pioneer factors (e.g. FOXA1). A transcriptional complex, including p300, CBP, SRC1-2-3, and other coactivators, is assembled and enhancer
RNAs are transcribed. After cohesin-stabilized chromatin looping to associated gene promoters, RNA polymerase Il is recruited and an active

Figure 1

transcriptional complex is formed, capable of transcribing associated genes.

complex influences its genomic binding preferences on a
genome-wide scale, consequently resulting in an altered
transcriptional repertoire (Zwart et al. 2011) and altered
phenotypic behavior (Fig. 2).

After ERa binding, p160 proteins can subsequently
recruit other essential proteins for transcriptional
regulation, including p300 and CBP (McKenna et al. 1999),
which can modify chromatin accessibility through their
acetyltransferase activity (Ogryzko et al. 1996). In order
to further modify the chromatin toward a transcription
favorable landscape, histone modifiers CARM1 (Chen
et al. 1999a, Stallcup et al. 2000) and JMJD2B (Kawazu
et al. 2011, Shi et al. 2011) and members of the SWI/SNF
chromatin remodeling complex, including BAF57, are
recruited (Belandia et al. 2002).

With the recent discovery of estradiol-induced
enhancer RNAs (eRNAs) at a set of ~1200 ERa-bound
enhancer elements (Hah et al. 2013, Li et al. 2013), an
additional layer of ERa biology was revealed. This eRNA
production is not just limited to ERa-bound enhancers
but is, for example, also apparent for the androgen

receptor (AR; Wang et al. 2011a) and p53 (Melo et al.
2013). DNAse [ sensitivity assays demonstrated that
eRNAs are capable of regulating genomic access of the
transcriptional complex to regulatory regions (Mousavi
et al. 2013). eRNAs found at ERa-binding sites strongly
correlated with the enrichment of a number of genomic
features associated with enhancers and enhancer
looping to target gene promoters (Hah et al. 2013). The
physiological relevance of eRNAs in ERa biology was
further stipulated by the observation that knockdown
of a subset of eRNAs (e.g. GREB1 enhancer) reduced
the transcription of coding gene transcripts, as well as
reducing promoter—enhancer interactions as shown by
chromosome conformation capture (3C; Li et al. 2013),
although conflicting 3C results have also been described
(Hah et al. 2013). Hah and coworkers found that
inhibition of eRNA production by flavopiridol, a CDK9
inhibitor blocking transcriptional elongation, did not
affect other indicators of enhancer activity or estradiol-
dependent promoter—-enhancer looping (Hah et al. 2013),
leaving the exact role of eRNAs somewhat elusive. These
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ERa transcriptional complex composition, genomic profile, and transcriptional output. lllustration of ERa-induced transcription, where the genomic
binding profile of ER«'s transcriptional complex leads to induced transcription and an expression profile on the basis of which a classification profile can
be made (A). These genomic, transcriptional, and classification profiles can be altered by posttranslational modifications of cofactors (B),
phosphorylations on ER« itself (C), and the composition of the transcriptional complex (D).

eRNA-associated promoter-enhancer interactions, also
known as chromosomal looping structures, have been
described to promote ERa-regulated gene transcription

and seem to be stabilized by Cohesin (Fullwood et al.
2009, Schmidt et al. 2010, Li et al. 2013). Although these
observations hint toward an important role for eRNAs
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in ERa-regulated transcription, only a subset of eRNAs
has yet been investigated thoroughly, with conflicting
roles in chromosomal looping, leaving the exact
physiological roles for them currently elusive.

After ERo has recruited its cofactors, an active
transcriptional complex can be formed by RNA polymerase
II recruitment and transcription of responsive genes can
be initiated (Glass et al. 1997) (Fig. 1). When treated with
tamoxifen, the ligand-binding domain of ERa adopts an
alternative conformation, impairing the docking of p160
proteins to ERa, preventing the correct assembly of the
transcriptional complex (Shiau et al. 1998).

