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Abstract
Fibroblast growth factor 21 (FGF21) is a novel polypeptide ligand that has been shown to be

involved in several physiological and pathological processes including regulation of glucose

and lipids as well as reduction of arteriosclerotic plaque formation in the great vessels. It has

also been shown to exert cardioprotective effects in myocardial infarction, cardiac ischemia-

reperfusion injury, cardiac hypertrophy and diabetic cardiomyopathy. Moreover, FGF21

protects the myocardium and great arteries by attenuating remodeling, inflammation,

oxidative stress and also promoting the energy supply to the heart through fatty acid

b-oxidation. This growing evidence emphasizes the important roles of FGF21 in

cardioprotection. This review comprehensively summarizes and discusses the consistent and

inconsistent findings regarding the beneficial effects of FGF21 on the heart available from

both basic research and clinical reports. The details of the signaling, biological and

pharmacological effects of FGF21 with regard to its protection of the heart are also

presented and discussed in this review.
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Introduction
Fibroblast growth factors (FGFs) are polypeptide chains

that have paracrine, autocrine or endocrine functions. The

paracrine FGFs are further divided into five subfamilies,

whereas the autocrine and endocrine FGFs are composed

of one subfamily each (Itoh & Ornitz 2011, Itoh & Ohta

2013) (Fig. 1). FGFs act through cell surface FGF receptors

(FGFRs), which are regulated by four types of genes

including FGFR1, FGFR2, FGFR3 and FGFR4 (Mohammadi

et al. 2005, Beenken & Mohammadi 2009, Goetz &

Mohammadi 2013). Although FGFRs are essential for

FGF action on the target cells, they cannot activate intra-

cellular signaling without co-receptors (Kharitonenkov

2008). Previous studies show that heparan sulphate

proteoglycans are essential co-receptors for paracrine

and autocrine FGFs (Beenken & Mohammadi 2009,
Goetz & Mohammadi 2013), whereas Klothos

are essential co-receptors for endocrine FGFs to mediate

their attachment to and activation of target FGFRs

(Suzuki et al. 2008, Beenken & Mohammadi 2009, Goetz

& Mohammadi 2013).

FGF21 is an endocrine FGF that consists of 209 amino

acids. The FGF21 ligand is produced from several organs

such as the liver and adipose tissue (Ito et al. 2000), skeletal

muscle (Joki et al. 2015), and the heart (Nishimura et al.

2000, Kharitonenkov 2009, Planavila et al. 2013, Patel et al.

2014). To activate FGF21 signaling, FGF21 binds to

FGFR1c with its C-terminus, and also with b-Klotho as

its co-receptor with its N-terminus, to form the FGFR/

b-Klotho complex (Kharitonenkov 2008, Suzuki et al.

2008, Yie et al. 2009, Ding et al. 2012, Hale et al. 2012).
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Figure 1

Fibroblast growth factors. FGFs have 22 members which can be divided into

three classes and subdivided into seven subfamilies. Intracrine FGFs

(11/12/13/14 subfamily); Paracrine FGFs (1/2 subfamily, 4/5/6 subfamily,

3/7/10/22 subfamily, 9/16/20 subfamily, and 8/17/18 subfamily); Endocrine

FGFs (15/19/21/23 subfamily). Data from Itoh & Ohta (2013) and

Itoh & Ornitz (2011).
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The FGFR/b-Klotho complex then stimulates the autopho-

sphorylation of the fibroblast receptor substrate 2 alpha

(FRS2a), which is the first step in the downstream

signaling of FGF21 (Kharitonenkov 2008, Suzuki et al.

2008). However, FGF21 is believed to have no action in

physiological conditions since FGF21 knockout (FGF21-

KO) mice were found to have normal development

(Badman et al. 2009), and did not develop any patho-

logical conditions such as insulin resistance (Hotta et al.

2009, Potthoff et al. 2009). Nevertheless, future studies

are needed to evaluate this hypothesis.

FGF21 has been shown to play an important role in

pathological processes, such as the regulation of plasma

glucose level (Nishimura et al. 2000) and fatty acid b

oxidation (FAO) which is the primary energy source for

the myocardium (Vega et al. 2000, Planavila et al. 2013).
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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Under stress conditions, FGF21 has been shown to reduce

the apoptosis of Islet b cells (Wente et al. 2006), hepato-

cytes (Yu et al. 2015), vascular cells (Wu et al. 2014),

cardiac endothelial cells (Lu et al. 2010) and cardiomyo-

cytes (Cong et al. 2013, Liu et al. 2013). Interestingly,

FGF21 also protects the heart from apoptosis and

remodeling through the activation of adiponectin release

to activate the adiponectin signaling pathways (Joki et al.

