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Abstract
The current global obesity pandemic is the leading cause for the soaring rates of metabolic

diseases, especially diabetes, cardiovascular disease, hypertension, and non-alcoholic

hepatosteatosis. Efforts devoted to find cures for obesity and associated disorders in the past

two decades have prompted intensive interest in adipocyte biology, and have led to major

advances in themechanistic understanding of adipose tissue as an essential endocrine organ.

Adipose tissue secretes an array of hormones (adipokines) that signal key organs to maintain

metabolic homeostasis, and their dysfunction has been causally linked to a wide range of

metabolic diseases. In addition, obesity induces production of inflammatory cytokines (often

referred to together with adipokines as adipocytokines) and infiltration of immune cells into

adipose tissue, which creates a state of chronic low-grade inflammation. Metabolic

inflammation has been increasingly recognized as a unifying mechanism linking obesity to a

broad spectrum of pathological conditions. This review focuses on classic examples of

adipocytokines that have helped to form the basis of the endocrine and inflammatory roles

of adipose tissue, and it also details a few newly characterized adipocytokines that provide

fresh insights into adipose biology. Studies of adipocytokines in clinical settings and their

therapeutic potential are also discussed.
Key Words

" adipocytokine

" obesity

" adipokine

" metabolic inflammation

" adipocyte
rt o
. Th
SA
Journal of Endocrinology

(2014) 220, T47–T59
Introduction
In the past two decades, the world has seen a sustained

increase in obesity, and the levels of overweight and obese

persons worldwide have reached epidemic proportions

(Finucane et al. 2011). It is well established that obesity

induces all major metabolic disorders, especially diabetes,

cardiovascular disease, hypertension, and fatty liver

disease (Eckel et al. 2005). Mounting evidence also links

obesity to a growing list of debilitating disorders including

neurodegenerative disease, airway disorders, and cancer,

all of which contribute to the staggering morbidity and

mortality associated with obesity. Aimed at developing

effective therapies for obesity and its associated disorders,

scientists worldwide have intensified their efforts to

elucidate the pathophysiological mechanisms by which
obesity induces or amplifies its major adverse conse-

quences. The concept of an adipocytokine was developed

in this process and dysfunction of adipocytokine

pathways has been recognized as a key etiological

factor of obesity-induced disorders. Furthermore, the

rational manipulation of adipocytokines is becoming a

promising avenue of therapy for obesity and associated

metabolic abnormalities.
Endocrine function of adipose tissue and
adipokines

Obesity is the expansion of white adipose tissue (WAT),

the most effective lipid storage organ in the body. In obese
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subjects, white adipocytes in WAT have increased release

of free fatty acids (FFAs) through lipolysis process leading

to elevated serum fatty acid levels. This overflow of lipids

from obese adipose depots has been considered a key

reason for obesity-associated insulin resistance and hepa-

tosteatosis for several decades (Randle et al. 1963, Samuel

et al. 2010). But fatty acids in this setting have often been

considered as a whole, and studies examining the distinct

impact of individual lipid species have provided intriguing

insights into the specificities of adipose-secreted lipids

(Cao et al. 2008). In 1994, leptin was identified as an

adipose-secreted hormone (adipokine) that exhibits

potent anorexic effects, and this finding redefined WAT

as an endocrine organ (Zhang et al. 1994). In the following

two decades, several more adipokines were identified as

critical regulators of systemic lipid and glucose homeo-

stasis, and the list continues to grow (Fig. 1). Adipokines

mediate the crosstalk between adipose tissue and other key

metabolic organs, especially the liver, muscle, and

pancreas, as well as the CNS (Rosen & Spiegelman 2006).

Consistent with this notion, dysfunctions in adipokine

pathways often result in impaired organ communications
Adipo
Leptin
Adipo
Resist
aP2
……

Fat cell

Immune cell

Cytokines

FFA

Figure 1

Adipocytokines and metabolic inflammation in adipose tissue. Adipocyto-

kines derived from adipose tissue are the results of intertwined interaction

between adipocytes and immune cells that infiltrate adipose tissue.

