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Abstract
The thyroid hormones, thyroxine (T4) and triiodothyronine (T3), are essential for normal

growth and development of the fetus. Their bioavailability in utero depends on

development of the fetal hypothalamic–pituitary–thyroid gland axis and the abundance

of thyroid hormone transporters and deiodinases that influence tissue levels of bioactive

hormone. Fetal T4 and T3 concentrations are also affected by gestational age, nutritional and

endocrine conditions in utero, and placental permeability to maternal thyroid hormones,

which varies among species with placental morphology. Thyroid hormones are required for

the general accretion of fetal mass and to trigger discrete developmental events in the fetal

brain and somatic tissues from early in gestation. They also promote terminal differentiation

of fetal tissues closer to term and are important in mediating the prepartum maturational

effects of the glucocorticoids that ensure neonatal viability. Thyroid hormones act directly

through anabolic effects on fetal metabolism and the stimulation of fetal oxygen

consumption. They also act indirectly by controlling the bioavailability and effectiveness

of other hormones and growth factors that influence fetal development such as the

catecholamines and insulin-like growth factors (IGFs). By regulating tissue accretion and

differentiation near term, fetal thyroid hormones ensure activation of physiological

processes essential for survival at birth such as pulmonary gas exchange, thermogenesis,

hepatic glucogenesis, and cardiac adaptations. This review examines the developmental

control of fetal T4 and T3 bioavailability and discusses the role of these hormones in fetal

growth and development with particular emphasis on maturation of somatic tissues critical

for survival immediately at birth.
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Introduction
The thyroid hormones, thyroxine (T4) and triiodothy-

ronine (T3), are detectable in the fetal circulation from early

in gestation and have important developmental, meta-

bolic, and maturational effects in the fetus in all species

studied to date including human infants. Their bioavail-

ability in fetal plasma and tissues is regulated develop-

mentally and also varies with species, gestational age,

availability of nutrients and oxygen, and the endocrine
environment in utero (Fowden & Forhead 2009, 2013).

Deficiency of thyroid hormones during intrauterine

development impairs growth of the fetus and compro-

mises its adaptation to extrauterine life (Fowden et al.

1998, Hillman et al. 2012, Sferruzzi-Perri et al. 2013).

Conversely, fetal administration of thyroid hormones can

promote tissue differentiation and activation of many of

the physiological processes that have little or no function
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before birth but which are essential for neonatal survival

(Fowden et al. 1998). This review examines the develop-

mental control of fetal T4 and T3 bioavailability and

discusses the role of these hormones in fetal growth and

development with particular emphasis on the maturation

of somatic tissues essential for survival immediately at

birth. The important role of thyroid hormones in brain

development is not considered here as this has been

reviewed extensively in recent years (Horn & Heuer 2010,

Patel et al. 2011, Puig-Domingo & Vila 2013, Stenzel &

Huttner 2013).
Bioavailability of thyroid hormones
before birth

In fetal and adult animals, the bioavailability of thyroid-

stimulating hormone (TSH) and the two biologically

active thyroid hormones, T4 and T3, is determined by

several factors: i) the activity of the hypothalamic–
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Figure 1

Schematic diagram showing the factors affecting the bioavailability of

thyroid hormones in the fetus, placenta, and mother. TRH, thyrotropin-

releasing hormone; TSH, thyroid-stimulating hormone; T4, thyroxine;

T3, triiodothyronine; rT3, reverse T3; T2, diiodothyronine; S, sulfated;
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pituitary–thyroid axis and production of T4 and T3,

ii) the peripheral conversion of T4 to more biologically

active T3 or to inactive metabolites to vary circulating and

tissue-specific concentrations, and iii) the uptake of

thyroid hormones into target tissues and activation of

cellular processes by binding to thyroid hormone

receptors (TRs; Fig. 1). Before birth, all of these factors

show developmental and tissue-specific regulation. In

addition, placental transfer of thyroid hormones from

the mother can contribute to the concentration of thyroid

hormones in the fetal circulation, depending on the

species and placental type (Fig. 1).
Activity of the fetal hypothalamic–pituitary–thyroid axis

The thyroid gland originates as an outgrowth from the

developing pharyngeal floor in the early embryo and

undergoes three main stages of growth and differen-

tiation: pre-colloid, colloid, and follicular (Brown 2004,
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D1, D2, and D3, deiodinases; OATP, organic anion transporters; LAT1 and

LAT2, L-type amino acid transporters 1 and 2; MCT8 and MCT10,

monocarboxylate transporters 8 and 10.
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Santisteban 2013). The follicular structural development

of the thyroid gland coincides with the functional

development of the hypothalamic–pituitary–thyroid axis

and the secretion of thyroid hormones into the fetal

circulation (Table 1). Hypothalamic neurones produce

thyrotropin-releasing hormone (TRH), which stimulates

the thyrotropes of the anterior pituitary gland to secrete

TSH. In turn, TSH acts on the thyroid gland to promote

follicular growth and stimulate the synthesis and secretion

of the thyroid hormones. In the human fetus sampled by

cordocentesis, serum concentrations of TSH and free and

total T4 increase from mid-gestation with an exponential

rise in free T3 closer to term (Thorpe-Beeston et al. 1991a).

In fetal life, as in adult life, the thyroid hormones control

their own production by negative feedback effects on the

hypothalamus and pituitary, at least by late gestation,

although the axis continues to mature in sensitivity

postnatally (Hopkins et al. 1975, Polk et al. 1991, Rakover

et al. 1999, Hernandez et al. 2006). Normal production of

thyroid hormones by the fetal thyroid gland depends

upon iodide uptake by the follicular cells of the gland and

iodide is actively transported from the maternal circula-

tion across the placenta (Fig. 1).

