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Abstract

More than 800 different human membrane-spanning G-protein-coupled receptors Key Words

(GPCRs) serve as signal transducers at biological barriers. These receptors are activated by » G-protein-coupled

a wide variety of ligands such as peptides, ions and hormones, and are able to activate receptors

a diverse set of intracellular signaling pathways. GPCRs are of central importance in > homomers
endocrine regulation, which underpins the significance of comprehensively studying > heteromers

these receptors and interrelated systems. During the last decade, the capacity for > homooligomerization
multimerization of GPCRs was found to be a common and functionally relevant property. > heterooligomerization
The interaction between GPCR monomers results in higher order complexes such as > dimers

homomers (identical receptor subtype) or heteromers (different receptor subtypes), > oligomers

which may be present in a specific and dynamic monomer/oligomer equilibrium. It is > endocrine regulation
widely accepted that the oligomerization of GPCRs is a mechanism for determining > endocrine diseases
the fine-tuning and expansion of cellular processes by modification of ligand action, > signaling

expression levels, and related signaling outcome. Accordingly, oligomerization provides
exciting opportunities to optimize pharmacological treatment with respect to receptor
target and tissue selectivity or for the development of diagnostic tools. On the other
hand, GPCR heteromerization may be a potential reason for the undesired side effects

of pharmacological interventions, faced with numerous and common mutual signaling
modifications in heteromeric constellations. Finally, detailed deciphering of the
physiological occurrence and relevance of specific GPCR/GPCR-ligand interactions poses a
future challenge. This review will tackle the aspects of GPCR oligomerization with specific

emphasis on family A GPCRs involved in endocrine regulation, whereby only a subset of

these receptors will be discussed in detail.
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G-protein-coupled receptors

The importance of GPCRs

Physiological functions such as development, growth,
behavior, learning, emotions, senses and aging are strongly
dependent on the control of endocrine circuits. Hormonal
signals exert their action via binding to nuclear receptors
or membrane-bound receptors. The largest superfamily
of membrane-bound receptors are G-protein-coupled

receptors (GPCRs) (Kristiansen 2004), which are involved
in the modulation of almost all physiological processes
(Limbird 2004). The relevance of GPCRs is due to their
fundamental role as information transducers (Raymond
1995, Wess 1998) by serving as hubs for signals transiting
biological barriers (Rosenbaum et al. 2009).

Activation of GPCRs by different ligands, crosstalk
of receptors within the membrane, and their interaction
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with cellular or extracellular proteins determine the
subsequently induced intracellular signaling pathway. The
overall result of GPCR activation are specific physiological
responses (Schwartz et al. 2006) and are based on various
mechanisms such as induction of gene expression (Ho
etal. 2009) or ion channel regulation (Veldhuis et al. 2015).
Due to their key role in tuning physiological processes,
approximately 50% of approved drugs modulate GPCRs
(Hopkins & Groom 2002, Tyndall & Sandilya 2005,
Schlyer & Horuk 2006, Mason et al. 2012).

How do GPCRs function?

GPCRs are activated by a wide variety of ligands including
small peptides, nucleotides, ions, amines, or even large
glycoprotein hormones,
signaling pathways (Kristiansen 2004). Based on different
conserved amino acid motifs, the superfamily of GPCRs
is subdivided into several families, whereby family A, also
known as family 1 or rhodopsin-like GPCRs, constitute
the family with most different members (Fredriksson
et al. 2003, Fredriksson & Schioth 2005). They share a
common structural architecture of seven transmembrane
helices (TMHs) that are connected by three intracellular
loops (ICLs) and three extracellular loops (ECLs). This
architecture is confirmed by the inspection of solved GPCR
structures (reviewed in Kobilka & Schertler 2008, Hanson &
Stevens 2009, Lodowski et al. 2009). As a result of advanced
experimental methods (Tate & Schertler 2009), many GPCR
crystal structures have been published in the last decade
(Zhao & Wu 2012, Piscitelli et al. 2015) and are useful tools
to improve pharmacological approaches directed to GPCRs
(Carlsson et al. 2011, Kontoyianni & Liu 2012, Mason et al.
2012, Shoichet & Kobilka 2012).