The genome-wide kinetics with which the ERa complex
assembles on the chromatin is not yet fully understood. By
using ChIP at three ERa-responsive gene promoters, Shang
and coworkers have reported that ERa and a number of its
coactivatorsassociate on theseestrogenresponsive promoters
in a cyclic fashion and that these cycles of ERa-complex
assembly are followed by transcription (Shang et al. 2000).
This cyclic recruitment of ERa and its coregulators could
be confirmed by others, who reported cofactor recruitment
to be preceded by histone deacetylases and nucleosome-
remodeling complexes at the TFF1 promoter (Metivier et al.
2003). These data imply that transcriptional activation
of ERa-responsive genes may require both activating and
repressive epigenetic processes. Although both papers state
that ERo-induced transcriptional activation occurs in a
cyclic fashion, both papers only investigated the dynamic
nature of ERa on a couple of sites and a comprehensive
overview of ERa dynamics on a genome-wide scale is
currently lacking. Furthermore, whether this cyclic ERa
complex assembly occurs only on promoters, as studied in
both papers, or whether it is also apparent at ERa-bound
enhancers remains unclear.

ERa cistromics in breast cancer cell lines

Initially, most reports on ERa chromatin interactions, its
dynamics and recruitment of coregulators were centred
on single binding site-based analyses, often limited to the
TFF1 promoter. With the technological development of
tiling arrays, ERa genomic interactions could reliably be
assessed on a chromosome-wide scale (Carroll et al. 2005).
As technology progressed, this approach was quickly
succeeded by massive parallel sequencing technologies,
enabling the interrogation of ERa sites on a genome-
wide scale in a cost-effective manner (Welboren et al.
2009). These initial reports resulted in a huge paradigm
shift, completely changing the way we think about ER«
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genomics. These studies illustrated that even though
most pioneering studies on ERa genomics exclusively
interrogated promoters, this genomic behavior of ERa
clearly represents an exception. In fact, only a small
proportion of about 5% of ERa-binding sites was found
at gene promoters; a characteristic feature that has
been validated by others (Carroll et al. 2005, Zwart et al.
2011) and is also apparent for other nuclear receptors,
including AR (Yu et al. 2010) and glucocorticoid receptor
(GR; Reddy et al. 2009). Approximately 95% of all ERa-
binding sites are found at distal cis-regulatory elements
(hence designated as ‘cistromics’ (Lupien et al. 2008)) that
were later recognized as enhancer regions. These regions
are putative regulatory elements and might not all be
functional. Recently, a CRISPR-Cas9 screen has been used
to functionally asses ERa enhancer elements and their
effect on cell proliferation (Korkmaz et al. 2016). Out of
the 99 ERa-bindings sites that were targeted, the deletion
of only three of them affected cell proliferation, further
illustrating that only a subset of ERa-bindings sites at
cistromics might actually be functionally involved in cell
proliferation processes.

The discovery of enhancer preference for ERa-binding
repositioned the classical promoter-centered ERa studies
considerably on the level of physiological extrapolation.
Chromatin interaction analysis by paired-end tag (ChIA-
PET) sequencing analyses, which enable the identification
of long-range chromatin interactions, illustrated that
the distal enhancer-associated ERa-bindings sites were
found to loop to anchor genes through connections
with proximal ERoa-binding sites, suggesting that ERa
functions by bringing genes together for coordinated
transcriptional regulation by extensive chromatin looping
(Fullwood et al. 2009). At the GREB1 and TFF1 loci, this
chromatin looping was dependent on ERa expression and
was inducible by estradiol stimulation (Pan et al. 2008,
Fullwood et al. 2009). Probing the 3D architecture of
the genome by coupling proximity-based ligation with
massively parallel sequencing (Hi-C; Lieberman-Aiden
et al. 2009) yielded similar ERa-mediated enhancer—
promoter interactions (Mourad et al. 2014). These sites
of chromatin looping highly correlated with CCCTC-
binding factor (CTCF)-binding sites, suggesting CTCF to
play a key role defining the boundaries of chromosomal
territories and influence gene expression through cross
talk between promoters and regulatory elements (Splinter
et al. 2006, Botta et al. 2010, Handoko et al. 2011). Besides
ERa, these chromatin loops have also been observed for
other nuclear transcription factors, including AR (Wang
et al. 2005) and GR (Hakim et al. 2009).
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On the transcriptomic level, the use of global
nuclear run-on sequencing (GRO-seq; Core et al. 2008)
analysis increased our understanding of ERa-regulated
transcription by identifying primary and immediate
estrogen-induced effects as opposed to steady-state
transcript level analyses (Hah et al. 2011). GRO-seq
demonstrated that estrogen is able to regulate the
activity of all three RNA polymerases and led to the
discovery of previously undetected estrogen-regulated
intergenic transcripts (Hah et al. 2011). Transcription
profiling by GRO-seq could be used for the prediction
of de novo enhancers across various cell types (Hah et al.
2013). In combination with RNA-seq, GRO-seq was
able to annotate long noncoding RNAs (IncRNAs) and
characterized the IncRNA transcriptome in MCEF-7 breast
cancer cells, including over 700 previously unannotated
IncRNAS (Sun et al. 2015). Furthermore, GRO-seq analysis
at ERa enhancers revealed the existence of estradiol-
induced unidirectional and bidirectional eRNAs, which
were strongly correlated with enhancer-promoter
looping (Hah et al. 2013). The described role of these
intergenic transcripts in enhancer—promoter looping
(Fullwood et al. 2009, Schmidt et al. 2010, Li et al.
2013) and the fact that one promoter can be involved
in multiple enhancer-associated loops (Fullwood et al.
2009, Mourad et al. 2014) might explain the seemingly
large discrepancy between the number of ERa-regulated
genes (approximately 2000; Zwart et al. 2011) in relation
to the number of ERa-binding sites in the same cell line
(>10,000; Welboren et al. 2009, Hurtado et al. 2011).