The pattern of thyroid gland development and

thyroid hormone activity is comparable in all mammals

studied, but the timing of the developmental stages can

vary between species. Table 1 compares the ontogeny of
Table 1 Comparison of the timing of developmental stages of t

fetuses. Data adapted from Thorburn & Hopkins (1973), Bernal & P

Polk et al. (1989, 1991), Thorpe-Beeston et al. (1991b), Polk (1995),

Developmental stage Human (weeks)

Gestational age at term 40
Thyroid gland organogenesis
Pre-colloid 7–13 (0.18–0.33G)
Colloid 13–14 (0.33–0.35G)
Follicular O14 (O0.35G)

TRH in hypothalamus 10–12 (0.25–0.30G)
TSH in anterior pituitary gland

and circulation
10–12

TSH receptor in thyroid gland 10–12
Iodide uptake in thyroid gland 10–12
Thyroglobulin synthesis 10–12
Iodinated amino acids 14 (0.35G)
Synthesis and secretion of thyroid

hormones
16–18 (0.40–0.45G)

Rise in plasma T3 30 weeks to birth
Gene and protein expression of

thyroid hormone transporters
7–9 (0.18–0.23G) cerebral cor

Thyroid hormone receptor binding 10–16 (0.25–0.40G) brain, he
liver, and lung

Percentage of total gestation (G) are given in brackets.
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aspects of thyroid hormone activity in human, sheep, and

rats. These include development of the hypothalamic–

pituitary–thyroid axis, onset of thyroid hormone pro-

duction, and expression of TRs. Overall, human and ovine

fetuses are similar in the timing, relative to gestational age,

of the structural development of the thyroid gland and the

onset of thyroid hormone activity, while rodent species

show relatively delayed maturation of thyroid hormone

bioavailability (Table 1; Fisher & Polk 1989, Polk 1995).

From mid-gestation in human and ovine fetuses, the

thyroid gland secretes T4 and T3 under the control of the

hypothalamic–pituitary axis and the thyroid hormone

axis is fully functional around the time of birth (Table 1).

In rats, however, maturation of thyroid hormone activity

continues up to 4 weeks of postnatal life (Table 1).
Metabolism of thyroid hormones in utero

The circulating concentrations of the thyroid hormones

are controlled, not only by the output of the thyroid

gland, but also bymetabolism in peripheral tissues (Fig. 1).

In the fetus, thyroid hormones can undergo deiodination

and sulfation to more or less active metabolites. The

metabolism of T4 into more genomically potent T3 or

relatively bio-inactive reverse T3 (rT3) depends on the

activity of deiodinase enzymes, which are develop-

mentally regulated in specific tissues (Brent 2012,
hyroid hormone bioavailability among human, sheep, and rat

ekonen (1984), Perez-Castillo et al. (1985), Ferreiro et al. (1987),

Brown (2004), and Chan et al. (2011)

Sheep (days) Rat (days)

145 21

50–55 (0.34–0.38G) 17 (0.81G)
O55 (O0.38G) 18 days–3 weeks postnatally
!60 (0.40G) 16 (0.76G)
!60 17 (0.81G)

15 (0.71G)
50 (0.34G)

15
70 (0.48G) 17 (0.81G)
60–70 (0.40–0.48G) 17.5 (0.83G)

135 days to birth Birth to 3 weeks postnatally
tex

art, !50 (0.34G) brain, liver,
and lung

14–16 (0.67–0.76G) brain,
heart, liver, and lung

Published by Bioscientifica Ltd.

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-14-0025


Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Review A J FORHEAD and A L FOWDEN Thyroid hormones and fetal
development

221 :3 R90
Chi et al. 2013). Three key deiodinase enzymes are found

in both fetal and adult tissues: D1, D2, and D3 (Bianco

et al. 2002). D1 is primarily a 5 0-monodeiodinase enzyme

that catalyzes outer-ring deiodination of T4 to T3 and of

rT3 to T2. This enzyme is present in the fetal liver, kidney,

and thyroid and pituitary gland, and the production of T3

by hepatic D1 is considered to be the major endocrine

source of circulating T3 concentrations (Polk 1995). D2 is

also a 5 0-deiodinase enzyme with kinetic characteristics

different from D1 that is found primarily in the brain,

pituitary gland, placenta, and brown adipose tissue. In

these tissues, D2 generates local concentrations of T3 that

are essential for normal tissue development and function,

rather than contributing significantly to the circulating

pool of T3. D3 is a 5 0-monodeiodinase enzyme that

catalyzes inner-ring deiodination of T4 to transcriptionally

inactive rT3, and of T3 to inactive T2. This enzyme is

present in the liver, kidney, and skin and is highly

expressed in the uterus, placenta, and amniotic mem-

brane, where it has an important role in the clearance of

circulating thyroid hormones and in regulating placental

transfer of maternal thyroid hormones to the fetus.

Therefore, as an enzymatic barrier, placental D3 limits

the exposure of the fetus to maternal thyroid hormones.

In the human placenta, the enzyme activity, and mRNA

and protein expression, of D2 are greatest in the first

trimester compared with term, but significantly lower

than those of D3 at all gestational ages studied (Koop-

donk-Kool et al. 1996, Chan et al. 2003). These findings

suggest that local production of T3 may be important for

early placental development, but is unlikely to contribute

significantly to circulating T3 concentrations in the fetus.

The Dio3 gene that encodes D3 has been shown to be

imprinted in the mouse and is preferentially expressed by

the paternal allele (Hernandez et al. 2002, Tsai et al. 2002).

However, imprinting does not occur in all fetal tissues and,

where it does, expression from the paternal allele varies

from 75–85% in fetal tissues to 50–60% of total expression

in the placenta (Charalambous & Hernandez 2013).

Knockout of the Dio3 gene causes perinatal thyrotoxicity

and partial lethality at or before birth (Hernandez et al.

2006). Birth weight is normal in the live mutant pups but

there are abnormalities in the pancreatic b-cells, retina,

and hypothalamus at birth with a more severe growth-

restricted phenotype developing with increasing postnatal

age (Hernandez et al. 2006, Ng et al. 2010, Medina et al.

2011, Ueta et al. 2012). The tissue-specific patterns of

imprinting and expression of Dio3 suggest that this

deiodinase has both paracrine and endocrine actions in
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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preventing feto-placental over exposure to thyroid

hormones at critical stages of development.

Another important pathway in thyroid hormone

metabolism in utero is sulfation, whereby around 80% of

T4 produced by the thyroid gland is metabolized to

biologically inactive sulfated forms, such as T4S, T3S, and

rT3S (Wu et al. 1992, 1993). Thyroid hormones are sulfated

by sulfotransferase, primarily in the fetal liver, but also in

the kidneys, brain, and intestines (Fig. 1). One significant

aspect of this metabolic pathway is that sulfation of

thyroid hormones can be reversed by sulfatase enzymes in

tissues such as the liver, lung, brain, and placenta (Richard

et al. 2001, Kester et al. 2002). This means that T3S, for

example, can be converted back to T3, which is likely to be

an important source of T3 especially during hypothyroid-

ism (Fig. 1). In thyroidectomized sheep fetuses, T3S

remains in the circulation for up to 2 weeks while all

other thyroid hormones and their metabolites fall below

detectable levels (Wu et al. 1993). Therefore, during

hypothyroidism, T3S conversion to T3 in tissues such as

the brain maintains a local supply of T3 essential for

normal growth and development. Indeed, the fetal brain

employs several mechanisms to maintain normal local

concentrations of thyroid hormones in the event of

thyroid hormone deficiency. In the thyroidectomized

sheep fetus, hepatic D1 activity is downregulated to

reduce the endocrine deiodination of T4 in the fetal

liver, while at the same time, cerebral D2 activity is

upregulated to enhance local deiodination of T4 to T3 in

the fetal brain (Polk et al. 1988). Therefore, the hypothyr-

oid fetus conserves T4 for local production of T3 within the

brain, in order to maintain the actions of the thyroid

hormones on brain development.