2015). Currently, the biological and pharmacological

mechanism of FGF21 in cardioprotection is still to be

elucidated. This review will focus on the effects of FGF21

and its roles in the heart. The consistent and inconsistent

findings regarding the beneficial effects of FGF21 in the

heart available from both basic research and clinical

reports are comprehensively summarized and discussed.

The details of the signaling, biological and pharma-

cological effects of FGF21 with regards to its protection

of the heart are also presented and discussed in this review.
Effects of FGF21 on the heart

FGF21 is synthesized and expressed in the heart by

cardiomyocytes (Planavila et al. 2013) and cardiac micro-

vascular endothelial cells (CMECs) (Lu et al. 2010). A

previous study demonstrated that cardiomyocytes secrete

FGF21 into the media culture in basal conditions at a rate

of w0.05 ng/ml per 24 h (Planavila et al. 2013). In the

heart, FGF21 ligands act via the FGFR1c (Suzuki et al. 2008,

Liu et al. 2013, Planavila et al. 2013, Wu et al. 2014), and

FGFR3 (Suzuki et al. 2008, Liu et al. 2013), utilizing

b-Klotho as a co-receptor (Suzuki et al. 2008, Liu et al.

2013, Planavila et al. 2013). Endogenous and exogenous

FGF21 plays an anti-apoptotic role in both in vitro and

in vivo models, partially through the adiponectin signaling

cascade (Joki et al. 2015). Recent studies found that FGF21

protects against isoproterenol (ISO) induced cardiac

hypertrophy by activating anti-oxidative pathways

(Planavila et al. 2013, 2014) and promoting FAO (Planavila

et al. 2013). FGF21 also protects the heart from ischemic

reperfusion (I/R) injury and myocardial infarction (MI) by

activating several survival pathways (Cong et al. 2013, Liu

et al. 2013, Patel et al. 2014). Moreover, FGF21 deficiency

accelerated the development of diabetic cardiomyopathy

(DCM) (Yan et al. 2015). In contrast, FGF21 administration

also prevents lipotoxicity and diabetes induced cardiac

apoptosis in DCM (Zhang et al. 2015a).

Interestingly, Liu and colleague demonstrated that the

endogenous FGF21 which acted as endocrine protection

in the ischemic myocardium was not from the heart but

from the liver and adipose tissue (Liu et al. 2013),
Published by Bioscientifica Ltd.
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indicating that the major endogenous FGF21 proteins

which preserve cardiac function are from the liver and

adipose tissues. Although FGF21 from cardiomyocytes

is not a major source, previous studies demonstrated that

the autocrine action of FGF21 from cardiomyocytes is

essential and could protect the heart from pathological

conditions such as cardiomyocyte hypertrophy and I/R

injury (Planavila et al. 2013, 2014).
Effects of FGF21 on myocyte apoptosis and
myocardial infarction

Myocardial ischemia and I/R injury induce cell apoptosis

and MI, leading to an impairment in cardiac function.

Growing evidence from both in vitro and in vivo studies

demonstrate that exogenous FGF21 protected the cardio-

myocytes from apoptosis and MI, and improved cardiac

function through activating the PI3K-Akt1-BAD pathway

in FGF21-KO mice (Liu et al. 2013), and Akt-GSK3b-caspase

3 dependent pathways in H9c2 cell lines (Cong et al.

2013), resulting in the suppression of caspase 3 induced

apoptosis. It was proposed that the activation of these

pathways would lead to a decrease in the myocardial

infarct area and increase cardiac function (Liu et al. 2013,

Patel et al. 2014).

Evidence regarding the effects of FGF21 on inhibiting

cardiovascular cell apoptosis in in vitro models is sum-

marized in Table 1. FGF21 protects H9c2 cells from I/R

injury in a dose dependent manner by promoting the

energy supply, and reducing inflammation and apoptosis

through the Akt-GSK3b pathway (Cong et al. 2013). On

other hand, a previous study found peroxisome prolif-

erator activated receptor alpha (PPARa) activation led to

the synthesis and release of FGF21. FGF21 was released

into the culture media, and protected the CMECs from

lipotoxicity induced by Ox-LDL by decreasing DNA

fragmentation in an autocrine manner (Lu et al. 2010).