Most of the endogenous and synthetic ligands of family
A GPCRs are believed to bind within the transmembrane
domain close to the second extracellular loop 2 (ECL2)
(Surgand etal. 2006, Wichard et al. 2011), with the exception
of glycoprotein hormone receptors (GPHRs) and leucine-
rich repeat-containing G-protein-coupled receptors (LGRs)
(Svendsen et al. 2008, Kleinau & Krause 2009, Svendsen
et al. 2009, Kleinau et al. 2013). Based on a large amount of
experimental data, a ‘global toggle switching’ mechanism
is suggested to occur during ligand-induced activation
(Schwartz et al. 2006, Smit et al. 2007). Correspondingly,
activation is characterized by a spatial rearrangement of
the TMHs relative to one another (Scheerer et al. 2008,
2009, Schertler 2008). This structural rearrangement is
supported by amino acids acting as ‘micro-switches’ (Ahuja
& Smith 2009, Hofmann et al. 2009, Nygaard et al. 2009).

and they activate various

Different GPCR conformations are assumed to be related to
different signaling activity states (Seifert & Wenzel-Seifert
2002, Kobilka & Deupi 2007, Deupi & Standfuss 2011).
Due to the capability for activation of G-proteins and
several G-protein-independent signaling pathways (e.g. via
arrestin), GPCRs share common ‘read-outs’, even if they
bind different ligands (reviewed in Galandrin et al. 2007,
Oldham & Hamm 2008).

GPCR oligomerization as a regulatory
mechanism in signaling

How can an oligomeric GPCR constellation be defined,
and is there a relevance for oligomerization?

Organisation of GPCRs as oligomers is an interesting
feature under structural and functional prospective. It
has been reported for numerous GPCRs (Tadagaki et al.
2012a), also in native tissue (Albizu et al. 2010a, Bouvier
2001, Rozenfeld & Devi 2011). Dimerization is a general
term used to describe a GPCR-x/GPCR-x (homomer) or
GPCR-x/GPCR-y (heteromer) constellation. The term
oligomerization is used for dimeric, tetrameric or higher
order complexes between GPCR protomers (Fig. 1). Such
GPCR-GPCR interrelations should be characterized by
the following parameters (for further details, see also
(Gomes et al. 2016)): (1) physical interactions (side-chain
interactions); (2) direct mutual functional modulation;
or (3) a particular spatial distance to one another. It
could be hypothesized that a relevant oligomerization is
dependent on a functional significance (Tadagaki et al.
2012a). In case of heterodimerization, GPCR expression
in the same cell type (Waldhoer et al. 2005, Pin et al.
2007) and simultaneous occurrence (Gonzalez et al. 2012)
are prerequisites. Oligomerization has been reported for
several GPCR subfamilies such as for the family A, family
B or taste receptors (Li et al. 2002, Harikumar et al. 2008,
Ng et al. 2012, Ng & Chow 2015).

Which general may GPCR
oligomerization have in physiology? To date, the functional
significance of both homo- and heteromerization on
the molecular level is related to the determination,
enlargement and fine-tuning of signaling options such
as signal amplification or modification (see below for
details). Moreover, the GPCR capacity to form heteromers
particularly provides an opportunity for their respective
ligands to act in a synchronized manner and thereby
to balance or coordinate related cellular responses and
biological processes (such as metabolism or reproduction).
As a hypothetical example, one ligand activates a specific

functional role
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Different hetero-cligomeric constellations

Putative constellations of oligomers. (A) A particular GPCR (GPCR_x) as a monomer (schematic cylinder indicates the entire receptor). (B) Two monomers
of the same GPCR interacting as a homodimer. (C) Dimerization between GPCR_x with a different GPCR_y. (D) GPCR_x may potentially interact with a
non-GPCR. (E) GPCR_x may also form homooligomers with different interfaces between the protomers. (F) Assuming tetrameric (or higher order) GPCR
oligomers, complexes with different protomer ratios may be formed by GPCR_x and GPCR_y.