For most of gestation, T4 is metabolized primarily to

rT3 and a variety of sulfated thyroid hormones that are

biologically inactive (Fig. 1). The high ratio of D3 to D1

activity in the fetal liver, and the placental D3 enzyme,

maintain a high rate of T3 clearance and, therefore,

concentrations of T3 are relatively low in the fetal

circulation. Toward term, however, there are develop-

mental changes in tissue deiodinase activity and, there-

fore, plasma T3 concentration in the fetus (Darras et al.

1992, Forhead et al. 2006). In fetal sheep, hepatic and renal

D1 activities increase, and placental D3 activity decreases,

in the 2 weeks before birth (Forhead et al. 2006). Overall,

preferential deiodination of T4 to T3 instead of rT3 and

reduced clearance of T3 lead to a rise in plasma T3

concentration in the fetus near term. In fetal sheep,

these maturational changes in tissue deiodinase activity

have been shown to be induced by the prepartum cortisol
Published by Bioscientifica Ltd.
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surge and can be stimulated prematurely by maternal

administration of the synthetic glucocorticoid, dexa-

methasone (Forhead et al. 2006, Forhead et al. 2007).

Endogenous and synthetic glucocorticoids also increase

plasma T3 conversion via changes in the hepatic D1:D3

ratio in the chick embryo (Darras et al. 1996). Therefore,

circulating and local concentrations of thyroid hormones

in the fetus are regulated developmentally, and in a tissue-

specific manner, by the balance between deiodinase and

other metabolic enzymes.
Thyroid hormone transporters and receptors in

fetal tissues

Thyroid hormone bioavailability is also determined by the

expression of transporters and intracellular receptors in

the target tissues. There are several types of thyroid

hormone transporters that allow the hormones access to

target tissues, including organic anion transporters

(OATP), L-type amino acid transporters (LAT1 and LAT2),

and monocarboxylate transporters (MCT8 and MCT10;

Friesema et al. 2005, Jansen et al. 2005). A genetic

mutation in human MCT8 (SLC16A2) has been identified

in families who showed symptoms of hypothyroidism

including severe neurological and muscular defects,

although the phenotype differs from that observed with

congenital hypothyroidism and in mutant MCT8 mouse

models (Visser et al. 2008, Heuer & Visser 2013). In adult

animals, thyroid hormone transporters have been ident-

ified in the liver, kidney, brain, lung, and placenta. In the

cerebral cortex of the human fetus at 7–20 weeks of

gestation, MCT8 and MCT10 (SLC16A10) mRNA levels are

similar to those in the adult brain, and developmental

changes in OATP (SLCO1A2) mRNA have been reported

(Chan et al. 2011). Thyroid hormone transporter proteins

in the brain and other tissues are likely to have an

important role in determining tissue-specific bioavailabil-

ity of the thyroid hormones in fetal as well as in adult life.

Thus, variations in thyroid hormone transporter abun-

dance may lead to abnormalities in thyroid hormone

exposure even when circulating levels of these hormones

are normal. However, to date, the regulation of these

transporters in fetal tissues of any species is unknown.

Once transported across the plasma membrane, the

bioactivity of thyroid hormones depends ultimately on

the expression of intracellular TRs and post-receptor-

binding pathways. The various TRa (THRA) and TRb

(THRB) isoforms are expressed in the fetus in a tissue-

specific manner by mid-gestation and often at gestational

ages earlier than the appearance of thyroid hormones in
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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the fetal circulation (Table 1; Bernal & Pekonen 1984,

Nagasawa et al. 1997, White et al. 2001, Chan et al. 2002,

2005). These findings indicate that, for some species,

maternal thyroid hormones may contribute to the control

of early embryonic growth and development, before the

onset of fetal thyroid hormone activity (Obregon et al.

2007). In addition, there are developmental changes in TR

binding in the fetal brain, lung, skeletal muscle, liver, and

heart as term approaches, which are also species specific

(Bernal & Pekonen 1984, Perez-Castillo et al. 1985, Ferreiro

et al. 1987, Polk et al. 1989, Falcone et al. 1994, White et al.

2001). In fetal sheep, thyroid hormone binding is present

in the liver and brain from 50 days and increases toward

term in the liver (Ferreiro et al. 1987, Polk et al. 1989).

Similarly, in fetal pigs, there are decreases in TRa

expression in skeletal muscle and increases in TRb

abundance in the heart and skeletal muscle at birth

(White et al. 2001). In both species, the gestational

changes in fetal tissue TR abundance closely parallel

plasma cortisol concentrations (Polk et al. 1989, White

et al. 2001); however, the effect of the prepartum cortisol

surge on the expression of thyroid hormone transporters

and receptors in utero remains unknown. Furthermore, the

developmental expression and potential roles of mito-

chondrial and plasma membrane receptors that bind

thyroid hormones have not been investigated in fetal

tissues to date (Chi et al. 2013). Tissue bioavailability of

the thyroid hormones can, therefore, be varied either

systemically by altering hormone secretion by the thyroid

glands or at the local level by changes in the tissue

transport, metabolism, and receptor milieux of the

thyroid hormones.
Placental transfer of maternal thyroid hormones

In all mammalian species, the placenta actively transports

iodide from the maternal to fetal circulation to provide

iodide for thyroid hormone synthesis (Fig. 1). Gene

expression of the sodium–iodide cotransporter is evident

from 6 weeks of gestation in the human placenta and also

present in the amniotic membrane at term (Li et al. 2012,

Akturk et al. 2013). The transfer of thyroid hormones from

the mother to fetus varies between mammalian species

and types of placenta and is determined by the placental

expression of thyroid hormone transporters, binding

proteins, and D3 enzyme activity. The hemochorial

placenta in human and rodent species has been shown

to be relatively permeable to T4 and T3 (Calvo et al. 1992,

Fisher 1997). A variety of thyroid hormone transporters

are expressed in the human placenta and show changes
Published by Bioscientifica Ltd.
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during normal development and in cases of intrauterine

growth restriction (IUGR; Chan et al. 2009, Loubiere et al.