Adipocytokines mediate crosstalk among different cell populations
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and metabolic abnormalities in multiple tissues

thereby constituting a critical pathological component

in the development of metabolic disease (Trujillo &

Scherer 2006).
Metabolic inflammation and adipocytokines

Hotamisligil et al. (1993) showed that adipose tissue in

obese mice secretes tumor necrosis factor a (TNFa), a

proinflammatory cytokine typically produced by immune

cells, and also demonstrated that adipocyte-derived TNFa

plays a direct role in obesity-induced insulin resistance.

This was the first functional link between obesity and

inflammation, and over the years it has evolved into the

concept of metabolic inflammation (Fig. 1), which has

been widely accepted as an important mechanistic

connection between obesity and its complications

(Hotamisligil 2006). After TNFa, it was demonstrated

that adipose tissue produces an array of cytokines and

chemokines such as IL6 and MCP1, which either positively

or negatively regulate systemic glucose and lipid metab-

olism. Interestingly some adipokines also exhibit features
kine

nectin
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s

Cytokine
TNFα
IL6
… …

within adipose tissue and also travel to remote organs to regulate systemic

energy metabolism. The level and action of adipocytokines are often

altered in obese subjects, which contribute to obesity-induced disorders.
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of cytokines or regulate inflammatory responses, and so

these two groups of adipose-derived factors are often

collectively referred to as ‘adipocytokines’ (Fig. 1). In 2003,

two studies simultaneously reported that obesity induces

macrophage infiltration of adipose tissue in both mice and

humans (Weisberg et al. 2003, Xu et al. 2003b), which not

only provided an explanation for the source of adipose-

derived cytokines but also demonstrated for the first time

the close juxtaposition between immune and metabolic

cells in a metabolic organ. Adipose-resident macrophages

are classified into two very distinct subtypes, M1, or

classically activated, and M2, or alternatively activated.

M1 macrophages secrete proinflammatory cytokines, such

as TNFa and IL6, produce iNOS and reactive oxygen

species (ROS), and cause insulin resistance. M2 macro-

phages produce IL10 and IL1 receptor antagonists and

arginase-1 and have been implicated in tissue remodeling

(Gordon 2003). Obesity causes a shift of macrophage

subtypes in adipose tissue from M2 to M1 activation,

leading to increased levels of proinflammatory cytokines

and ROS, which induce insulin resistance (Lumeng et al.

2007). Meanwhile, the loss of certain beneficial effects

associated with M2 macrophages might also contribute

to the metabolic deterioration in obesity. For examples,

M2 macrophages produce catecholamines that sustain

adaptive thermogenesis (Nguyen et al. 2011), and lipolysis

during fasting recruits macrophages that buffer local lipid

increase and protect adipose function (Kosteli et al. 2010).

Following macrophages, nearly every major type of

immune cell has been identified in adipose tissue in recent

years (Feuerer et al. 2009, Liu et al. 2009, Winer et al. 2009,

Wu et al. 2011) and is actively involved in the endocrine

function of adipose tissue in systemic metabolic

regulation. Furthermore, the close physical and

signaling interactions between immune and metabolic

cells also exist in all major metabolic organs of obese

subjects especially the liver, muscle, and pancreas,

indicating that metabolic inflammation is a universal

feature and a pathological basis for obesity-induced

metabolic dysfunction.

There are a number of potential underlying causes for

obesity-induced adipose inflammation. Adipose tissue

expansion in the development of obesity can cause

hypoxia which induce compensatory angiogenesis.

Macrophages are recruited to the site to facilitate the

vascularization process (Pang et al. 2008). Similar function

of immune cells was also demonstrated in other metabolic

tissues such as liver where Kupffer cell-secreted TNFa

and IL6 in mouse liver are required for efficient

liver regeneration (Abshagen et al. 2007). Infiltrated
http://joe.endocrinology-journals.org
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macrophages in adipose tissues have also been proposed

to be a mechanism to remove apoptotic cells (Cinti et al.

2005, Strissel et al. 2007). In addition, endotoxemia

associated with altered gut permeability and obesity

might potentiate adipose inflammation (Cani et al.

2007). Although accumulating evidence supports an

overall negative effect of adipose inflammation on energy

metabolism, it should bear in mind that not all metabolic

inflammation is detrimental to metabolic homeostasis.

Inflammation associated with adipose expansion or repair

might be necessary for the body to adapt to the excess

energy and maintain metabolic homeostasis (Ye &

McGuinness 2013). In the same vein, certain cytokines

stimulate energy expenditure and reduce food intake

which might help to curtail obesity (Ye & Keller 2010).