Due to technical limitations in the ChIP-seq protocol,
the resolution of DNA-binding analyses is typically quite
limited with events being mapped with +300 base pairs.
Further refinement of the ChIP-seq procedure has led to
the implementation of lambda exonuclease digestion
in the protocol (ChIP-exo), enabling high-resolution
mapping of chromatin binding and identification of
unique transcription factor binding sites that could not
be identified by ChIP-seq (Rhee & Pugh 2011, 2012,
Serandour et al. 2013). The addition of exonucleases
also results in the degradation of contaminating DNA,
effectively lowering the required depth of sequencing
coverage.

Apart from forming the foundations of cis-regulatory
gene regulation, chromatin looping and eRNA action,
genome-wide profiling analyses of ERa sites can also lead
to the identification of additional transcription factor
motifs often co-enriched at ERa sites and proximal to
estrogen response elements. These motif analyses revealed
the presence of Forkhead binding motifs at roughly
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50% of ERa-bindings sites (Carroll et al. 2005). This
observation led to the discovery that FOXA1 is essential
for chromatin accessibility at ERa sites and crucial for ERa
binding and functionality (Carroll et al. 2005, Hurtado
et al. 2011). More recently, this same approach has been
used to identify other putative pioneer factors for ERa,
including PBX1 that can guide ERa to a specific subset of
sites (Magnani ef al. 2011). When investigating the motifs
of ERa-bindings sites identified by ChIA-PET, Tan and
coworkers found that approximately 40% of these binding
sites contained the AP-2 motif (Tan et al. 2011). They next
demonstrated that transcription factor AP-2y can bind to
these ERa-bindings sites in a ligand-independent manner
and there is a functional interplay between AP-2y and
FOXA1 (Tan et al. 2011).

Besides the interplay between ERa and its pioneer
factors and coregulators, it is becoming increasingly
apparent that a complex interplay exists between
different steroid hormone receptor family members.
The AR, a transcription factor classically known for
its oncogenic role in prostate cancer, is expressed in
84-95% of the ERa-positive breast cancers (Niemeier
etal. 2010, Qi et al. 2012, Chia et al. 2015) and is usually
associated with a favorable outcome (Peters et al. 2009,
Castellano et al. 2010, Hu et al. 2011). Exogenous
overexpression of AR inhibits FRa transactivation
activity and estrogen-induced cell growth (Ando et al.
2002, Peters et al. 2009), which may be explained by a
direct competition between ERa and AR at binding the
same genomic regions (Peters et al. 2009). This notion
was further strengthened by ChIP analysis showing AR
recruitment to the progesterone receptor (PR) promoter
in T47D cells (Peters et al. 2009).

Another steroid hormone receptor family member
known for its coexpression and favorable outcome in ERa-
positive breast cancers is the PR (Pichon et al. 1980, Blows
et al. 2010). Progesterone induces the association of PR
with ERa, thereby regulating ERa—chromatin interactions
and transcriptional providing mechanistic
insights behind the clinical implications of PR status in
ERa-positive tumors (Mohammed et al. 2015).