2010). In isolated microvillous membrane vesicles of

human syncytiotrophoblast at term, saturable uptake of

T4 and T3 across the maternal apical surface occurs by

mainly different types of thyroid hormone transporters

(Loubiere et al. 2012). The thyroid hormone-binding

protein, transthyretin (TTR), is expressed by the human

placenta from at least 6 weeks of gestation and is

upregulated in vitro by low oxygen levels (Landers et al.

2013). Therefore, placental TTR may facilitate the

movement of thyroid hormones from the mother to

fetus, especially in the low-oxygen environment of the

first trimester.

Before the fetal thyroid gland is functional, the T4

concentrationsmeasured in the amniotic fluid, and tissues

and circulation of the fetus, are derived from the mother

by transplacental transfer. Indeed, T4 has been detected in

coelomic fluid from as early as 4 weeks post-conception,

which demonstrates that the embryo is exposed to

maternal thyroid hormones from early in development

(Contempre et al. 1993). Once the fetus is able to produce

its own thyroid hormones, maternal T4 makes only a

modest contribution to the total concentration in the

fetus. In the rat near term, maternally derived T4 accounts

for about 15% of the concentration in the fetal circulation

(Morreale de Escobar et al. 1990). Therefore, in human and

rodent fetuses, maternal thyroid hormones may have an

important role in fetal development, especially during the

first and second trimesters. Placental transfer of maternal

thyroid hormones may become particularly important in

conditions of fetal hypothyroidism, when the steep

gradient in thyroid hormones from the mother to fetus

may aid fetal acquisition of maternal hormones transpla-

centally. In human fetuses with total thyroid deficiency,

cord T4 concentrations are 20–50% of normal values and

decrease rapidly soon after birth (Vulsma et al. 1989). By

contrast, the epitheliochorial placenta of the sheep

appears to be impermeable to maternal thyroid hormones,

at least at 0.75 of gestation, and there is negligible

materno-fetal transfer, even during fetal hypothyroidism

(Hopkins & Thorburn 1972). The effectiveness of the ovine

placenta as a thyroid hormone barrier means that the

sheep fetus is dependent upon development of its own

thyroid hormone axis in utero. The thyroidectomized

sheep fetus is, therefore, a useful experimental model to

examine the effects of thyroid hormones on aspects of

fetal growth and maturation, independent of maternal

thyroid status.
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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Thyroid hormones and fetal growth

Thyroid hormone concentrations are low in IUGR and

small-for-gestational-age fetuses both in human popu-

lations and when fetal growth is restricted in experimental

animals by undernutrition and placental insufficiency

(Wrutniak & Cabello 1983, Thorpe-Beeston et al. 1991b,

Kilby et al. 1998, Rae et al. 2002, Pereira & Procianoy 2003).

In several of the experimental studies, plasma T4 concen-

trations are correlated positively to the body weight of the

fetal and/or newborn animals (Wrutniak & Cabello 1983,

Fowden & Silver 1995). Similarly, in normal human

infants, umbilical T4 concentrations are positively related

to bodyweight and length at birth (Sack et al. 1993, Shields

et al. 2011). In addition, TR binding in skeletal muscle is

lower in newborn runts compared with normal-sized

piglets (Dauncey & Geers 1990), and immunostaining for

the TR isoforms and thyroid hormone transporter, MCT8,

are reduced in the occipital cerebral cortex of IUGR human

fetuses (Kilby et al. 2000,Chan et al. 2014). Collectively, the

clinical and experimental findings indicate that bioavail-

ability of thyroid hormones in utero regulates fetal growth

by acting as a signal of the nutrient and oxygen supply to

the fetus (Fowden & Forhead 2009). In addition, when

IUGR is progressive or severe, impaired fetal growth per se

may alter thyroid hormone status by evoking a fetal stress

response and secretion of stress hormones such as the

glucocorticoids that affect thyroid hormone bioavailability

indirectly (Fowden & Forhead 2009).

The growth regulatory effects of the thyroid hormones

have been studied more specifically by direct mani-

pulation of thyroid hormone concentrations in utero in

experimental animals. In species with little, if any,

placental transfer of maternal thyroid hormones, such as

sheep, goats, horses, and pigs, hypothyroidism induced

congenitally or by surgical ablation of the fetal thyroid

gland(s) causes growth restriction of the fetus (Table 2;

Spencer et al. 1989, Piosik et al. 1997, Allen et al. 1998).

These studies show that fetal thyroid hormones are

required for both accretion of fetal mass and differen-

tiation of specific cell types, such as the wool or hair

follicles, at critical stages of development well before term

(Table 2; Hopkins & Thorburn 1972, Hausman 1992).

Thus, in sheep, the severity of the developmental

abnormalities is related to both the stage of development

at the time of thyroidectomy and the duration of thyroid

hormone deficiency (Table 2). In animals with greater

placental permeability to maternal thyroid hormones,

such as rabbits, rodents, and human and non-human

primates, the effects of fetal thyroid hormone deficiency
Published by Bioscientifica Ltd.
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Table 2 Effects of thyroidectomy in utero on the growth and development of the sheep fetus

Age at

surgery

Age at

study

Percentage of euthyroid control

Specific tissue abnormalities References

Body

weight

Length

Crown-

rump Forelimb Hindlimb

73 140 72 – – 90 Smaller area of type II muscle fibers Finkelstein et al. (1991)
Decreased force generation in skeletal

muscle
80 135 74 – – – Altered autonomic nervous system

function
Walker & Schuijers (1989)

80 145 67 – – – Delayed epiphyseal closure Ayromlooi et al. (1983)
Increased relative brain weight
Fewer type II pneumocytes, anemia

88 144 67 91 74 76 Delayed bone maturation Hopkins & Thorburn
(1972)

Reduced relative thymus weight
No wool follicle development

101 135 60 100 100 100 Reduced relative lung weight Erenberg et al. (1974)
Reduced protein content in specific tissues
Thin skin, abnormal wool development

103 137 72 – – – Increased relative brain weight Bhakthavathsalan et al.
(1977)

103 130 91 99 92 86 Altered bone strength and mineral density Lanham et al. (2011)
144 74 86 82 83 Delayed bone maturation

105 135 78 89 85 84 Reduced hemoglobin levels Fowden & Silver (1995)
Fowden et al. (2001a)139 81 90 88 87 Reduced catecholaminergic response to

fasting
120 130 100 – – – Reduced relative heart weight Chattergoon et al.