Therefore, the metabolic outcomes of adipose inflam-

mation should always be considered in the context of their

physiological underpinnings, and more studies are needed

to fully understand the extent and mechanism of

beneficial inflammatory responses associated with

different stages of obesity.
Key adipocytokines in metabolic regulation
and obesity-induced metabolic disorders

Leptin

Leptin was identified through positional cloning by Zhang

et al. (1994), and is one of most potent adipocytokines in

metabolic regulation. Leptin regulates body weight by

signaling nutritional status to other organs especially the

hypothalamus, which produces neuropeptides and neuro-

transmitters that modulate food intake and energy

expenditure (Friedman & Halaas 1998). Leptin also has

anti-diabetic effects independent of its regulation of body

weight and energy intake (Kamohara et al. 1997). Leptin

regulates hepatic lipogenesis by suppressing the

expression of key enzymes in the fatty acid synthesis

pathway (Cohen et al. 2002) and enhances muscle fatty

acid oxidation by activating a critical energy sensor AMPK

(Minokoshi et al. 2002).

At the signaling level, leptin activates the leptin

receptor, which has multiple splicing isoforms, although

the long isoform mediates all known leptin actions (Lee

et al. 1996). There are multiple pathways downstream of

the leptin receptor, each of which mediates different

aspects of leptin activities (St-Pierre & Tremblay 2012).

The main signaling branch of leptin is the JAK–STAT

pathway, which regulates expression of anorexic neuro-

peptides (Baumann et al. 1996). This pathway is essential
Published by Bioscientifica Ltd
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for leptin regulation of energy balance but not its effects

on reproduction (Bates et al. 2003). The anti-diabetic

effect of leptin is mediated by centrally activating the

phosphatidylinositol-3-kinase (PI3K)/AKT pathway that

stimulates insulin sensitivity in the peripheral tissues

(Morton et al. 2005).

In light of the significance of metabolic inflammation

in the pathogenesis of metabolic disease, it is worth

mentioning that leptin bears striking similarity to cyto-

kines and modulates immune responses (De Rosa et al.

2007). Leptin is structurally similar to Class I helical

cytokines and shares the same JAK–STAT pathway down-

stream of its receptor. Leptin expression can be induced by

endotoxin or cytokine TNFa (Grunfeld et al. 1996).

Conversely, leptin increases thymic secretion of acute-

phase reactants and TNFa and promotes T helper 1 cell

differentiation (La Cava & Matarese 2004). Leptin acts on

T cell, macrophages, and other immune cells to stimulate

the production of a wide spectrum of cytokines (La Cava &

Matarese 2004). In light of the role of several cytokines in

enhancing energy expenditure and suppressing food

intake (Ye & Keller 2010), this proinflammatory action of

leptin might contribute to its overall effects in body

weight regulation. Interestingly, inflammation induced by

metabolic stress also negatively regulates leptin signaling

in a manner similar to insulin receptor signaling (Zhang

et al. 2008). In addition, leptin has been implicated in a

number of immune dysfunctions. For examples, leptin is

able to reverse starvation-induced immunosuppression

(Lord et al. 1998) and has been proposed to be a metabolic

link to multiple sclerosis (Matarese et al. 2010).

Despite the thorough understanding of leptin’s

actions and numerous attempts to target leptin for obesity

and metabolic disorders (Coppari & Bjorbaek 2012),

leptin’s clinical applications have been very limited.

Leptin is used to treat genetically obese subjects carrying

leptin mutations, but such mutations are extremely rare

(Farooqi et al. 1999). Leptin is largely ineffective for

treating regular obese patients due to leptin resistance

caused by hyperleptinemia, and leptin administration

into these individuals does not generate anorexic effects

(Heymsfield et al. 1999). Leptin is successfully used to treat

insulin resistance and hepatic steatosis in patients with

congenital severe lipodystrophy who have very low levels

of circulating leptin (Oral et al. 2002, Petersen et al. 2002).

With increased mechanistic understanding of leptin

resistance (St-Pierre & Tremblay 2012), it is still possible

that approaches to enhance leptin sensitivity could help

to revive some of stalled attempts to target leptin for anti-

obesity and anti-diabetic therapies.
http://joe.endocrinology-journals.org
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Adiponectin

Several research groups identified adiponectin almost

simultaneously as an abundantly secreted adipokine

(Scherer et al. 1995, Hu et al. 1996, Maeda et al. 1996,

Nakano et al. 1996). Recombinant adiponectin can

enhance insulin action and partially reverse insulin

resistance in obese mice (Berg et al. 2001, Yamauchi et al.

