Journal of Molecular Endocrinology

L zHou and others

Review

The role of autophagy in

angiotensin ll-induced pathological

cardiac hypertrophy

Lichun Zhou', Baohua Ma2 and Xiuzhen Han!

Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan,

Shandong Province, China

2Pharmaceutical Preparation Section, Central Hospital of Qingdao, Qingdao, Shandong Province, China

Autophagy induced by Ang Il 57:4 R143-R152
in heart

Correspondence

should be addressed

to X Han

Email

xzyhan@sdu.edu.cn

Abstract

Pathological cardiac hypertrophy is associated with nearly all forms of heart failure.

It develops in response to disorders such as coronary artery disease, hypertension and
myocardial infarction. Angiotensin Il (Ang Il) has direct effects on the myocardium and
promotes hypertension. Chronic elevation of Ang Il can lead to pathological cardiac
hypertrophy and cardiac failure. Autophagy is an important process in the pathogenesis
of cardiovascular diseases. Under physiological conditions, autophagy is an essential
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homeostatic mechanism to maintain the global cardiac structure function by ridding
damaged cells or unwanted macromolecules and organelles. Dysregulation of autophagy
may play an important role in Ang ll-induced cardiac hypertrophy although conflicting
reports on the effects of Ang Il on autophagy and cardiac hypertrophy exist. Some studies
showed that autophagy activation attenuated Ang ll-induced cardiac dysfunction.

Others suggested that inhibition of the Ang Il induced autophagy should be protective.
The discrepancies may be due to different model systems and different signaling pathway
involved. Ang ll-induced cardiac hypertrophy may be alleviated through regulation

of autophagy. This review focuses on Ang Il to highlight the molecular targets and

pathways identified in the prevention and treatment of Ang Il-induced pathological

cardiac hypertrophy by regulating autophagy.
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Introduction

The simple definition of cardiac hypertrophy is the
enlargement of the heart (Hou & Kang 2012). The
enlargement of the heart is closely matched to its
functional load and, under normal conditions, is
primarily constitutive in nature. The heart triggers a
hypertrophic response, which is an adaptation to changes
in wall stress so as to maintain cardiac output. Cardiac
hypertrophy can be classified as either physiological or
pathological hypertrophy (Bernardo et al. 2010, Abel &
Doenst 2011). Pathological cardiac hypertrophy develops

in response to disorders such as hypertension, coronary
artery disease, myocardial infarction, metabolic and
diabetic cardiomyopathy, and valvular heart disease,
which eventually give rise to ventricular remodeling and
cardiac dysfunction (Maillet et al. 2013). Pathological
hypertrophy is a key risk factor for heart failure and
commonly associated with the upregulation of fetal
genes, fibrosis, cardiac dysfunction and increased
mortality (Bernardo et al. 2010). Although there are
many factors and regulators that affect myocardial
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hypertrophy, the renin-angiotensin system (RAS) and
its primary effector peptide, angiotensin II (Ang II), are
involved in the pathophysiology of cardiac hypertrophy
and failure (Demos-Davies et al. 2014). Ang II has a role
in stimulating total RNA, mRNA and protein synthesis
levels in cardiomyocytes (Rohini et al. 2010). The
classical effects of Ang II are mainly mediated via two
G-protein-coupled receptors, type 1 receptors (AT,R) and
type 2 receptors (AT,R) (Dasgupta & Zhang 2011, Araujo
et al. 2011). The AT,R mediates the major physiological
actions of Ang II, such as stimulation of aldosterone
secretion from the adrenal gland, vasoconstriction,
retention of salt and water, cardiac contractility and
growth stimulation, whereas the AT,R is believed
to induce opposing effects, namely hypotension,
vasodilatation, anti-hypertrophic effects, antigrowth by
apoptosis and the possible inhibition of AT,R (Dasgupta
& Zhang 2011). Ang II contributes to the pathogenesis of
cardiac hypertrophy in four ways: (a) through Gq/11-1,2-
diacylglycerol (DAG)-protein kinase C (PKC)-dependent
activation of mitogen-activated protein kinases (MAPKs),
c-Jun N-terminal kinases (JNKs) and Janus kinases (JAK)-
signal transducers and activators of transcription (STAT)
cascades; (b) Gqg/11-inositol 1,4,5-triphophate (IP3)-
calcium-calcineurin-dependent activation of MAPK;
(c) activation of Rho A-Rho kinase (ROCK) via G12/13
protein and (d) activation of matrix metalloproteinases
(MMPs) via the JAK/STAT pathway (Balakumar &
Jagadeesh 2010).