(2012a)
Increased relative kidney weight
Fewer binucleated cardiomyocytes

125 132 100 – – – Fewer binucleated cardiomyocytes Segar et al. (2013)
129 145 100 – – – Abnormal neonatal cardiovascular

adaptations
Breall et al. (1984)
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on intrauterine growth are less pronounced (Jost 1979,

Fowden & Forhead 2009, Hall et al. 2010), which suggests

that maternal thyroid hormones compensate, in part, for

the fetal deficiency. Human infants with congenital

hypothyroidism are often born with a normal body-

weight, although they may have neurological and skeletal

abnormalities consistent with the tissue-specific develop-

mental effects of thyroid hormones observed in other

animals (Vulsma et al. 1989, Patel et al. 2011, Shields et al.

2011). Certainly, when maternal and fetal hypothyroid-

ism are combined during pregnancy, there are severe

consequences for the development of the neuromotor,

auditory, cardiovascular, skeletal, and respiratory systems

of the human infant (De Zegher et al. 1995, Yasuda

et al. 1999).

In fetal sheep, thyroidectomy reduces bodyweight,

individual organ weights, and skeletal growth of the

vertebrae and limbs (Table 2). The changes in the body

weight and vertebral and limb length of thyroidectomized
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0025 Printed in Great Britain
fetuses can be ameliorated by T4 replacement (Fowden &

Silver 1995, Fowden et al. 2001a). The protein content of

fetal tissues such as the heart, lung, and skeletal muscle is

also reduced by fetal thyroidectomy (Erenberg et al. 1974).

The growth restriction of thyroidectomized fetuses is

asymmetrical with greater effects on the weight of soft

tissues than on the length of bones, although brain sparing

occurs as observed in other types of IUGR (Table 2). The

appendicular skeleton is also more adversely affected than

the axial skeleton of thyroidectomized fetuses (Table 2).

The abnormalities in bone structure and mechanical

properties after fetal thyroidectomy are associated with a

reduction in the circulating levels of osteocalcin, a marker

of osteoblast activity, without any change in the plasma

concentrations of total calcium or markers of osteoclast

activity (Hopkins & Thorburn 1972, Lanham et al. 2011).

These findings suggest that hypothyroidism delays

bone development by reducing normal bone deposition

rather than by changing the rate of bone degradation or
Published by Bioscientifica Ltd.
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calcium homeostasis in utero (Lanham et al. 2011). Thyroid

hormones, therefore, promote both general body growth

and the development of individual tissues of the fetus.
Metabolic effects of the thyroid hormones

Thyroid hormones act on fetal growth via direct and

indirect mechanisms. First, thyroid hormones have direct

actions on fetal metabolism, particularly on the consump-

tion of oxygen (O2) and glucose. Infusion of T3 into fetal

sheep for 5 days increases fetal O2 consumption by 28% in

association with increases in fetal cardiac output and

umbilical blood flow (Lorijn & Longo 1980, Lorijn et al.

1980). Conversely, the weight-specific rates of fetal O2

consumption and oxidation of glucose carbon are reduced

by 20–30% by thyroidectomy of fetal sheep and restored to

normal values by T4 replacement (Fowden & Silver 1995).

Availability of T4 has also been shown to regulate glucose

oxidation in adipose tissue of fetal pigs (Hausman et al.

1996). In addition, fetal hypothyroidism prevents the

normal fall in fetal glucose oxidation observed in response

to short-term fasting of pregnant ewes (Fowden et al.

2001a). The reducedO2 consumption of thyroidectomized

sheep fetuses occurs without any alteration in the weight-

specific rate of umbilical blood flow but is accompanied by

fetal anemia and a reduction in blood O2 content (Fowden

& Silver 1995). The causes of the changes in fetal O2

consumption, therefore, appear to differ between

hypothyroidism and hyperthyroidism although this may

reflect, in part, the duration of exposure to abnormal

thyroid hormone concentrations. Overall, circulating T4

and T3 concentrations correlate positively with the whole-

body rate of O2 consumption in the fetus (Lorijn & Longo

1980, Lorijn et al. 1980, Fowden & Silver 1995). However,

there are no changes in O2 consumption by the liver,

kidney, brain, or placenta of thyroidectomized fetuses,

which suggests that the primary oxidative action of the

thyroid hormones is on fetal fat and skeletal muscle

(Bhakthavathsalan et al. 1977, Klein et al. 1983, Polk et al.

1987, Fowden & Silver 1995, Herpin et al. 1996). Certainly,

in fetal sheep, there is an increase in the proportion of the

anaerobic type II muscle fibers in several muscles after fetal

thyroidectomy consistent with the more limited oxidative

capacity observed in these circumstances (Finkelstein et al.

1991, Fowden & Silver 1995).

At the cellular level, thyroid hormones can influence

oxidative metabolism either by changing expression and

activity of the electrogenic NaC–KC ATPase pump or by

acting on the mitochondrial electron transport chain

(ETC) and oxidative phosphorylation per se (Wrutniak
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0025 Printed in Great Britain
et al. 1998, Ramminger et al. 2002, Patel et al. 2011). In vitro

studies have shown that T4 and T3 increase the amount

and activity of NaC–KC ATPase pumps in cultured skeletal

myotubes and pulmonary epithelial cells from fetal rats

close to term (Brodie & Sampson 1988, Ramminger et al.

2002). However, no changes in NaC–KC ATPase pump

activity are observed in the liver, kidney, or brain of

thyroidectomized fetal sheep during late gestation (Klein

et al. 1983). Mitochondrial contents of total protein and

cytochrome c oxidase, a component of the ETC, are

reduced by prenatal hypothyroidism in skeletal muscle

and liver of fetal and newborn pigs (Herpin et al. 1996).

Similarly, cerebral cytochrome c oxidase is reduced in

hypothyroid rat fetuses without a change in mito-

chondrial DNA content (Vega-Nunez et al. 1995). In

addition, in fetal sheep, plasma T3 concentrations are

positively related to adipose tissue expression of the

mitochondrial uncoupling proteins 1 and 2 (UCP1 and

UCP2), which dissipate themitochondrial proton gradient

and reduce the efficiency of ATP production (Mostyn et al.