In an ex vivo model of global cardiac ischemia, it has been

shown that recombinant rat FGF21 infusion 10 min prior

to ischemia can protect the heart from I/R injury by

decreasing MI and increasing the cardiac function through

activation of the MAPK-PI3k-Akt signaling pathway (Patel

et al. 2014). Moreover, FGF21 prevented oxidative stress

(Cong et al. 2013, Planavila et al. 2014), and also increased

the energy supply for cardiomyocytes in H9c2 cell lines

under I/R injury conditions (Cong et al. 2013).

In addition to in vitro reports, evidence regarding the

effects of FGF21 on cell apoptosis and myocardial

infarction in in vivo models is summarized in Table 2. In

FGF21-KO mice, FGF21 given intravenously at 50 ng/g per
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0289 Printed in Great Britain
day for 3 days with the first dose being given immediately

after I/R injury (IZ30 min, RZ1–30 days), had been

shown to protect the heart from apoptosis, MI, and also

increase cardiac function through activation of the

FGFR1/b-Klotho-PI3K-Akt1-BAD signaling cascade (Liu

et al. 2013). The acute MI in C57BL/6 mice showed that

an i.v. injection of Recombinant mouse FGF21 10 ng/g in

a single dose immediately post MI, which was caused by

a left anterior descending coronary artery ligation,

decreased the infarction area. It was also shown that

these protective effects could be reversed by SiRNA-FGF21

intravenously injected 1 day prior to MI (Liu et al. 2012).

Moreover, in chronic MI (2 weeks) C57BL6 and adipo-

nectin-KO mice models it was demonstrated that FGF21

protein derived from skeletal muscles protected the heart

from apoptosis through adiponectin signaling (Joki et al.

2015). In addition, FGF21 100 mg/kg per day s.c. injections

for 4 weeks could protect the abdominal aorta from

arteriosclerotic lesions through lipid regulation and ER

stress induced vascular cell apoptosis in the ApoE-KO

model (Wu et al. 2014).

All of these findings indicate that exogenous and

endogenous FGF21 play an important role in protecting

the heart from apoptosis via several pathways including

PI3K-Akt1-BAD and Akt-GSK3b-caspase 3 dependent

mechanisms, leading to decreased infarction and

increased left ventricular function under I/R injury,

lipotoxic and MI conditions.
Molecular basis of anti-apoptosis signaling
cascades of FGF21

The anti-apoptotic signaling cascade of FGF21 from in

in vitro and in in vivo models previously mentioned are

summarized in Fig. 2. After FGF21 binding to FGFR1 and

b-klotho via its N-terminus and C-terminus, respectively,

the FGF21 ligand induces dimerization of receptors, and

the autophosphorylation of tyrosine kinase recruits and

phosphorylates FRS2a. In later steps, the anti-apoptotic

signaling pathways in cardiomyocytes could be activated

through 4 major survival pathways, including Erk1/2,

RORa, PI3k-Akt and AMPK signaling pathways. Currently,

the downstream signaling proteins involved in these

processes are still unclear (Patel et al. 2014).

Previous studies demonstrated that the downstream

signaling cascades of FGF21 begin with the autopho-

sphorylation of the receptor after the binding of FGF21.

This leads to the phosphorylation of FRS2a, and sub-

sequent activation of PI3K (Liu et al. 2013, Patel et al. 2014,

Yu et al. 2015) following its phosphorylation at Serin458
Published by Bioscientifica Ltd.
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Figure 2