Autophagy 1is characterized by an evolutionarily
conserved  process for the lysosome-dependent
degradation of cytoplasm components and damaged
organelles such as endoplasmic reticulum, peroxisomes
and mitochondria, as well as eliminating intracellular
pathogens (Wang et al. 2010, Jia & Sowers 2015, Mei
et al. 2015). It was reported that constitutive autophagy
in the heart is a homeostatic mechanism for maintaining
cardiomyocyte size and global cardiac structure and
function. For example, temporally controlled cardiac-
specific deficiency of autophagy-related 5 (Atg5), led
to cardiac hypertrophy, left ventricular dilatation and
contractile dysfunction in the adult mice (Li et al. 2015b).
In cardiomyocytes, autophagy is necessary for the
continual process of removing, repairing and replacing
damaged cellular materials. The association between
autophagic activity and heart disease has been noted for
almost 40 years. Until now, a recurring paradox in the
study of autophagy is its dual nature (Schiattarella & Hill
2016). In the heart, autophagy functions mainly as a
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pro-survival pathway during cellular stress by removing
protein aggregates and damaged organelles, protecting the
heart against famine, ischemia and excessive p-adrenergic
stimulation. However, when severely triggered, the
autophagic machinery may lead to cell death (Gatica et al.
2015, Schiattarella & Hill 2016).

Accumulating evidence has revealed a tight
link between cardiomyocyte autophagy and cardiac
hypertrophy (Li et al. 2015b, Li et al. 2016). The role of
autophagy in Ang II-induced cardiac hypertrophy has
recently been explored; however, conflicting reports on
the effects of Ang II on autophagy and its role in cardiac
hypertrophy exist (Oyabu et al. 2013). This review is
to describe the main mechanisms of autophagy and
elucidate the role of autophagy in Ang II-induced cardiac
hypertrophy. In addition, the possibility of autophagy
as a therapeutic target for cardiac hypertrophy will
provide novel therapeutic strategies for the treatment
of heart failure.

Overview of autophagy

To form a mature autophagosome, autophagy proceeds
in successive stages, which include induction, nucleation,
expansion and maturation (Wang et al. 2010, Hale et al.
2013). Autophagy process is regulated by a system of
autophagy-related gene (ATG) products (Fig. 1).

Induction of autophagy

Many stimuli and numerous upstream signaling pathways
modulate autophagy. Phosphatidylinositol 3-kinase
(PI3K)/Akt, growth factor signaling, AMP-dependent
protein kinase (AMPK), MAPK, trimeric G proteins, small
GTPases, IP3, calcium signaling and others regulate
the process. Many of these pathways work through the
mammalian target of rapamycin (mTOR) (Dunlop & Tee
2014). mTOR is one of the most important upstream
regulators for the induction of autophagy. In response to
ample nutrients and intact insulin signaling, class I PI3K
is activated to phosphorylate its downstream target Akt.
Akt then activates mTOR. Active mTOR phosphorylates
Atg13 and inhibits its interaction with unc-51-like kinase
1 (ULK1), a critical step during autophagy induction.
In response to starvation, the affinity of ULK1 for both
ATG13 and FIP200 increases and promotes the formation
of a trimeric ULK1/ATG13/FIP200 complex, which
facilitates the induction of autophagy (Wang et al. 2010,
Nemchenko et al. 2011, Maejima et al. 2016).
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Nucleation of autophagy

Autophagy induction promotes ULK1 complex activation,
which phosphorylates Beclinl-regulated autophagy 1
(Ambral), thereby enhancing the activity of Beclinl-
ATG14-VPS34-VPS15 class III PI3K core complexes to
promote autophagosome nucleation (Mei et al. 2015).
Additionally, in response to ample nutrient, the Bcl-2
family antiapoptotic proteins interact with Beclinl and
exert inhibitory effects on autophagy (Cheng et al. 2013).