2003, Gnanalingham et al. 2005). Taken together, these

observations suggest that thyroid hormones affect mito-

chondrial respiration, biogenesis, and ATP generation in a

tissue-specific manner. However, whatever the specific

mechanisms involved, hypothyroid fetuses will derive less

ATP from oxidative metabolism than euthyroid fetuses

and, thus, have less energy available for growth of non-

essential tissues. Thyroid hormones, therefore, stimulate

fetal growth through oxidative actions on fetal meta-

bolism (Fig. 2).
Thyroid hormones and the insulin-like growth factors

A second, indirect mechanism by which thyroid hor-

mones may influence fetal development is through

interactions with other endocrine systems involved in

regulating intrauterine growth (Fowden & Forhead 2013).

Through changes in tissue or plasma levels and/or receptor

abundance, manipulation of thyroid hormone concen-

trations in utero has been shown to affect the fetal

bioavailability of several hormones and growth factors

including the renin–angiotensin system, catecholamines,

leptin, prostaglandins, growth hormone (GH), and the

insulin-like growth factors (IGFs; Walker & Schuijers 1989,

Richards et al. 1993, Forhead et al. 1998, 2000a,b, Fowden

et al. 2001a, Forhead & Fowden 2002, Chen et al. 2005,

2007, Liu et al. 2005, O’Connor et al. 2007, Carey et al.

2008). For instance, thyroid hormones are known to be

involved in the neonatal epigenetic modifications of the

hippocampal glucocorticoid receptors that have long-term
Published by Bioscientifica Ltd.
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Figure 2

Schematic diagram showing the role of the thyroid hormones in the

growth and development of the fetus during the second half of gestation.

T4, thyroxine; T3, triiodothyronine; BAT, brown adipose tissue;

ANS, autonomic nervous system; ACE, angiotensin-converting enzyme;

UCP, uncoupling protein.

Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Review A J FORHEAD and A L FOWDEN Thyroid hormones and fetal
development

221 :3 R95
consequences for the function of the adult hypothalamic–

pituitary–adrenal axis (Champagne 2013). In particular,

their role in regulating the somatotropic axis and local

tissue expression of the IGFs is likely to have important

implications for growth and development in utero.

The IGFs are expressed widely in fetal tissues and are

known to have an important role in fetal and placental

growth (Fowden 2003, Forbes & Westwood 2008). Their

expression in utero also varies with gestational age and

nutritional state in a tissue-specific manner (Fowden &

Forhead 2009). In fetal sheep and pigs, plasma IGF1 but

not IGF2 concentrations are reduced by hypothyroidism

and restored to normal values by T4 treatment (Mesiano

et al. 1987, Latimer et al. 1993). These changes are

accompanied by alterations in tissue expression of the

IGF1 but not the IGF2 gene (Fowden et al. 2006). In

hypothyroid fetal pigs, the reduction in tissue IGF1

content is widespread whereas, in thyroidectomized fetal

sheep, changes in IGF1 mRNA expression are tissue

specific with decreases in skeletal muscle and increases
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0025 Printed in Great Britain
in the liver (Latimer et al. 1993, Forhead et al. 1998,

2000a,b, 2002). Manipulation of thyroid hormone levels

in fetal sheep also alters plasma GH concentrations and

hepatic expression of the GH receptor (GHR; Richards et al.

1993, Forhead et al. 2000a,b). Furthermore, prevention of

the normal prepartum rise in T3 concentrations by

thyroidectomy of fetal sheep modifies the normal onto-

genic pattern of expression of the GHR and IGF genes in

both liver and skeletal muscle toward term (Forhead et al.

1998, 2000b, 2002). Thus, thyroid hormones appear to

regulate not only general tissue accretion but also terminal

differentiation of fetal tissues in preparation for extra-

uterine life (Fig. 2).
Thyroid hormones and fetal maturation

Toward term, there are maturational changes in a wide

range of fetal tissues in preparation for extrauterine life,

which are dependent on the prepartum rise in fetal cortisol

concentrations (Fowden et al. 1998). These changes ensure
Published by Bioscientifica Ltd.
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activation of physiological processes essential for survival

immediately at birth such as pulmonary gas exchange,

adaptations in cardiac function, hepatic glucogenesis, and

thermogenesis. The cortisol-induced maturational

changes include the ontogenic changes in tissue D3 and

D1 deiodinase activities and the concomitant increase in

circulating T3 concentration in the fetus toward term

(Forhead et al. 2006, Fowden & Forhead 2009). In turn, the

prepartum increase in T3 bioavailability in the fetus may

mediate, at least in part, the maturational effects of both

endogenous cortisol and exogenous synthetic glucocorti-

coids given as a clinical treatment to improve neonatal

viability in threatened pre-term delivery.
The lungs and respiratory function

Ventilation of the lungs and gas exchange in the newborn

animal depend on a number of structural and functional

changes, including removal of lung liquid and production

of surfactant (Olver et al. 1981, Wilson et al. 2007, Hillman

et al. 2012). Thyroid hormones have an important role in

determining the sensitivity of the fluid absorption system

to catecholamines released during birth (Barker et al. 1988,

1990, 1991). Toward term, the ability of epinephrine and

cAMP to switch lung liquid secretion to absorption

increases progressively (Barker et al. 1988). This matura-

tional process is impaired in thyroid-deficient sheep

fetuses, but can be restored by replacement infusion of

T3 or T4 (Barker et al. 1990). Antenatal T3 administration

can also improve pulmonary function in newborn lambs

delivered prematurely (Chan et al. 1998). However, both

cortisol and T3 are required for epinephrine-induced lung

liquid absorption and act synergistically via mechanisms

that depend on protein synthesis (Barker et al. 1991,

Ramminger et al. 2002). These effects are probably

mediated by upregulation of the pulmonary b-adrenergic

receptors (Das et al. 1984, Warburton et al. 1988), but as

thyroid hormones influence cAMP responsiveness, they

may also involve intracellular signaling pathways down-

stream of the receptors (Barker et al. 1988, Wilson et al.

2007). Thyroid hormones are known to increase the

expression of pulmonary b-adrenergic receptors and apical

NaC channels in the fetus and can stimulate the

expression and activity of the NaC/KC ATPase in the

basolateral membrane of the alveolar epithelium (Das et al.

1984, Warburton et al. 1988, Wilson et al. 2007).

Maturation of surfactant synthesis and release by the

type II pneumocytes also depends, in part, on the

increasing T3 bioavailability toward term (Mendelson &

Boggaram 1991, Hillman et al. 2012). Thyroidectomy of
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0025 Printed in Great Britain
fetal sheep reduces the number of type II pneumocytes in

the lungs at term as well as the number of surfactant-

containing lamellar bodies in these cells (Ayromlooi et al.