2001). Consistently, multiple groups have reported that

adiponectin-deficient mice develop insulin resistance

associated with high level of TNFa in adipose tissue and

reduced responsiveness to PPARl (Maeda et al. 2002,

Nawrocki et al. 2006), although an independently gener-

ated adiponectin knockout mouse line has no change in

insulin sensitivity (Ma et al. 2002). Adiponectin has also

been reported to have antiatherogenic effects (Funahashi

et al. 1999, Ouchi et al. 1999). In addition, adiponectin

exhibits cardioprotective activity in ischemic heart disease

through AMPK and cyclooxygenase 2 pathways (Shibata

et al. 2005).

Adiponectin signaling is mediated by two adiponectin

receptors, adipoR1 and adipoR2 (Yamauchi et al. 2003).

AdipoR1 is ubiquitously expressed whereas adipoR2 is

enriched in the liver tissue. Knockout of adipoR1 and

adipoR2 abrogates adiponectin binding and causes lipid

accumulation, inflammation, and insulin resistance

(Yamauchi et al. 2007). Activation of adipoR1 in the liver

and muscle tissues increases AMPK activity, which

mediate the insulin sensitizing effect of adiponectin and

also enhances fatty acid oxidation (Yamauchi et al. 2002).

The adipoR2 pathway in the liver increases PPARa and

expression of its target genes, which also results in

increased fatty acid oxidation (Yamauchi et al. 2007).

Recently, it has been reported that a variety of down-

stream effects of the adiponectin receptor are mediated by

ceramidase activity associated with adipoR1 and adipoR2

(Holland et al. 2011). Adiponectin also has anti-

inflammatory effects that contribute to its protective role

against metabolic stress in obesity. Adiponectin suppresses

TNFa production in obese mice (Xu et al. 2003a), and

adiponectin-deficient mice have high levels of TNFa in

adipose tissue (Maeda et al. 2002). Low levels of plasma

adiponectin are associated with C-reactive protein in

humans (Ouchi et al. 2003). Adiponectin enhances the

clearance of apoptotic cells by facilitating their opsoniza-

tion and uptake by macrophages (Takemura et al. 2007).

Some of the anti-atherogenic effects of adiponectin are

also mediated by its role in the suppression of inflam-

matory responses. Adiponectin inhibits nuclear factor-kB

(NFkB) activity and its downstream adhesion molecules
Published by Bioscientifica Ltd
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leading to reduced monocyte adhesion to endothelial

cells (Ouchi et al. 1999, Okamoto et al. 2002). In addition,

adiponectin confers vascular-protective activities by

suppressing the apoptosis of endothelial cell (Kobayashi

et al. 2004).

Clinical observations support the idea that plasma

adiponectin levels are associated with obesity-induced

disorders, especially diabetes. Plasma adiponectin levels

are decreased in type 2 diabetic patients, and higher

adiponectin levels are associated with low risk of diabetes

(Li et al. 2009). Adiponectin levels are also negatively

associated with adiposity and fasting glucose (Ryo et al.

2004). A multi-ethnic meta-analysis of a large cohort also

demonstrated that numerous genetic loci associated with

adiponectin levels influence risk of insulin resistance and

type 2 diabetes (Dastani et al. 2012). Currently, several

strategies to boost adiponectin levels or adiponectin

receptor activities are being explored for the treatment of

obesity-induced inflammation and insulin resistance

(Yamauchi & Kadowaki 2008).
Tumor necrosis factor a

TNFa was the first cytokine identified in the adipose tissue

of obese mice, marking the start of the metabolic

inflammation concept (Hotamisligil et al. 1993). The

direct involvement of TNFa in obesity-induced insulin

resistance was confirmed by observations that TNFa

treatment interferes with insulin signaling and blocks

insulin actions (Hotamisligil et al. 1994). Mice lacking the

functions of TNFa or its receptors are protected from

obesity-induced insulin resistance and hyperglycemia

(Uysal et al. 1997, 1998). It was initially thought that

adipose-derived TNFa was produced mainly by adipocytes,

but the parallel trend of macrophage infiltration and TNFa

expression in adipose tissue of obese mice suggests that a

significant portion of the adipose TNFa pool might be

derived from macrophages and other immune cells.