The GR, in the presence of dexamethasone, is able
to associate with similar binding regions as ERa, and GR
stimulation leads to reduced transcription of key ERa
target genes (Meyer et al. 1989, Karmakar et al. 2013). This
direct protein-protein interaction between GR and ERa
can play an important role in the GR-mediated growth
inhibition of ERa-positive cells (Karmakar et al. 2013).
Besides this general inhibitory role of GR, gene-specific
regulation with both cooperation and antagonism

activity,
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has also been described (Bolt et al. 2013). Apart from
direct physical interactions between nuclear receptors,
nuclear receptors can also inhibit each other’s activity
through cross-interference (“squelching”), where direct
competition for cofactor recruitment can inhibit nuclear
receptor activity without associating with the same
genomic regions (Cahill et al. 1994, Lopez et al. 1999).

Cistromics of ERa coregulators

To date, several studies have compiled an overview
of FRa coregulators and interacting proteins, with
numbers varying around 17 (Foulds et al. 2013) to 108
(Mohammed et al. 2013). The pl60 protein family
members are reproducibly and consistently identified
as part of the ERa complex, for which a level of mutual
exclusivity has been described for ERa binding (Shiau
et al. 1998, Margeat et al. 2001, Carraz et al. 2009). With
the recent finding that an activated ERa dimer can bind
one p300 protein (Yi et al. 2015) and p300 and CBP have
a substantial overlap of ~70% in binding sites (Zwart
et al. 2011), it is not unlikely that a level of mutual
exclusivity between p300 and CBP also exists. As a direct
consequence thereof, the composition of ERa complexes
can differ between different sites on a genome-wide scale,
with potentially far-reaching consequences on gene
expression profiles. Cistromic analyses of the p160 family
members illustrated that even though most genomic
sites are shared among SRC1, SRC2, and SRC3, distinct
subsets of sites were identified where gene expression was
selectively responsive to one specific p160 protein, as part
of the ERa complex (Zwart et al. 2011). Interestingly, the
gene profile under the control of ERa with exclusively
SRC3 binding (devoid of SRC1 or SRC2) had prognostic
potential and enabled the identification of breast cancer
patients with a poor outcome after tamoxifen treatment
(Zwart et al. 2011). This link between SRC3 gene targets
and tamoxifen treatment is in line with previous reports
describing increased SRC3 expression, in combination
with increased ERBB2 expression, to correlate with a poor
tamoxifen response (Osborne & Schiff 2003, Shou et al.
2004, Hurtado et al. 2008, Zhao et al. 2009). Another ERa-
interacting protein that can affect ERa complex formation
and gene expression is the transcriptional regulator
RIP140 (Rosell et al. 2014). Genes under the specific
control of RIP140 (identified by siRNA experiments) could
be used to classify tamoxifen-treated patients on clinical
outcome (Rosell et al. 2014). Both RIP140 and the p160
family members further stipulate the observation that
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the composition of the transcriptional complex may
differ on a genome-wide scale, which could have direct
physiological consequences on the level of transcriptional
output and clinical response (Fig. 2).

ERa phosphorylations and genome-wide
effects on ERa action

Besides the composition of the transcriptional complex,
phosphorylations on ERa can also regulate the
transcriptional activity of the receptor and play a crucial
role in endocrine resistance (Joel et al. 1998, de Leeuw
etal. 2013). These phosphorylation events mainly revolve
around serine residues 104/106 (Thomas et al. 2008),
118 (Kok et al. 2009), 167 (Yamashita et al. 2005), 236
(Atsriku et al. 2009), and 305 (Michalides et al. 2004). The
kinases involved in phosphorylation of FRa at s104/106
include CDK2 and ERK1/2 (Rogatsky et al. 1999, Thomas
et al. 2008); at s118 ERK1/2, EGFR, and IGF1R (Park et al.
2005, Santen et al. 2009); at s167 AKT and CK2 (Arnold
et al. 1994, Campbell et al. 2001); at s236 PKA (Chen et al.
1999b); and at s305 PAK1 and PKA (Wang et al. 2002,
Michalides et al. 2004). The clinical implications of these
phosphorylations remain not fully understood, where
higher expressions of s118 and s167 phosphorylations
are generally but not uniformly associated with a favorable
outcome in patients on tamoxifen therapy (Murphy et al.
2004, 2011, Jiang et al. 2007, Yamashita et al. 2005, 2008),
whereas the s305 phosphorylation is associated with a
poor clinical outcome (Kok etal. 2011, Murphy et al. 2011).
Furthermore, s118 phosphorylation expression appears to
be a predictive biomarker for tamoxifen response (Murphy
etal. 2004, Kok et al. 2009). Recently, the phosphorylation
on the 594 threonine (t594) residue of ERa was found to
play a key role in the regulatory interaction of ERa with
14-3-3 proteins (De Vries-van Leeuwen et al. 2013). This
t594 phosphorylation resulted in decreased estradiol-
stimulated ERa dimerization, reduced ERo—chromatin
interactions, and reduced gene expression (De Vries-van
Leeuwen et al. 2013).