1983). In vitro and in vivo studies have shown that thyroid

hormones affect synthesis of both the phospholipid and

protein components of surfactant in fetal mice, rats,

sheep, monkeys, and human infants (Ballard et al. 1984,

Das et al. 1984, Torday &Dow 1984,Warburton et al. 1988,

Romaguera et al. 1993, Gilbert et al. 2001, van Tuyl et al.

2004). In particular, thyroid hormones promote synthesis

of surfactant proteins B and C. They also increase the

phospholipid content of lung liquid, although this effect

may be mediated via upregulation of pulmonary

b-adrenergic receptor expression and, hence, enhanced

epinephrine-stimulated surfactant release (Das et al. 1984,

Warburton et al. 1988). Similar to lung liquid resorption,

the effects of T3 and cortisol on surfactant production

appear to be synergistic with greater effects on lung

stability when the two hormones are given together than

when either hormone is given alone (Warburton et al.

1988, Mendelson & Boggaram 1991, Hillman et al. 2012).

Finally, thyroid hormones can affect lung maturation

via actions on the expression of angiotensin-converting

enzyme (ACE) in the pulmonary vascular endothelium. In

postnatal lungs, angiotensin I is activated to angiotensin II

by ACE as the cardiac output circulates through the

pulmonary vasculature. However, before birth, the fetal

lungs are poorly perfused and pulmonary ACE levels are

relatively low. In fetal sheep toward term, there is a rise in

pulmonary ACE concentration, in association with the

prepartum changes in plasma cortisol and T3, which is

abolished by thyroidectomy and can be stimulated

prematurely by T3 infusion (Forhead et al. 2000a, Forhead

& Fowden 2002). Upregulation of pulmonary ACE by T3

may activate the fetal renin–angiotensin system near term

and may have implications for the maturation of

cardiovascular and renal function as well as for local

pulmonary development.
The heart and cardiovascular function

Thyroid hormones are also essential for the normal

maturation of cardiomyocytes and the cardiovascular

system (Thornburg et al. 2011). They promote a switch

from proliferation to hypertrophy and differentiation of

the cardiomyocytes both at term and earlier in gestation

(Chattergoon et al. 2012a,b). In a series of in vivo and

in vitro studies in fetal sheep, T3 has been shown to

increase the cardiomyocyte size and the population of

terminally differentiated binucleated cells in association
Published by Bioscientifica Ltd.
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with downregulation of cell cycle promoters by 50% or

more and upregulation of cell cycle suppressors and

various molecular mechanisms of cell growth by up to

500% (Chattergoon et al. 2007, 2012a,b). Conversely,

thyroidectomy of the sheep fetus reduces the number of

binucleate cardiomyocytes by 27% and the relative weight

of the heart by 10–15% near term (Chattergoon et al.

2012a, Segar et al. 2013). In rodents, T3 has been shown to

have anabolic effects on the fetal heart with increases in

cardiac protein synthesis and expression of the insulin-

sensitive glucose transporter, GLUT4 (Crie et al. 1983,

Castello et al. 1994). These thyroid hormone-dependent

changes in cardiomyocyte growth and differentiation are

accompanied by alterations in expression of contractile

proteins, mechano-signaling proteins, and various genes

coding for cardiac pacemaker, potassium channels, and

sarcoplasmic reticulum calcium pump proteins (Edwards

et al. 1994, Mai et al. 2004, van Tuyl et al. 2004, Kruger et al.

2008, Chattergoon et al. 2012a, Segar et al. 2013). In

particular, the thyroid hormones have an important role

in the perinatal switch from b- to a-myosin heavy chains

in the sacromeres (Edwards et al. 1994, van Tuyl et al.

2004). Many of these maturational effects of T3 on cardiac

contractility appear to be mediated via the phosphatidyl-

inositol-3-kinase/AKT and mTOR pathways (Kruger et al.

2008, Chattergoon et al. 2012a). Thyroid hormones also

affect the atrial natriuretic peptide content of the fetal

heart and have an important role in coordinating

maturation of the absolute and relative abundance of the

multiple adrenergic receptor subtypes in the fetal heart

(Birk et al. 1992, Metz et al. 1996, Mai et al. 2004,

Chattergoon et al. 2012a). In particular, they are essential

for prepartum upregulation of the b-adrenergic receptors

and, thus, cardiac responsiveness to b-agonists (Birk et al.

1992, Chen et al. 2005).

The cellular changes induced in the fetal heart by

thyroid hormones have major implications for cardiac

function both in utero and during the transition to

extrauterine life. At birth, the two sides of the heart have

to switch from pumping in parallel to pumping in series

and, on the left side, this has to occur against a greater

pressure caused by the loss of the low resistance placental

pathway. Indeed, recent studies have shown that thyroid

hormones are essential for the adaptation and growth of

the fetal ovine heart in response to a pressure overload

during late gestation (Segar et al. 2013). Fetal blood

pressure and heart rate are reduced by about 10–25% by

thyroidectomy of fetal sheep depending on the gestational

age at surgery and the duration of hypothyroidism (Breall

et al. 1984, Walker & Schuijers 1989, Chen et al. 2005,
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0025 Printed in Great Britain
2007, Segar et al. 2013). Conversely, T3 infusion into

euthyroid fetal sheep near term causes tachycardia

accompanied by increases in fetal cardiac output and

pulmonary blood flow (Lorijn & Longo 1980). Fetal

thyroidectomy abolishes the inotropic effect of the

b-adrenergic agonist, isoprenaline, and prevents the fetal

bradycardia and hypertension normally observed in

response to hypoxemia, despite elevated basal circulating

concentrations of norepinephrine in the fetus (Walker &

Schuijers 1989, Birk et al. 1992, Chen et al. 2005). Fetal

hypothyroidism also prevents the increases in heart rate,

cardiac output, blood pressure, and systemic blood flow

normally observed in newborn lambs in the hours after

delivery (Breall et al. 1984). In part, the lack of an

appropriate cardiovascular response to fetal hypoxemia

and delivery per se is due to the paucity of cardiac

b-adrenergic receptors and may also reflect abnormalities

in functioning of the baroreflex and autonomic nervous

system more generally (Walker & Schuijers 1989, Chen

et al. 2005). Changes in perinatal cardiovascular function

in response to manipulation of thyroid hormone levels

may, therefore, involve more than cardiac adaptations

alone. Certainly, there are changes in catecholamine

content and abundance of receptors for vasoactive agents

such as the angiotensin II and the catecholamines in

several fetal tissues after fetal thyroidectomy (Walker &

Schuijers 1989, Forhead & Fowden 2002, Chen et al. 2005,

2007, Liu et al. 2005). Indeed, a poor catecholaminergic

response to hypoglycemia appears to be a contributory

factor to the metabolic abnormalities observed in thyr-

oidectomized fetuses of fasted ewes (Fowden et al. 2001a).
The liver and glucogenesis

At birth, there is activation of hepatic glucogenesis to

maintain a glucose supply to neonatal tissues during the

period between placental separation and the onset of

nutritive suckling (Fowden et al. 2001b, Hillman et al.