Interesting, FFA strongly stimulates TNFa production in

macrophages (Nguyen et al. 2005) and in turn, TNFa

stimulates lipolysis to increase fatty acid release from

adipocytes (Wang et al. 2008). This FFA-cytokine cycle

suggests that metabolic inflammation, once started, can

use this self-perpetuating mechanism to further its

inhibitory effects on insulin signaling and energy meta-

bolism. In addition, TNFa directly stimulates hepatic

lipogenesis in vivo (Feingold & Grunfeld 1987), and

adipose-derived TNFa is also a major mechanistic link

between obesity and cancer (Park et al. 2010).
http://joe.endocrinology-journals.org
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TNFa exerts its effects through two distinct receptors,

p55 and p75, which further activate JNK1 and inhibit IkB

kinase(IKK)/NFkB pathways (Baud & Karin 2001). JNK1

can directly inhibit insulin signaling by phosphorylating

insulin receptor substrate 1 (IRS1) on serine residues

(Aguirre et al. 2002) and can also potentiate fatty acid-

induced cytokine production (Nguyen et al. 2005).

Consistent with these observations, JNK1 knockout mice

are protected from obesity and insulin resistance

(Hirosumi et al. 2002). IKK can also directly inhibit IRS1

function through serine phosphorylation in a manner

similar to JNK1 (Gao et al. 2002) and also activate NFkB to

produce inflammatory cytokines both in metabolic organs

and myeloid cells. It has been demonstrated that systemic

or selective inhibition of IKK in either hepatocytes or

myeloid cells improves glucose metabolism in mice (Yuan

et al. 2001, Arkan et al. 2005, Cai et al. 2005). TNFa also

induces the expression of cytokine signaling 3 (SOCS3)

suppressor, which inhibits insulin signaling by increasing

ubiquitin-mediated IRS1 and IRS2 degradation (Emanuelli

et al. 2001, Rui et al. 2002). Recently, a report has

demonstrated that TNFa increase leptin receptor

expression, raising an interesting possibility that TNFa

might enhance leptin action (Gan et al. 2012), although

the physiological relevance of this connection needs to be

confirmed in an in vivo setting.

Numerous studies in humans have demonstrated

strong associations between circulating TNFa and insulin

resistance (Hivert et al. 2008) or other obesity-associated

metabolic complications (Berg & Scherer 2005). However,

attempts to block TNFa function in patients have not yet

produced consistent metabolic outcomes. For example,

neutralization of TNFa with an engineered antibody did

not improve insulin sensitivity in type 2 diabetes patients

(Ofei et al. 1996), whereas blockade of TNFa in patients

with rheumatoid arthritis or psoriasis indeed improved

their insulin resistance (Gonzalez-Gay et al. 2006, Lo et al.

2007). Considering the wide spectrum of inflammatory

cytokines that are elevated in obesity, targeting TNFa

alone might not have sufficient efficacy to improve

systemic metabolic responses and might need to be

considered in the context of managing the overall

metabolic inflammation.
Resistin

Resistin was initially identified in a screen for adipocyte

genes that are suppressed by insulin-sensitizing drugs in

rodents (Steppan et al. 2001). Depletion of circulating

resistin by a neutralizing antibody improves insulin action
Published by Bioscientifica Ltd
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in obese mice, suggesting that resistin is an adipokine

linking obesity to insulin resistance (Steppan et al. 2001).

Subsequently, it was shown that resistin knockout mice on

a high-fat diet have improved glucose metabolism mainly

due to reduced glucose production in the liver (Banerjee

et al. 2004). Resistin also increases the expressions of

cytokines and adhesion molecules in murine vascular

endothelial cells and contributes to atherogenesis (Burnett

et al. 2005). Resistin circulates in two distinct assembly

states, which exhibit differential activities in metabolic

regulation (Patel et al. 2004). However, the relevance of

resistin to human disease is complicated by the fact that

rodent resistin is produced in adipocytes and human

resistin is produced mostly in macrophages. Human and

rodent resistin only shares 59% identity at the amino acid

level, which is relatively low compared with other

hormones (Ghosh et al. 2003). But interestingly, human

resistin, when expressed in mouse macrophages, also

induces insulin resistance (Qatanani et al. 2009)

suggesting that human and mouse resistin might have

similar function despite their different sites of production.