The spectrum of ERa phosphorylation events
appears to be able to dictate differential transcriptional
programs of ERa, as exemplified by the PKA-induced
s305 phosphorylation that redirects ERa to differential
transcriptional start sites, translating into a 26-gene
expression classifier that identified patients with a poor
clinical outcome after tamoxifen treatment (de Leeuw
et al. 2013). Additionally, it was found that stimulation
of ERa by EGEF, which induces s118 phosphorylation
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(Bunone et al. 1996), led to a distinct cistromic landscape
and induced a unique set of genes, compared to estradiol
stimulation (Lupien et al. 2010). Stimulation of ERa by
AKT, capable of inducing s167 phosphorylation (Campbell
et al. 2001), also mediated changes in ERa chromatin
binding and altered its transcriptional output (Bhat-
Nakshatri et al. 2008), further indicating that specific
phosphorylations of ERa may yield distinct genomic
actions and may target unique locations throughout the
genome (Fig. 2). Although the binding patterns of some
of the phosphorylated ERa forms are known, a complete
and comparative overview is still lacking. Furthermore,
multiple reports have studied ERa cistromics upon
specific cellular signaling cascade,
including the previously mentioned AKT or EGF, where
it still remains elusive which specific variable is actually
responsible for the altered ERa behavior.

Besides the effect direct ERa phosphorylations can have
on ERa’s genomic landscape and transcriptional activity,
posttranslational modifications of coregulators can also
influence ERa action. Where ERa-bound SRC3 binding is
predominantly enhancer bound, phosphorylated SRC3 at
Ser543 (pSRC3) was selectively found at promoters of ERa-
regulated genes (Zwart et al. 2015). pSRC3 functioned as
an independent prognostic factor as well as a predictive
marker for tamoxifen treatment, potentially enabling
the identification of patients with a good clinical
outcome without receiving adjuvant therapy (Zwart
et al. 2015). Additionally, SRC2 can be phosphorylated
at Ser736 through the MAPK pathway, increasing SRC2
interactions with p300 and CBP, further facilitating SRC2
recruitment to the ERa complex (Lopez et al. 2001). These
posttranslational modifications on coregulators further
illustrate the intrinsic complexity and flexibility of ERa
transcription complex formation, where multiple cell
signaling cascades converge to collaboratively fine-tune
ERa action on a genome-wide scale (Fig. 2).

activation of a

Cistromic analyses in clinical samples and
potential clinical applications

Over recent years, the transition has been made from
studying ERa cistromics in cell lines toward genomic
interrogation of ERa sites in clinical specimens. Obviously,
in contrast to cell lines, clinical samples cannot be readily
manipulated and represent heterogeneous populations
of multiple cell types. Even with this difference between
tumors and cell lines, the cistromic information obtained
from both settings yields quite similar conclusions. When
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looking at ERa, most well-described ERa-binding sites
found in MCF-7 cells (Carroll et al. 2005, Welboren et al.
2009) such as enhancer regions proximal to RARA, GREB1,
XBP1, and TFF1 are also observed in tumor specimens
(Ross-Innes et al. 2012). Not only for ERa but also for its
coregulators, the overlap of chromatin binding in cell
lines versus clinical specimens was considerably high.
For example, SRC3-pS543 ChlIP-seq analyses showed
51% overlap in binding sites between MCEF-7 cells and
an ER+/PR+ breast tumor, being on the same order
of magnitude as found between two tumor samples
(61% overlap; Zwart et al. 2015).

The first analyses of ERa-binding patterns in
clinical samples directly illustrated the added value of
assessing ERa binding in clinical specimens (Ross-Innes
et al. 2012), where differential ERa-binding sites found
between tumors could stratify patients on outcome
(Ross-Innes et al. 2012). A more recent study identified
ERo-chromatin-binding patterns in primary breast
tumors that enabled patient classification on their
response to aromatase inhibition in the metastatic
setting (Jansen et al. 2013). This same report analyzed
profiles for H3K27me3, resulting in a gene classifier
that seemed to outperform other prognostic classifiers,
including Oncotype DX (Cobleigh et al. 2005) and
PAMS0 (Parker et al. 2009). As the classification
potential of these genes was only partially preserved
in a cohort of tamoxifen-treated patients, this suggests
some treatment selectivity for patient classification.
Both studies demonstrate clear advantages of studying
ERa cistromic analyses in clinical specimens, with the
potential to facilitate tailored therapy selection and
enable patient stratification on outcome.