Expansion of autophagy

The phagophore elongation and formation of
complete autophagosomes require two ubiquitin-like
protein conjugation systems: ATG12-ATGS5-ATG16L1
and microtubule-associated light chain-3 (LC3)-
phosphatidylethanolamine (PE) (Jia & Sowers 2015, Li et al.
2015b). ATG12 is first activated by the El-like enzyme,
ATG7, and it is then conjugated to ATGS by ATG10, an
E2-like enzyme. The ATG12-ATGS conjugate further
interacts with ATG16L1 to form a large multimeric complex.
The ATG16L1 complex forms pre-autophagosomal
structures and acts as an E3 ligase, allowing the second
conjugation reaction to be completed (Mei et al. 2015). The
second ubiquitin-like conjugation pathway involves LC3
lipidation, the mammalian homolog of yeast protein ATGS.
ATG4B cleaves the C-terminal 22 residues of precursor LC3
(proLC3) to produce LC3-I. Following the combination of
ATG3 (E2-like enzyme), the ATG16L1 complex (E3-ligase),
ATG7, and LC3 are then conjugated to PE to produce
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Figure 1

The core machinery of autophagy. Starvation and
AMPK activation inhibit class | PI3K to
phosphorylate its downstream target Akt, and
then, inhibit mTOR. Inhibition of mTOR reduces
the phosphorylation of Atg13. Atg13 combines
with ULK1 and FIP 200 forming a ULK1 complex.
The nucleation of phagophore is regulated by the
Ulk1 complex and the PI3K complex (Beclin1-
ATG14-VPS34-VPS15-Class llIPI3K). The expansion
of the phagophore and the formation of
autophagosome require two complexes: the
ATG16L1 complex (ATG12-ATG5-ATG16L1) and
LC3-phosphatidyl ethanolamine (PE). LC3-I1
remains on mature autophagosomes until after
fusion with lysosomes to generate autolysosomes,
and the contents are then degraded by proteases,
lipases, nucleases and glycosidase.

LC3-PE (also called LC3-II). LC3-II specifically localizes
to the autophagosomal membranes and so it is suited to
serving as an autophagy-specific marker (Dirks-Naylor
2013, Hale et al. 2013, Jia & Sowers 2015).

Maturation of autophagy

A mature autophagosome can fuse directly to a lysosome
or first fuse with an endosome before trafficking to the
lysosome, forming an autolysosome (Rotter & Rothermel
2012). There, the inner membrane of the former
autophagosome and the engulfed cargo are degraded by
acid hydrolases. The resulting small molecules, including
amino acids, sugars and lipids, are released into the cytosol
through permeases (Wang et al. 2010).

Ang ll-induced autophagy

Recently, a number of studies have shown that
autophagy plays important roles in Ang-II induced
cardiac hypertrophy. Some researchers have shown that
Ang II treatment induces autophagy and others have
shown that Ang II treatment inhibits autophagy. As
autophagy has dual functions in cardiomyocytes, many
investigators have used chemical means of manipulating
autophagy to elucidate its role in Ang Il-induced cardiac
hypertrophy. However, it is significant to notice that a lot
of the currently used chemical modulators of autophagy
have off-target effects to be considered when interpreting
results (Dirks-Naylor 2013). As discussed in the following

sections, majority of studies have shown that Ang II
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reversed heart contractility by

chronic inhibition of class |

PI3K pathway

protein kinases; HDACS, histone deacetylases 6; HW/BW, heart weight to body weight ratio; mCAT, catalase targeted to mitochondria; mTOR, mammalian target of rapamycin; NP, not published;

AMPK, AMP-dependent protein kinase; ANP, atrial natriuretic peptide; CaMKK, Ca2+/calmodulin-dependent protein kinase kinase; CREG1, cellular repressor of E1A genes; ERK, extracellular regulated
pCAT, peroxisomal-targeted catalase; PI3K, phosphatidylinositol 3-kinase; Saa, skeletal a-actin; WT, wild type; 8-MHC, p-myosin heavy chain.

Autophagy induced by Ang Il 57:4 R147
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increases autophagy and, thereby, contributes to cardiac
hypertrophy by enhancing cellular dysfunction and cell
death (Table 1).

AT,R and AT,R in Ang ll-induced autophagy

To date, majority of the physiological actions of Ang II
are regulated by AT;R, and the function of AT,R is less
well delineated. Porrello and coworkers provided the first
link between Ang II and autophagy regulation in the
heart (Porrello & Delbridge 2009). They found that Ang
II increased autophagosome formation via the AT{R in
neonatal cardiomyocytes; however, co-expression of the
AT,R abrogated this response (Porrello & Delbridge 2009).
That is, AT,R antagonizes AT,R-mediated cardiomyocyte
autophagy (Porrello et al. 2009). This study proposed that
the anti-autophagic functions of AT,R are dependent on
a PI3K signaling mechanism in cardiomyocytes (Porrello
& Delbridge 2009, Porrello et al. 2009). In addition,
hypertrophic heart rat neonatal cardiomyocytes display
an elevated susceptibility to AT,R-mediated autophagic
vacuolization relative to normal heart rat neonatal
cardiomyocytes in vitro (Porrello et al. 2009).