FGF21 signaling cascade in anti-apoptotic effects. FGF21 exerts anti-

apoptotic effects in cardiomyocytes through decreased inflammation,

improved FAO metabolism, increased capillary density and anti-oxidative

stress. FGF21, Fibroblast growth factors 21; FGFR1c, Fibroblast growth

factors receptors 1c; N, N-terminus residue of FGF21 or Amino acid

terminal; C, C-terminus residue of FGF21 or Carboxylic terminal; FRS2a,

Fibroblast growth factors substrate 2a; ROR, Retinoic acid receptor-related

receptor; Erk1/2, Extracellular signal-regulated kinases 1/2; p90RSK, p90

ribosomal s6 kinase; pS6RP, pS6 ribosomal protein; AMPK, AMP dependent

protein kinase; PI3K P85, Phosphatidylinositide-3 kinase P85; GSK3b,

Glycogen synthase kinase-3b; BAD, BCL2 antagonist of cell death; BCL2, B

cell lymphoma 2; BCL-XL, B cell lymphoma-extra-large; BAX, Bcl2 associated

X protein; BAK, Bcl2 homologous antagonist killer; TNFa, tumor necrosis

factors a; IL6, interleukin 6; PAI1, plasminogen activator inhibitor 1.
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(pS458). This leads to the recruitment and phosphorylation

of a secondary messenger Akt1 by phosphorylation at

Serine473 (pS473). Akt1 in turn activates the BCL2

antagonist of cell death (BAD) by inducing the
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0289 Printed in Great Britain
phosphorylation of BAD at Serine136 (pS136). his causes

BCL2 and BCL-XL to inhibit BAX and BAK induced

caspase3/7 activity, which leads to decreased apoptosis

in cardiomyocytes (Liu et al. 2013). In addition, FGF21 has
Published by Bioscientifica Ltd.
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been shown to inhibit apoptosis through another alterna-

tive pathway by activating Akt, thereby inhibiting GSK3b,

thus leading to decreased caspase 3 activity (Akt-GSK3b-

caspase 3 dependent pathways) (Cong et al. 2013) (Fig. 2).

Moreover, FGF21 can protect the heart from apoptosis

by activation of the Erk1/2-p38 MAPK-AMPK survival

pathway (Zhang et al. 2015a). Evidence from these reports

confirmed that FGF21 plays a critical role in myocardial

protection and anti-apoptosis following myocardial injury

(Patel et al. 2014, Joki et al. 2015, Zhang et al. 2015a).

Due to the potential cardioprotective benefits of

FGF21, it is possible that FGF21 could be used to prevent

and/or treat the myocardial apoptosis due to I/R injury or

MI. However, evidence related to the roles of the time

course of FGF21 administration and its beneficial effects to

the pathological heart are still lacking.
Effects of FGF21 on cardiac hypertrophy and
adverse cardiac remodeling

Myocardial ischemia resulting from coronary artery

disease (CAD) is the primary cause of MI which could

impair cardiac function by reducing the ejection fraction

(EF), leading to insufficient oxygen supply to body

tissues (Gheorghiade & Bonow 1998, Joki et al. 2015).

This contributes to progression to cardiac hypertrophy

and heart failure due to the compensatory mechanisms of

the circulatory system to maintain the EF and carry

oxygen to peripheral metabolic tissues, known as cardiac

remodeling. This long-term maladaptive remodeling

can cause increased ventricular hypertrophy, ventricular

dilatation, interstitial growth and cardiac fibrosis (Neely

et al. 1972).

Evidence regarding the effects of FGF21 on protection

against adverse cardiac remodeling and hypertrophy in

in vitro and in vivo models is summarized in Table 3. In a

single in vitro study, pre-treatment with FGF21 protects

neonatal cardiomyocytes (NCMs) from phenylephrine

induced hypertrophy by promoting FAO gene expression,

attenuating inflammation and oxidative stress through

the activation of Sirt1 and Erk1/2-CREB signaling

pathways (Planavila et al. 2013). This study also demon-

strated that the Sirt1-PPARa pathway plays an important

role in the control of FGF21 expression in the heart.

Evidence from in vivo studies demonstrate that

continuous administration of ISO via s.c. infusion for

7 days in FGF21-KO mice induced cardiomyopathy and

led to MI, impaired cardiac metabolism and loss of cardiac

function in the rat heart (Heather et al. 2009, Planavila

et al. 2013). Interestingly, the endocrine function of FGF21
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0289 Printed in Great Britain
derived from skeletal muscles attenuated cardiac hyper-

trophy, and reversed the adverse cardiac remodeling

process, leading to improved left ventricular function in

this chronic MI mice model (Joki et al. 2015). In FGF21-KO

mice, it has been shown that FGF21 attenuated cardiac

hypertrophy by decreasing hypertrophic markers includ-

ing atrial natriuretic factor (ANF) and a skeletal actin

(aSKA) (Planavila et al. 2013). Moreover, FGF21 decreased

the heart weight/body weight ratio and cardiomyocytes

area, and also improved cardiac function (Planavila et al.