receptor, whereas the activity of the interacting heteromeric
GPCR is simultaneously inhibited or downregulated by
mutual effects, which is an effective and rapid system of
counter-regulation. Notably, several GPCRs can interact
with other GPCRs as oligomers, also in dependency on
diverse cell types that also broadens the spectrum of a
specific ligand to direct signaling in different associations
with related physiological mechanisms. This general picture
(explained in further detail below) becomes more complex
in consideration of the frequently observed ligand property
to interact with a multitude of diverse GPCR targets such
as trace amines (Kleinau et al. 2011, Dinter et al. 2015a).
The involvement of GPCR oligomerization in the
regulation of physiological processes, either as homo- or
in heterooligomeric constellations, is strongly supported
by previous and recent findings, e.g. for the al-adrenergic
receptor (alAR), whereby heterodimerization of «lAR
with the chemokine receptor 4 controls blood pressure
regulation (Tripathi ef al. 2015). Moreover, the trace amine-
associated receptor 1 (TAAR1) interacts, for example, with
the dopamine-2 receptor (D2R) and, in turn, modifies
dopaminergic  neurotransmission (Harmeier et al
2015). Further examples include circadian-controlled
heterodimers between the D4R and the f1- or a1B-adrenergic

receptor, respectively, that are involved in the regulation of
serotonin and melatonin syntheses (Gonzalez et al. 2012) and
the interactome of melatonin receptors involved in circadian
rhythm regulation (Benleulmi-Chaachoua et al. 2016).

What do we know about interactions between GPCR
protomers constituting oligomeric interfaces?

Several GPCR-GPCR protomer interfaces have been
reported under involvement of TMH4 (Carrillo et al.
2004, Hernanz-Falcon et al. 2004, Guo et al. 2005, 2008,
Mancia et al. 2008), TMH1, and TMHS5-6 (Hebert et al.
1996, McMillin et al. 2011, Yanagawa et al. 2011) or the
extracellular N-terminal region (Uddin et al. 2012). The
intermolecular interactions are constituted between single
amino acids or between multitudes of side chains. Specific
roles for such interactions or spatial distances between
protomers are not defined as obligate for ‘protomer
interrelations’ or cannot be determined as a standard, and
may vary for different GPCRs. In conclusion, different
putative interfaces and types of interactions for homo-
and heterodimers can be assumed, whereby no universal
interface property can be suggested. Several interfaces
revealed by biophysical or biochemical methods have
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Figure 2

Observed GPCR homodimer interfaces and putative heterodimer constellations. Direct GPCR protomer interfaces are assumed to be characterized at the
structural level by specific side-chain interactions or close spatial distances. Interfaces between the protomers have been found under experimental
conditions for different GPCRs at the region from ICL2-TMH4 (Bakker et al. 2004, Guo et al. 2005, Mancia et al. 2008), TMH5-TMH6 (George et al. 1998,
Yanagawa et al. 2011, Hu et al. 2013), and TMH4-TMHS5 (Gorinski et al. 2012). Furthermore, several crystal structures of dimeric GPCR complexes were
previously determined, such as those from the (A) chemokine receptor CXCR4 (Wu et al. 2010) or (B) the k-opioid receptor (OPRK1 or KOR (Wu et al.
2012)). For OPRK1, as also for determined B-1AR and opsin structures, the protomer interface is located at TMH1-TMH2 and helix 8 (B), respectively. In
line with biophysical data, dimer interfaces can be also observed between TMH5-6 (as in A). As a result, heteromeric states should also be characterized
by these interfaces, but between diverse protomers (C) (protomers are colored differently for visual separation). For homomers, various scenarios of
spatial protomer arrangements (a combination of dimers) can be speculated (D i and ii). The identical variety of combinations may also be assumed for
heteromers, which finally includes heteromers of homomers (Ferre 2015) (D iii and v). The software PyMOL (Molecular Graphics System, Version 1.3
Schrédinger, LLC) was used for structural representation.

been confirmed by determined crystal structures of GPCR ~ Which functions or molecular properties of GPCRs are
dimers (Fig. 2). Furthermore, the GPCR-GPCR interfaces  influenced by oligomerization?

are most likely to be of dynamic character (Hu et al. 2013).
GPCRs were described to be potentially expressed as a
mixture of monomers and homomers, and the two forms
were found to interconvert dynamically in an equilibrium
((Hern et al. 2010, Kasai et al. 2011, Calebiro et al. 2013,
Teichmann et al. 2014), reviewed in Lambert 2010).