Oxidative stress and Ang ll-induced autophagy

Studies have shown that Ang II-induced cardiac
hypertrophy is associated with increased cardiac
mitochondrial reactive oxygen species (ROS) generation
and oxidative stress (Dai et al. 2011, Zablocki & Sadoshima
2013). Ang II can increase cardiac mitochondrial DNA
deletions and protein oxidative damage (Dai et al. 2011).
Oxidative stress is closely related to mitochondrial
dysfunction; in addition, the turnover of mitochondria
is dependent on autophagy (Lee et al. 2012). ROS-induced
mitochondrial damage seemed to be connected with
increased number of autophagosomes and autolysosomes.
Mitochondrial autophagy was upregulated in Ang
[I-treated mice heart, accompanied with increased
mitochondrial protein carbonyls and mitochondrial DNA
deletions (Dai etal. 2011). Meanwhile, mice overexpressing
catalase targeted to mitochondria (mCAT) challenged by
Ang II infusion are resistant to mitochondrial damage,
biogenesis, cardiac hypertrophy and fibrosis induced by
Ang II (Dai & Rabinovitch 2011, Dai et al. 2011, Dikalov
& Nazarewicz 2013). Moreover, Chen and coworkers also
suggested that the reduced autophagic response to the
oxidative stress which was induced by hydrogen peroxide
in Ang Il-induced hypertrophic H9C2 cells causes
increased apoptotic cell death (Chen et al. 2014).
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Regulation of Ang ll-induced autophagy
Regulation of various key molecules

As an important adaptive stress response, mitochondrial
autophagy can be modulated by various key molecules.
Regulator of calcineurin 1-1L (Rcanl-1L) promoted
cell viability and mitochondrial autophagy in Ang
[I-treated human adult cardiac myocytes, with elevated
ATGS and LC3 expression and downregulation of
phosphorylated p70S6K (Duan et al. 2015). Additionally,
Rcanl-1L significantly inhibited calcineurin/nuclear
factor of activated T cells (NFAT) signaling, which may
protect human cardiomyocytes from Ang Il-activated
oxidative stress through the induction of mitochondrial
autophagy and may be a method of cardiac protection
(Duan et al. 2015).

Angiotensinl-7 (Ang-(1-7)) is formed from Ang Il by
angiotensin-converting enzyme 2 (ACE2) and has been
shown to oppose the AngII-AT,R-axis-exerted deleterious
effects. Ang-(1-7) retarded hypertrophy, oxidative stress
and autophagy induced by Ang II treatment in the heart.
Moreover, a Mas receptor antagonist A779 was used to
assess the role of Mas receptor in Ang-(1-7)-mediated
action, and the results indicated that Mas receptor offers
protective effects of Ang (1-7) against Ang Il-induced
excessive cardiac remodeling and cardiac autophagy
(Lin et al. 2016).

Adiponectin and Ang ll-induced autophagy

Studies show that adiponectin (APN) ameliorates Ang
[I-induced oxidative stress (Essick et al. 2011, Nour-
Eldine et al. 2016). Chronic Ang II infusion significantly
increased the level of ROS in male APN knockout
(APN-KO) mice vs wild-type (WT) mice; furthermore,
excessive ROS caused cardiomyocyte autophagy (Essick
et al. 2013, Qi et al. 2014). In APN-KO mice, Ang II
infusion significantly increased LC3II/I gene and protein
expression ratio. However, neither Ang II nor APN
affected Beclin-1 expression between Ang Il-infused
APN-KO and WT mice. These findings suggest that APN
protects against excessive ROS-mediated cardiomyocyte
autophagy by suppressing the autophagic machinery
via an AMPK/mTOR/extracellular-regulated protein
kinases (ERK)-dependent mechanism (Essick et al. 2013).
However, APN activates macrophage autophagy through
the activation of AMPK in the heart, thereby reducing
the extent of cardiac fibrosis and inflammation (Qi
et al. 2014). These studies demonstrate that APN has

Autophagy induced by Ang Il 57:4 R148
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cardioprotective actions by modulating oxidative stress-
induced autophagy in cardiomyocytes (Essick et al. 2013).