2013, 2014).

In summary, the protective effects of FGF21 against

cardiac hypertrophic damage have been evidenced.

Conversely, FGF21 deficiency was found to enhance the

induction of cardiac hypertrophy by promoting pro-

inflammatory pathways, oxidative stress, cardiac fibrosis

and impairing cardiac metabolism (Planavila et al. 2013,

2014). Results confirmed that cardiac FGF21 has an impact

on activation of the autocrine loop and plays a protective

role against cardiac hypertrophy and remodeling.

However, further investigation and clinical studies are

needed to warrant the usefulness of FGF21 against cardiac

hypertrophy.
Molecular basis of anti-hypertrophic signaling
cascades of FGF21

The FGF21 activates cells to autocrine function by binding

to FGFR1 on the cell membrane, using b-Klotho as a co

receptor. This event activates the dimerization of the

receptor and causes autophosphorylation of tyrosine

kinase. Tyrosine kinase then recruits and phosphorylates

FRS2a. The FRS2a in turn affects four primary

pathways, which in turn leads to the attenuation of

cardiac hypertrophy. An illustrated diagram of the

anti-hypertrophic effects of FGF21 in both the autocrine

and endocrine manner by the loop autocrine

function of FGF21 through the Sirt1/PPARa pathway is

shown in Fig. 3.

The first of these four pathways is the activation of

the Erk1/2-CREB-Sirt1-PGC1a signaling pathway as an

autocrine function and autocrine loop regulation in

FGF21-KO cardiomyocytes. This pathway leads to

increased mitochondrial FAO enzyme genes expression

including MCAD and mcpt1a, indicating increased

cardiac mitochondrial FAO (Planavila et al. 2013). The

second pathway involves the inhibition of the transloca-

tion of pro-inflammatory cytokines NFkb into the nucleus

to activate inflammatory cytokine expression including

TNFa, IL6, and MCP1, resulting in a decrease in the
Published by Bioscientifica Ltd.
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FGF21 signaling cascade in anti-hypertrophic effects of FGF21. FGF21 exerts
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oxidation; PGC1a, peroxisome proliferator-activated receptor 1g coacti-
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inflammatory processes (Planavila et al. 2013). The third

pathway involves the inhibition of cardiac MMP9, which

indicates a decrease in cardiac fibrotic formation

following cardiac remodeling (Planavila et al. 2013).

Finally, FGF21 activates the anti-oxidative pathway,

resulting in the reduction of oxidative stress in the cells

(Planavila et al. 2013, 2014).
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0289 Printed in Great Britain
FGF21 protects the heart from diabetes
induced cardiomyopathy

Evidence regarding the protection of the heart from

diabetes induced cardiomyopathy by FGF21 is sum-

marized in Table 4. In FGF21 deficient mice, it has been

shown that FGF21 is essential in the prevention of the
Published by Bioscientifica Ltd.
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progression of T1DM induced cardiomyopathy (Yan et al.

2015). It has been proposed that four potential

mechanisms are responsible for this adverse effect due to

FGF21 deficiency. First, increased cardiac oxidative stress

was observed, as shown by increased 3 nitrotyrosine (3NT)

and 4 hydroxynonenal (4HNE). Second, increased nuclear

factor (erythroid derived 2) like 2 (Nrf2) activated CD36

expression was seen, which led to increased plasma lipid

uptake and accumulation into the cells. Third, decreased

PGC1a protein expression was observed, which led to

decreased FAO thus promoting lipid uptake and accumu-

lation in cardiomyocytes via the CD36 receptor on the cell

membranes. Fourth, increased myocardial collagen

accumulation was observed as shown by increased

connective tissue growth factor (CTGF). In contrast,

FGF21 administration can protect the heart from lipotoxi-

city and diabetes induced cardiac apoptosis by the

activating of the Erk1/2-p38 MAPK-AMPK survival

pathway leading to decreased cardiac apoptosis and

improved cardiac function (Zhang et al. 2015a). An

illustrated diagram of these mechanisms is shown in

Fig. 4. It has been proposed that these four potential

mechanisms cause left ventricular dysfunction and accel-

erate the development and progression of DCM (Yan et al.