In humans, experimental endotoxemia induced

elevated resistin and produced an insulin-resistant state

(Lehrke et al. 2004). Epidemiological studies have associ-

ated elevated circulating resistin with increased risk for

type 2 diabetes, inflammatory markers, myocardial infarc-

tion, and atherosclerosis (Burnett et al. 2005, 2006, Reilly

et al. 2005, Heidemann et al. 2008, Chen et al. 2009). These

studies support the idea that resistin levels could serve as

an informative marker for metabolic disease in humans,

and it will be of great interest to determine the therapeutic

potential of resistin inhibition in future studies.
IL6

IL6 is one of the major pro-inflammatory cytokines whose

expression level increases in the adipose tissue of obese

mice and patients, but its role in glucose metabolism has

not been fully resolved. IL6 depletion in obese mice with

a neutralizing antibody improves hepatic insulin action

(Klover et al. 2005) while chronic infusion of IL6 causes

insulin resistance in the liver of mice (Klover et al. 2003).

Conversely, mice with targeted ablation of IL6 develop

obesity and insulin resistance, which can be reversed by

centrally delivered exogenous IL6 (Wallenius et al. 2002)

suggesting that IL6 is required for the maintenance of

whole-body glucose metabolism and metabolic homeo-

stasis. An independently generated IL6-targeted mutation

mouse line, however, does not develop obesity or insulin

resistance and only exhibits elevated glucose level in a
http://joe.endocrinology-journals.org
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glucose tolerance test (Di Gregorio et al. 2004). In a mouse

model with adipose-specific ablation of JNK1, increased

secretion of IL6 was proposed to be the primary reason for

systemic insulin resistance (Sabio et al. 2008). There are

several potential explanations for the seemingly contra-

dictory data regarding IL6 in insulin action and glucose

metabolism. Effects of acute vs chronic treatments need

to be differentiated and dose and site of action of IL6 need

to be carefully considered. In addition, IL6 produced by

different organs might also contribute to its complex

effects on metabolic regulation.

During exercise, IL6 is mainly released from working

skeletal muscle. IL6 release from contracting skeletal

muscle might mediate the beneficial effects associated

with exercise, including increased glucose uptake and

fatty acid oxidation (Febbraio & Pedersen 2002). It appears

that activation of AMPK by IL6 mediates these effects

(Al-Khalili et al. 2006). In addition, transgenically

expressed human IL6 in mice increases leptin sensitivity

and prevents diet-induced obesity (Sadagurski et al. 2010).

However, the function of muscle-derived IL6 might also

vary depending on its context. In a mouse model with

muscle-specific disruption of PPARl coactivator 1a

(PGC1a), muscle-secreted IL6 causes impaired insulin

production from pancreatic islets and glucose intolerance

(Handschin et al. 2007).

In patient studies, increased serum IL6 correlates with

obesity and insulin resistance (Vozarova et al. 2001,

Bastard et al. 2002, Spranger et al. 2003). The IL6 174GO

C single nucleotide polymorphism (SNP) is associated

with insulin resistance and metabolic syndrome (Fernan-

dez-Real et al. 2000, Stephens et al. 2007). However, the

mechanism of action of IL6 in human metabolism needs

to be further studied to understand the therapeutic

potential of IL6, partly due to the fact that there is low

similarity between human and mouse IL6, and thus

information generated from mouse studies cannot be

readily applied to humans. To add to the complexity of IL6

signaling in human metabolism, two reports showed that

MAB against the IL6 receptor, Tocilizumab, either

increases or has no effects on insulin sensitivity in patients

with rheumatoid arthritis (Schultz et al. 2010, Ogata et al.