Effects of microRNA in Ang ll-induced autophagy

Recent studies have found that expression signatures
of miRNAs are associated with pathological cardiac
hypertrophy and heart failure (Wang & Yang 2012). Several
miRNAs that induce pathological hypertrophy and heart
failure have been identified, such as miR-195, miR-21, miR-
23a and miR-208a, whereas miR-133 and miR-1 negatively
regulate cardiac hypertrophy (Yang ef al. 2011). Many
studies have shown that miRNAs regulate both cardiac
hypertrophy and cardiomyocyte autophagy, for example,
miR-212/132 and miR-199a; induce cardiac hypertrophy;
and attenuate the autophagic response in cardiomyocytes
(Ucar et al. 2012, Li et al. 2015a). Ang Il-induced
cardiomyocyte hypertrophy in terms of cell area of
cardiomyocytes and expression of the cardiomyocyte
hypertrophy markers atrial natriuretic peptide (ANP) and
B-myosin heavy chain (5-MHC) mRNA; moreover, the level
of ATG9A protein and mRNA expression was upregulated.
Ang II treatment increased the autophagic vacuoles and
ratio of LC3II/I in cardiomyocytes. Overexpression of
miR-34a suppressed the number of autophagic vacuoles
and myocardial hypertrophy induced by Ang II. The
study indicates that miR-34a alleviates Ang II-induced
myocardial hypertrophy by the inhibition of autophagic
activity and ATG9A expression (Huang et al. 2014). Pan and
coworkers provide strong evidence that downregulation of
miR-30 induced by Ang II leads to excessive autophagy
in cardiomyocytes through the activation of beclin-1,
thereby promoting myocardial hypertrophy. Treatment
of cardiomyocytes with miR-30a mimics decrease in
the cardiomyocyte surface area and attenuates the Ang
[I-induced upregulation of hypertrophy-related genes
ANP and p-MHC in vitro (Pan et al. 2013). Consistent
with the above study, Ang Il-induced cardiomyocyte
autophagy may correlate with the downregulation of
miR-30a through upregulation of the Beclin-1 protein
invivo (Huang et al. 2015a). Taken together, several miRNAs
are associated with Ang IlI-induced pathological cardiac
hypertrophy and autophagy, and this would provide a
novel strategy for the management of cardiac hypertrophy.

Autophagy-related protein

ATGS is an E3 ubiquitin ligase that is necessary for the
autophagy. Atg5-deficient mice develop left ventricular
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dilatation and cardiac dysfunction and show disorganized
sarcomere structure after pressure overload. Compared
with the saline controls, Ang II infusion significantly
increased the AfgS mRNA expression level in the
macrophages, but not the cardiomyocytes and cardiac
fibroblasts. Ang II treatment significantly stimulated LC3
protein in cultured WT macrophages, which was further
reduced in Atg5+/- macrophages. AtgS haplodeficiency
markedly decreases cytosolic autophagic
formation induced by Ang II, increases nuclear factor-xB
(NF-xB) activity and mitochondrial ROS production in
macrophages, which contribute to subsequent cardiac
inflammation and cardiac injury (Zhao et al. 2014).
These findings indicated that Ang II elevated ROS
production and oxidative stress and induced autophagy,
concomitant with cardiac injury, which also suggested
that upregulation of autophagy may be a method of
cardiac protection (Zhao et al. 2014, Duan et al. 2015).
As a marker of autophagic activity, growing evidence
highlighted the importance of LC3B in monitoring
autophagy in myocardial hypertrophy. Ang II (1 pmol/L for
48h) induced neonatal rat cardiomyocytes hypertrophy,
accompanied by a marked increase in cell area and ANP
and B-MHC expression. In addition, LC3B-II/I protein
and mRNA expressions were also upregulated. Moreover,
LC3B overexpression resulted in upregulated levels of
autophagic activity and increased ANP and p-MHC mRNA

vacuole

Autophagy induced by Ang Il 57:4 R149
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expression as well as increased cardiomyocyte area in Ang
[I-treated cardiomyocytes. LC3B-mediated autophagy
plays a role in the regulation of myocardial hypertrophy
induced by Ang Il which may provide a therapeutic target
to reverse myocardial hypertrophy induced by Ang II
(Huang et al. 2015b).