2015) and the effects can be reversed by FGF21 treatment

(Zhang et al. 2015a).
FGF21 regulates energy supply in the heart

FAO is the major source of energy for cardiomyocytes,

generating 50–70% of ATP in a normal adult heart,

while only 20–30% of energy is released by glycolysis,

and !5% from other sources (Neely et al. 1972, Neely &

Morgan 1974). It has been shown that the transition

from fetal glycolysis (fetal pattern) to FAO in the

neonatal stage (Lockwood & Bailey 1970, Kelly et al.

1989) is brought about by increased PGC1a, PPARa, and

FGF21 mRNA expression (Planavila et al. 2013). In

contrast, the chicken ovalbumin upstream promoter

transcription factor (COUP-TF) that regulates glycolysis

is down regulated (Sack et al. 1997). PPARa is expressed

at a high rate in mitochondrial FAO tissue, and is

situated on the nuclear membrane with the retinoid X

receptor (RXR). PGC1a binding to the PPARa/RXR on

the nuclear membrane leads to the increased expression

of FAO genes including MCAD and mcpt1a, hence

promoting increased FAO and synthesis of the ATP

supply for the heart in physiological conditions (Vega

et al. 2000) (Fig. 5A).
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0289 Printed in Great Britain
Under pathological conditions such as cardiac hyper-

trophy, myocardium FAO enzyme genes are down

regulated (Sack et al. 1997, Razeghi et al. 2001), while the

COUP-TF is up regulated (Sack et al. 1997). This caused the

switch of the energy source back to the fetal glycolysis

pattern again (Fig. 5B). A recent study demonstrated that

myocardium PGC1a, MCAD, and mcpt1a mRNA

expression is regulated by FGF21 to promote FAO for the

energy supply to the heart (Planavila et al. 2013). The

deletion of FGF21 has been shown to increase CD36 and

decrease PGC1a, leading to acceleration of DCM through

aggravating cardiac lipid accumulation (Yan et al. 2015).

Therefore, FGF21 might be beneficial as a pharmacological

intervention under these conditions. Further studies are

needed to give more evidence for the substantiation to this

hypothesis.
Molecular basis of the antioxidant signaling
cascade of FGF21 in cardiomyocytes

Previous studies demonstrated that following ISO induced

cardiac hypertrophy by causing cardiac oxidative stress

and inflammation, and that FGF21 was secreted from

cardiomyocytes via Sirt1 activation. Sirt1 was found to

stimulate FGF21mRNA and protein expression and

secretion into the circulation, where FGF21 proceeded to

act in a paracrine, autocrine and endocrine manner. n the

autocrine loop function, FGF21 induces anti-oxidant gene

expression through the Erk/Sirt1 pathway, including

uncoupling protein 3 (UCP3), superoxide dismutase 2

(Sod 2), peroxiredoxin 5 (Prdx5), glutathione peroxidase 1

(GPX1), Catalase (CAT) and Sequestosome 1 (Sqstm1),

resulting in a reduction in cardiac tissue injury (Planavila

et al. 2014). Furthermore, FGF21 has been shown to

activate the Nrf2 pathway in hepatocytes, which was

found to lead to increased anti-oxidant gene expression,

resulting in the reduction of liver tissue injury (Yu et al.

2015) (Fig. 6).

The stimulation of antioxidative pathways by FGF21

led to an increase in antioxidative gene and enzyme

expression, and prevented oxidative stress by decreasing

ROS production in cardiomocytes. Therefore, this pro-

tected the myocardium (Planavila et al. 2014) from

oxidative stress and subsequent injury. Interestingly, a

clinical study demonstrated that FGF21, UCP3, and Sod2

levels were increased in dilated cardiomyopathy patients

in the final stages of heart failure (Planavila et al. 2014).