2011, Ye & McGuinness 2013).
Rbp4

Rbp4 is a transport protein for retinol in systemic

circulation, and is mainly produced by the liver but also

expressed in white adipocytes. Rbp4 was first characterized

as an adipokine based on the finding that Rbp4 is highly
Published by Bioscientifica Ltd
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secreted from adipose tissue of Glut4-deficient mice and

contributes to insulin resistance in this mouse model

(Yang et al. 2005). In humans, higher Rbp4 levels are also

associated with insulin resistance in obese and diabetic

subjects (Graham et al. 2006). In addition, a number of

Rbp4 SNPs have been identified and several of them are

associated with increased risk for type 2 diabetes (Kovacs

et al. 2007, Munkhtulga et al. 2007). However, several

reports failed to detect the association of Rbp4 with

insulin resistance (von Eynatten et al. 2007, Promintzer

et al. 2007, Yao-Borengasser et al. 2007), potentially

due to shortcomings in the methodologies for quantifying

Rbp4 levels (Kotnik et al. 2011). In general, clinical studies

on children and adolescents have been more consistent

in supporting a role for Rbp4 in obesity and insulin

resistance, suggesting that Rbp4 might be more

involved in the early stages of metabolic syndrome

(Kotnik et al. 2011).
Secreted frizzled-related protein 5

Secreted frizzled-related protein 5 (Sfrp5) was recently

identified as an anti-inflammatory adipocytokine (Ouchi

et al. 2010). Sfrp5 is highly expressed in adipose tissue of

lean mice but downregulated in obese mice. Targeted

mutation of Sfrp5 in mice caused insulin resistance,

glucose intolerance, and hepatosteatosis when the

animals were fed a high-fat diet (Ouchi et al. 2010).

Mechanistically, Sfrp5 activates JNK1 through noncano-

nical Wnt signaling to increase the levels of inflammatory

cytokines and block insulin action (Ouchi et al. 2010).

However, a second independently generated Sfrp5

mutation mouse line was reported to have different

phenotypes, and accordingly the authors proposed a

very different mechanism of actions for Sfrp5. In this

study, Sfrp5-deficient mice were resistant to diet-induced

obesity due to enhanced mitochondrial activities (Mori

et al. 2012). Sfrp5 deficiency increased the expression of

PGC1 and mitochondrial transcription factor A (Tfam),

leading to increased mitochondrial biogenesis. Lack of

Sfrp5 also stimulated mitochondrial respiration and gene

expression through Wnt3a activity (Mori et al. 2012).

The cause of these discrepancies is unclear. Human studies

regarding Sfrp5 in metabolic disease have also given rise

to conflicting data (Carstensen et al. 2013, Hu et al.

2013). Regardless, further studies about the function of

Sfrp5 in metabolic regulation could provide important

insights into adipose biology. Sfrp5 regulates multiple

Wnt proteins that play a crucial role in adipogenesis

(Cristancho & Lazar 2011). Dissecting the Sfrp5/Wnt
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network in adipose tissue could also help to explain

the autocrine/paracrine mechanism of metabolic inflam-

mation, which is still poorly understood.
aP2, a lipid-activated adipocytokine

The identification of aP2 as a lipid-activated adipokine is

a surprising and exciting finding considering it has been

extensively studied for over two decades as an essential

intracellular regulator of lipid metabolism and inflam-

mation in metabolic disease. AP2 is a member of fatty

acid-binding protein (FABP) family and was initially

thought to be exclusively expressed in adipocytes. In

fact, the aP2 promoter has been widely used to specially

drive transgene expression in adipose tissue. AP2-deficient

mice have normal adiposity and gain more weight than

controls when fed with high-fat diet, but they were

partially protected from obesity-induced insulin resistance

(Hotamisligil et al. 1996). The mild effect of aP2 deficiency

could be due to the upregulation of mal1, a related FABP

(Maeda et al. 2005). Therefore, mice deficient in both

FABPs were produced to study the full impact of adipose

FABP deficiency. The double-knockout mice have reduced

adiposity, enhanced insulin sensitivity, and reduced

hepatosteatosis (Maeda et al. 2005). It appears that some

of the beneficial effects of FABP deficiency are mediated by

robust upregulation of the fatty acid species, palmitoleate

(C16:1n7), in the adipose tissue and its secretion into

circulation (Fig. 2). Palmitoleate enhances insulin action

in the muscle and suppresses de novo lipogenesis in the

liver (Cao et al. 2008).