Although these cistromic classifiers made use of
associated gene profiles, it remains largely unknown
which genes in these classifiers are now the driving force
behind any prognostic or predictive effect. Fine-tuning
these classifiers toward optimized gene sets and further
biological investigation of these genes could reveal the
biologically most relevant genes for disease progression
and might lead to novel biological insights in ERa biology
as well as potentially novel drug targets.

As the main function of ERa is to activate its
downstream target genes involved in tumor progression,
ERa cistromic analyses may yield novel drug targets. A key
example for this line of thought can be found in Myc,
representing one of the best-studied ERa-responsive genes
(Dubik et al. 1987, Dubik & Shiu 1988, Watson et al. 1991)
and widely accepted as a potent novel drug target in
cancer (Soucek et al. 2008, Albihn et al. 2010).
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Besides targeting ERoa-regulated genes to inhibit its
stimulatory effect, ERa cofactors also receive increasing
attention as potential drug targets. Small-molecule
inhibitors against both SRC1 and SRC3 (Wang et al.
2011b, 2014) or SRC3 alone (Yan et al. 2014), as well
as a stimulator for SRC3 activity (Wang et al. 2015),
have been recently identified and proved successful in
inhibiting breast cancer cell proliferation in vitro as well
as in xenograft mouse models. Such novel therapeutic
options could revolutionize endocrine therapeutic
drug design, not aiming at blocking the receptor itself,
but targeting the proteins required for receptor action.
As in case of endocrine therapy resistance ERa can still
remain a driver (Vergote et al. 2006, Wang et al. 2009, Yoo
et al. 2011), such novel inhibitors have the potency to
remain effective after progression on currently available
endocrine therapies.

Even though promising, at the moment there are no
cistromic classifiers being used in the clinic. One of the
major practical limitations is the typically low amounts
of available tumor tissue. Although initially challenging,
continuing technical developments, including single-tube
linear DNA amplification method (Shankaranarayanan
et al. 2011) and the combination of a high-sensitivity
ChIP assay with new library preparation procedures (Adli
etal. 2010), have now greatly increased the applicability of
ChlIP-seq on limited amounts of tissue. Another example
of these developments is the incorporation of carrier
chromatin that can be removed before library preparation,
improving ChIP efficiency while limiting background
signal (Zwart et al. 2013). Furthermore, a great promise for
the future of ChIP-seq on limited tumor material might
be found in the combination of microfluidics and DNA
barcoding and sequencing, which have recently enabled
the generation of ChIP-seq data at a single-cell resolution
(Rotem et al. 2015).

Discussion

Within 10 years, ERax genomics has gone from single locus
to genome wide and toward single cell. Initial reports on
ERa cistromics in breast cancer have revolutionized the
way we think about ERa action and ERa-responsive genes.
By far, most transcriptional effects found regulated by
ERa are represented as eRNAs. With conflicting reports
about the role of eRNAs in chromosomal looping, a
comprehensive overview of eRNA action, and with this
to a certain degree a functional overview of ERa-enhancer
action, is currently lacking. As ERa seems to function
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mostly through chromatin loops, it is not unlikely that
ERa enhancers and a subset of responsive eRNAs are
functionally involved in such looping structures.

In ERa-positive breast cancer cell lines and tumors,
many thousands of ERa-binding sites can be found, of
which a large number are shared between them. This could
imply a selection pressure throughout human evolution
for the maintenance of these ERa sites throughout the
human genome. As technological development continues,
future studies will further elucidate the functional
relevance of all these ERa sites and identify the genomic
regions responsible for proliferative potential.

Clearly, our knowledge on ERa genomic regulation
in breast cancer has increased exponentially over the last
decade. A major factor in this is the parallel development
of novel technologies and computational tools, which
not only enable us to generate genomic data with an
unprecedented level of data richness and detail but also
enable us to process and understand the data. Now, with
novel technologies on genome editing (e.g. CRISPR Cas9)
and single-cell ChIP-seq analyses, the second decade of
cistromics in breast cancer will no doubt unveil another
layer of unprecedented complexity in breast cancer and
may lead us toward a comprehensive understanding of
the disease with its full genomic complexity and diversity.
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