This indicated that FGF21 could protect the cardiomyo-

cytes or slow down the degree of damage following

oxidative stress in a failing human heart.
Published by Bioscientifica Ltd.
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Figure 4

FGF21 protects the heart from diabetes induced cardiomyopathy. STZ,

streptozotocin; T1DM, type 1 diabetes mellitus; FGF21-KO, FGF21 knock-

out; Nrf2, nuclear factor (erythroid-derived 2)-like 2; 3NT, 3 nitrotyrosine;

4HNE, 4 hydroxynonenal; CTGF, connective tissue growth factor; PGC1a,

peroxisome proliferator activated receptor gamma co-activator 1a;

TG, triglyceride; FAO, fatty b acid oxidation; DCM, diabetic

cardiomyopathy; Erk, extracellular signal-regulated kinase; p38 MAPK,

mitogen-activated protein kinase 14; PTEN, phosphatase and tensin

homolougue; PI3K, phosphatidylinositol 3-kinase. Data from

Yan et al. 2015, Zhang et al. 2015a.
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It has been shown that these signaling pathways of

FGF21 have the crosstalk at the secondary messenger

levels such as ERK1/2 for anti-apoptosis (Zhang et al.

2015a), anti-hypertrophic (Planavila et al. 2013, 2014),

and anti-oxidative stress (Yu et al. 2015) in the heart.

Activation of FGFR/b-Klotho complex therefore could

activate these effects of FGF21 simultaneously at this

crosstalk. However, further studies are needed to

investigate this issue.
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0289 Printed in Great Britain
Clinical evidence of the association between
FGF21 and cardiovascular alteration

Evidence regarding the correlation of plasma FGF21 with

cardiovascular alteration in clinical reports are sum-

marized in Table 5. Serum FGF21 levels have been

shown to have a strong correlation with waist circum-

ference, systolic blood pressure, lower extremity arterio-

sclerotic disease (Zhang et al. 2015b) and carotid intima
Published by Bioscientifica Ltd.
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chicken ovalbumin upstream promoter transcription factor; NRRE, nuclear

receptor response element; FAO, fatty acid b oxidation; ATP, Adenosine
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media thickness (Chow et al. 2013) in T2DM (type 2

diabetes mellitus) patients. FGF21 level was also

increased in atrial fibrillation (AF) patients and was

shown to be an independent risk factor for AF (Han et al.

2015). In the cases of non-alcoholic fatty liver disease

(NAFLD) and CAD, the serum FGF21 was associated with

an adverse lipid profile and also showed a positive

correlation with total cholesterol (TC) and triglycerides

(TG) (Shen et al. 2013). Moreover, the CAD patient’s

serum FGF21 levels were also positively correlated with

TG, fasting blood glucose, ApoB100, insulin, and

HOMA-IR, and also have a negative correlation with

HDL, and ApoA1 (Lin et al. 2010). Recent studies

demonstrated that serum FGF21 levels correlate with

metabolic status in patients. High serum FGF21 levels in

several pathological conditions of the heart under

metabolic dysregulation may be explained by FGF21

resistance conditions, which have been observed in

ex vivo experiments with obese rat hearts (Patel et al.

2014) and in vivo experiments with DIO mice liver and

white adipose tissue (Fisher et al. 2010). Therefore, serum

FGF21 levels may be indicators of adverse metabolic

dysregulation and prognosis for CVD.

The term ‘FGF21 resistance’ in the heart was first

mentioned in chronic DIO rats by Patel and colleagues

(Patel et al. 2014). They found that obese rat hearts had

increased FGF21 mRNA, and FGF21 protein expression

and secretion levels. Despite the high level of FGF21,

disrupted FGF21-FGFR1-b-Klotho signaling and decreased

ERK1/2, Akt and AMPK phosphorylation were observed

under this condition (Patel et al. 2014). These findings

indicate that obese condition caused the impairment of

the FGF21 signaling cascades, and that the feedback

mechanism allowed the increased production of FGF21

to overcome the FGF21 receptor signaling dysfunction.

Unfortunately, the increased endogenous FGF21 level was

not sufficient when the exogenous FGF21 administration

comes into play a role for therapeutic strategy. The FGF21

resistance was also observed in clinical reports where

serum FGF21 level was significantly increased in non-

NAFLD (Shen et al. 2013), coronary heart disease (Lin et al.

2010, Shen et al. 2013), metabolic syndrome (Lee et al.

2014), and T2DM (Lenart-Lipinska et al. 2013). This

condition is similar to what has been observed in subjects

under ‘insulin resistance’ condition in which the impair-

ment of insulin receptor and signaling cascades was found

with increased plasma insulin level (Pratchayasakul et al.

2011, Pipatpiboon et al. 2012).