Yet the molecular mechanism for the pronounced

reduction in gluconeogenesis in FABP-deficient mice

remained elusive until it was found that aP2 is in fact

actively secreted from adipocytes to control liver glucose

metabolism (Cao et al. 2013; Fig. 2). Secretion of aP2 from

adipocytes is regulated by lipolysis, which might be the

reason that circulating aP2 levels are markedly elevated

in obesity. Recombinant aP2 stimulates hepatic glucose

production whereas neutralization of secreted aP2 reduces

glucose production and corrects the diabetic phenotype of

obese mice (Cao et al. 2013).

aP2 is the first adipokine whose secretion is strongly

regulated by lipolysis-released fatty acids, suggesting that

aP2 might function as a lipid sensor in adipocytes and

might also carry specific lipids in plasma to specific organs

or cells. Therefore, like other well-studied adipocytokines,

it is conceivable that secreted aP2 could potentially act on

other key organs such as the CNS or heart to regulate other

aspects of metabolic homeostasis (Fig. 2) and these
Published by Bioscientifica Ltd
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Figure 2

aP2 as a lipid-activated adipokine. aP2 is secreted from adipocytes through

a process that is regulated by fasting and lipolysis. Circulating aP2 acts on

liver tissue to stimulate the gluconeogenic program and enhance hepatic

glucose production. Other potential functions of aP2 in local

adipose–macrophage interaction and on other metabolic organs

warrant further investigation.
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questions need to be addressed in future studies. Another

interesting question is whether secreted aP2 is also

involved in metabolic inflammation. Despite long having

been considered an adipocyte-specific protein, aP2 was

found to be expressed in the macrophages (Makowski et al.

2001) and can be quickly induced by endotoxin (Kazemi

et al. 2005). Mice with aP2 deficiency in macrophages are

protected from atherosclerosis partly because of activated

PPARg and reduced inflammatory responses (Makowski

et al. 2005). The proinflammatory action of aP2 was also

demonstrated in an asthma mouse model, in which aP2

deficiency protects mice from airway inflammation (Shum

et al. 2006). It will be interesting to investigate whether

aP2 is also secreted from macrophages and whether

secreted aP2 regulates inflammatory responses in meta-

bolic diseases (Fig. 2).

Accumulating evidence suggests that circulating aP2

is implicated in human metabolic syndrome. Plasma aP2

levels are closely associated with obesity and metabolic

syndrome in cohorts of multiple ethnicities (Stejskal

& Karpisek 2006, Xu et al. 2006, Simon et al. 2009). In

addition, circulating aP2 has also been linked to carotid

atherosclerosis in humans (Yeung et al. 2007) and non-

alcoholic fatty liver disease (NAFLD; Koh et al. 2009). In

NAFLD patients, elevated plasma aP2 levels independently
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predict inflammation and fibrosis (Milner et al. 2009).

Neutralizing secreted aP2 robustly improves glucose

metabolism (Cao et al. 2013), indicating that plasma

aP2 could constitute a potential therapeutic target for

diabetes, NAFLD, and cardiovascular disease.
Conclusion and future perspective

There is overwhelming evidence that adipocytokines play

a pivotal role in metabolic homeostasis of healthy

subjects, and that deficiencies in these factors, caused by

excess adiposity and adipocyte dysfunction, are a central

component in the pathogenesis of the constellation of

diseases surrounding obesity. Therefore, it will be fruitful

to fully define the secretome of adipose tissue; novel

adipocytokines identified in this process will, no doubt,

provide critical insights into the functions of adipose

tissue as an essential metabolic regulator. Identifying

receptors for existing adipocytokines and mapping their

downstream signaling pathways, especially in the context

of metabolic disorders, is another area of research that

could generate fresh therapeutic targets for managing

adipocytokines to treat metabolic diseases. Due to the

intertwined nature of metabolic and immune cells

in major metabolic organs, further mechanistic
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investigations are required to understand how adipocyto-

kines integrate metabolic and inflammatory responses in

each site and the pathological significance of these

responses in metabolic disorders. It is particularly import-

ant to differentiate the detrimental effects of metabolic

inflammation inflicted by nutritional stress and those

beneficial ones underlying the physiological tissue expan-

sion when designing anti-inflammation therapies for

metabolic disorders (Ye & McGuinness 2013). Following

the example of adipocytokines, numerous muscle- and

hepatocyte-secreted hormones (myokine and hepatokine)

have been identified as essential metabolic regulators.

Therefore, it is very likely that a comprehensive endocrine

network of organ communications in nutrient sensing

and metabolic homeostasis could be established in the

foreseeable future. Such a blueprint of organ crosstalk

would have far-reaching impact on the development of

effective therapies against obesity and metabolic disease.
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