Other signaling pathways in Ang ll-induced autophagy

Many signaling pathways have also been found to be
involved in Ang II-induced autophagy, for example,
Calhex231  suppressed  calcium-sensing  receptor
(CaSR) expression and downregulated autophagy by
inhibiting the Ca?+*/calmodulin-dependent protein
kinase-kinase-p  (CaMKKp)-AMPK-mTOR pathway to
ameliorate cardiomyocyte hypertrophy induced by Ang Il
in neonatal rat cardiomyocytes (Liu et al. 2015). Ang II
exposure induced significant increase in the expression
of endogenous intermedin in H9c2 cell
and mouse hearts, and the sizes of cardiomyocyte,
interstitial collagen, ANP and BNP expression were
also increased. Intermedin supplementation could
protect cardiomyocytes against hypertrophy induced
by pressure overload or hypertrophic stimuli in vivo
and in vitro. Intermedin protected hypertrophy-induced
cardiomyocyte from apoptosis through the activation
of autophagy in hypertrophic cultured H9c2 cells,

cultures

Autophagy

Hertroh
34a

Figure 2
Mechanism of autophagy in Ang ll-induced
pathological cardiac hypertrophy.
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which was almost abrogated by 3-methyladenine (3-MA).
Furthermore, intermedin supplementation remarkably
augmented the cAMP contents in H9c2 cells stimulated
by Ang II. Co-incubation of intermedin with Ang II only
increased the ERK1/2 phosphorylation, whereas showed
no obvious effect on Akt activation. PI3K inhibition
by wortmannin, PKA inhibition by H89 or MAPK/
ERK1/2 inhibition by PD98059 effectively reduced the
intermedin-augmented autophagy level in Ang II-exposed
H9c2 cells, but only H89 and PD98059 pre-incubation
abolished the antiapoptotic action of intermedin.
All these results indicate that the endogenous intermedin
induced by Ang II may play an important role in cardiac
hypertrophy, and the augmented autophagy level
induced by intermedin supplementation is involved in its
protection against cardiomyocyte hypertrophy through
the activation of both MAPK/ERK1/2 and cAMP/PKA
signaling pathways (Chen et al. 2013). Other signaling
pathways are also found in the regulation of autophagy
in the Ang Il-induced cardiac hypertrophy; for example,
class I PI3K, via the activation of the Akt/mTOR pathway,
is involved in Ang Il-induced impairment of autophagy,
elevation of ROS, cardiac hypertrophy and fibrosis (Yan
et al. 2015b). Histone deacetylases 6 (HDACG6) is also
involved in Ang II-induced cardiac hypertrophy and
autophagy, but the mechanisms are unknown (Demos-
Davies et al. 2014). In addition, mouse with aortic arch
constriction (TAC) induced marked heart hypertrophy and
fibrosis, accompanied by high levels of Ang II in plasma
and heart. Aliskiren ameliorates heart hypertrophy in
the model by suppressing Ang II-PKCBI-ERK1/2-regulated
autophagy (Weng et al. 2014, Zhang et al. 2014). Moreover,
cellular repressor of E1A genes (CREG1) protected the
heart tissue against Ang Il-induced fibrosis by activating
autophagy (Yan et al. 20154a). Induction of autophagy may
serve as a cytoprotective mechanism to inhibit cardiac
fibrosis induced by Ang II (Liu et al. 2016).

Conclusion

As mentioned previously, a large body of studies both
in vitro and in vivo clearly reveals that Ang II increases
autophagy. Upregulation or downregulation autophagy
may play a protective role to antagonize Ang Il-induced
cardiac hypertrophy. Whether activation or inhibition of
autophagy plays a protective role would depend on the
model and the signaling pathway involved. As most of the
studies used the rat neonatal cardiomyocytes, others used
human adult cardiac myocytes, H9C2, or macrophage
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and so on. What is more, study found that the autophagy
and apoptosis in HL-1 cardiomyocytes after exposure to
Ang Il were dependent on the concentration and duration
of exposure of cells to Ang II (Wang et al. 2013). The
mechanisms of autophagy in Ang Il-induced pathological
cardiac hypertrophy mainly included mediating AT,R and
AT,R, affecting oxidative stress, microRNAs and others
(Fig. 2). Whether autophagy functions as a pro-survival
or pro-death program during the Ang II-induced cardiac
hypertrophy is still not totally understood, it may finally
be determined by the identity of the cellular components
being degraded as well as the timing and magnitude of
autophagic activity relative to other essential cellular
processes (Rotter & Rothermel 2012, Li et al. 2015b). Future
investigations will be given to elucidate the importance
of the autophagic pathways in the cardiac hypertrophy,
which will provide new therapeutic approaches to the
cardiac failure.
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