The cross sectional study in 15 male patients who

underwent aorto-coronary bypass surgery showed that
Published by Bioscientifica Ltd.
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serum FGF21 levels increased to a peak at 6 h into surgery,

and were associated with increased serum glucose, insulin,

pro-inflammatory cytokines (TNFa, MCP1) and inflam-

matory cytokines (IL6, 8), but returned to baseline at 96 h

after surgery (Kotulak et al. 2011). Moreover, epicardial fat

and muscular FGF21 mRNA expression increased after

surgery has reacted positively with blood glucose levels at

the end of surgery (Kotulak et al. 2011) indicating that

FGF21 mRNA expression and serum FGF21 levels

regulated glucose homeostasis, increased the insulin

sensitivity and attenuated the inflammatory process.

In a cross sectional study of 189 patients who

underwent cardiac multidetector coronary computed

tomography, it was found that serum FGF21 levels

were associated with an adverse lipid profile and

pericardial fat volume only in metabolic syndrome

patients (Lee et al. 2014). Interestingly, cardiac tissue
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0289 Printed in Great Britain
FGF21 mRNA and antioxidant genes (UCP3 and Sod2)

are upregulated in six failing human hearts which may

be mechanisms to preserve myocardial function in cases

of heart failure (Planavila et al. 2014). All of these

findings indicate that FGF21 plays an important role in

metabolic regulation and attenuates cardiac oxidative

stress in heart failure patients. The increased FGF21 level

observed in heart failure patients was due to the FGF21

resistance as shown by a previous report (Planavila et al.

2014). Despite the increased endogenous FGF21 under

this pathological condition, its level was still not

sufficient to overcome the FGF21 resistance. Therefore,

the role of exogenous FGF21 is considered as a potential

therapeutic strategy to provide cardioprotective effects

(Lu et al. 2010, Cong et al. 2013, Planavila et al. 2013,

2014, Zhang et al. 2015a). Previous reports at least from

basic studies using exogenous FGF21 demonstrating the
Published by Bioscientifica Ltd.
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improved cardiac function in cardiac I/R injury (Cong

et al. 2013, Liu et al. 2013, Patel et al. 2014), cardiac

hypertrophy (Planavila et al. 2013), and DCM (Zhang

et al. 2015a) supported this hypothesis.

Although previous studies indicated that PPARa is the

essential downstream signaling protein in regulating the

expression of FGF21 mRNA in cardiomyocytes, and

preserving the myocardial metabolism through regulating

the FAO (Lu et al. 2010, Planavila et al), PPARa agonist

(Finofibrate) has been shown to be unable to reduce

cardiovascular events in T2DM patients after a 5-year

follow-up (Ong et al. 2015). Moreover, the risk cardio-

vascular events in T2DM patients showed a correlation

with baseline plasma FGF21 levels. Higher baseline plasma

FGF21 levels correlated with an increased risk of cardio-

vascular events (Ong et al. 2015). This suggests that plasma

FGF21 levels could be used as a biomarker of metabolic

dysregulation, and increased plasma FGF21 levels may be

indicative of a higher risk of cardiovascular events.

Despite the fact that FGF21 can preserve the heart in

several pathological conditions, FGF21 resistance may be

a limitation for the potential role of exogenous FGF21

administration. However, previous studies demonstrated

that exogenous FGF21 exerted its effects in a dose-

dependent manner (Cong et al. 2013, Planavila et al.

2014, Yu et al. 2015). Moreover, it is possible that FGF21

replacement during an early stage of FGF21 resistance may

be more effective than late replacement. Future studies are

needed to prove this hypothesis. Furthermore, long-term

FGF21 treatment (Zhang et al. 2015a) may provide better

outcome than the acute intervention (Patel et al. 2014).

Lastly, combined therapy of FGF21 with specific drugs

may provide better efficacy than FGF21 monotherapy. All

of these hypothetical strategies still need to be verified in

future studies.
Conclusion

Experimental studies of FGF21 in the heart have consist-

ently demonstrated its beneficial effects in in vitro, ex vivo

and in vivo models. Evidence has shown that FGF21 is

crucial for cardioprotection in myocardial hypertrophy,

ischemia, DCM and I/R injury. FGF21 provides its

therapeutic benefits by attenuating apoptosis, oxidative

stress and inflammation, and improving energy supply,

and therefore could be used as an indicator of metabolic

dysregulation. Moreover, FGF21 could be a potential

therapeutic target for metabolic disorders and CVD in

the future.
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0289 Printed in Great Britain
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