2012). This depends on adequate glycogen stores and

gluconeogenic enzyme activities in the liver (Fowden et al.

1998, 2001b). The normal developmental increments in

hepatic glycogen, and hepatic and renal gluconeogenic

enzymes, are abolished in hypothyroid sheep fetuses

(Forhead et al. 2003, 2009). Fetal thyroidectomy also

prevents activation of fetal glucogenesis in response to

maternal fasting during late gestation, which is accom-

panied by low hepatic glycogen levels and a failure to

increase key gluconeogenic enzyme activities (Fowden

et al. 2001a). Both fasting-induced fetal glucogenesis

and the normal prepartum increases in hepatic glycogen
Published by Bioscientifica Ltd.
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and gluconeogenic enzyme activities are dependent on

the increase in cortisol secretion by the fetal adrenal

glands (Fowden et al. 1998). As cortisol but not T3 levels

rise normally in thyroidectomized fetuses (Forhead et al.

2002, 2003), the reduced glucogenic capacity of these

fetuses suggests that the effects of prepartum cortisol surge

are mediated by the concomitant increase in T3 pro-

duction. Certainly, the normal positive correlations

observed between fetal cortisol concentrations and the

hepatic activities of the rate-limiting gluconeogenic

enzymes, glucose-6-phosphatase (G6Pase) and phospho-

enolpyruvate carboxykinase (PEPCK), are absent in

thyroidectomized fetuses in late gestation (Fowden et al.

2001a). Furthermore, T3 treatment of immature euthyroid

sheep fetuses causes an increase in hepatic G6Pase and

PEPCK activities in the presence of low cortisol concen-

trations (Forhead et al. 2003). Thyroid hormones, there-

fore, have an important role in ensuring that hepatic

gluconeogenesis can be activated at birth.
Adipose tissue and thermogenesis

At birth, the mammalian neonate must maintain its body

temperature for the first time. This requires more heat

production than in utero, so, depending on the species,

shivering and/or non-shivering thermogenesis are

initiated at birth (Silva 2011). Activation of non-shivering

thermogenesis, in particular, requires thyroid hormones.

In sheep, thyroidectomy in utero reduces body temperature

after birth and prevents the neonatal increase in O2

consumption by the lamb as a whole and by certain of

its tissues such as the liver, brain, and brown adipose tissue

(Klein et al. 1983, Breall et al. 1984, Polk et al. 1987,

Schermer et al. 1996). It also reduces thermogenic activity

of the perirenal brown adipose tissue used for non-

shivering thermogenesis, coincident with an increase in

the incidence of shivering to help maintain core tempera-

ture (Schermer et al. 1996). In addition, norepinephrine is

less effective at stimulating O2 consumption by brown

adipose tissue from newborn lambs thyroidectomized

in utero 2 weeks before delivery (Polk et al. 1987). Similarly,

inactivating the D2 deiodinase that produces T3 in brown

adipose tissue impairs the oxidative capacity and heat

production of newborn mice (Hall et al. 2010).

The thermogenic actions of the thyroid hormones

are due, in part, to upregulation of UCP abundance and

other mitochondrial proteins in brown adipose tissue

and the uncoupling of the mitochondrial proton-motive

force from ADP phosphorylation to release the energy

as heat (Guerra et al. 1994, Schermer et al. 1996,
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0025 Printed in Great Britain
Gnanalingham et al. 2005). However, direct adminis-

tration of T3 to fetal sheep before birth does not activate

thermogenesis by brown adipose tissue, even when the

fetus is cooled (Schroder et al. 1987, Power et al. 1989),

although it does augment thermogenesis and O2 con-

sumption in response to catecholamines and cAMP by

fetal brown adipose tissue in vitro after T3 infusion in vivo

(Klein et al. 1984). This has lead to the suggestion that

placental factors inhibit activation of thermogenesis by

brown adipose tissue until after delivery (Power et al. 1989,

Symonds et al. 2003). However, by upregulation of

b-adrenergic receptor abundance and/or downstream

components of the signaling pathway in brown adipose

tissue as occurs in fetal lung and other tissues, thyroid

hormones may increase the effectiveness with which the

sympathetic nervous system can stimulate thermogenesis

in the neonate (Symonds et al. 2003, Hillman et al. 2012).

Thus, thyroid hormones appear to have a maturational

role in enhancing the thermogenic capacity of brown

adipose tissue toward term but may not be the direct

stimulus for initiating non-shivering thermogenesis

immediately after birth.
Conclusions

Thyroid hormones have an essential role in fetal develop-

ment. They stimulate intrauterine growth during the

second half of gestation through anabolic actions on

fetal metabolism and effects on growth regulatory factors

and endocrine systems (Fig. 2). They also have discrete

actions in triggering specific developmental events such as

differentiation of the wool follicles and binucleated

cardiomyocytes (Fig. 2). In addition, the prepartum rise in

T3 bioavailability has an important role in mediating

several of the maturational effects of the glucocorticoids

in late gestation. Often, T3 and cortisol act synergistically

to switch the cell cycle from accretion to differentiation

in a range of fetal tissues essential for neonatal survival

(Fig. 2). Several of the prepartum maturational changes

induced by the thyroid hormones increase the function-

ality of the sympathetic nervous system. In turn, this

improves the response of the neonate to the stress of

delivery and aids its adaptation to the new extrauterine

environment. Indeed, the effects of an altered thyroid

hormone status during intrauterine development may

have lifelong consequences through permanent changes

in the structure and function of tissues and organ systems.

However, the extent to which thyroid hormones alter

development of the tissues, such as the autonomic

nervous system, either prenatally or in the long term
Published by Bioscientifica Ltd.
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and the mechanisms by which these hormones act at

the cellular and molecular levels in utero still remain

largely unknown.
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