Homo- and heterooligomerization is not a prerequisite
for a general signaling capacity at family A GPCRs
(Whorton et al. 2007), but it defines and widens the
spectrum of fine-tuning options in signaling (White
et al. 2007, Ciruela et al. 2010, Smith & Milligan 2010).
Oligomerization can have a major influence on the
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Schematic illustration of different signaling scenarios that potentially occur at GPCRs and GPCR oligomers in different cell types. This scheme illustrates
potential scenarios that are feasible concerning receptor signaling and oligomerization in different cell types. Further diverse scenarios and levels of
receptor organization are potentially probable but have not been implemented here (e.g. by heterotrimerization). Different intracellular signaling
parameters in strength (arrows thin or bold) and constitution (response boxes A-G) are indicated. A particular receptor (e.g. purple) may activate diverse
intracellular signaling pathways in different cell types, indicated as cell type 1 (response A) and cell type 2 (response D). In cell type 1, this receptor is
capable of activating two different downstream signaling events after ligand binding. This receptor has different properties concerning binding and
activation of intracellular effectors in cell type 1 as the set and amount of particular intracellular signaling determinants (e.g. G-protein subtypes or
other downstream signaling molecules) differ. Moreover, in each cell type, a multitude of different GPCRs are expressed, indicated as additional green
receptors in cell type 1 or of light beige color in cell type 2. These receptors activate different signaling pathways (responses B and E). In each cell type,
orphan receptors with unknown ligand(s) may also occur and influence the system of interacting proteins (not shown). In cell type 1,
homooligomerization of the receptors may lead to a lowered signaling (slim arrow) compared with receptor monomer signaling. Receptor
oligomerization may lead to enhanced signaling as indicated for the green receptor in cell type 1 (bold arrow). Examples of such differences in signaling
responses in dependency of oligomerization or monomerization have been reported in a previous study on the MC4R (Piechowski et al. 2013).
Furthermore, there may be heterooligomerization of the receptors (as described for the MC4R), indicated by receptor pairs (mixed color). These
interactions should lead to the activation of signaling pathways that are partially identical to each monomer, but may also result in the activation of
other signaling events (response C or F). For homo- and heterooligomers, ligand binding properties are known to drastically differ to those of monomers
(indicated in heterodimer cell type 2). Moreover, bivalent ligands (illustrated in cell type 2) combine particular ligands for the respective protomers,
which may ultimately lead to alterations in the signaling properties of the complex (response G).

signaling properties of interacting protomers (Prinster
et al. 2005) such as in ligand binding (Levoye et al. 2006a,
Lohse 2010), G-protein coupling selectivity, and signal
transduction mechanisms (reviewed in Bouvier 2001,
George et al. 2002), or for cell surface expression (Uberti
et al. 2005). Functional cross-regulation of G-protein
activation may occur (Maurice et al. 2011b), despite the
assembly of these GPCRs in heterooligomeric complexes
(Nijmeijer et al. 2010).

Specifically, a particular GPCR in a specific cell
type can function as a protomer, homomer, or in a
heteromeric constellation (Fig. 3). Several functional
scenarios of receptor property modifications dependent
on oligomerization have been identified or have been
suggested, as indicated in the following examples:

1. Constitution of homo- and/or heteromers:

(i) The internalization of heteromers differs from
that of homomers or monomers (Hanyaloglu et al.
2002, Kilpatrick et al. 2015).

(if) Signaling of the monomer is enhanced compared
with the oligomer (Piechowski et al. 2013).

(iii) Signaling of the monomer is weaker compared
with the oligomer (Wilson et al. 2007, Magalhaes
et al. 2010, Pellissier et al. 2011).

2. A homomer is capable of binding various ligands,

and/or binding capacities differ compared with the
monomer (Durroux 2005).

3. A heteromer, which may also be an orphan receptor
(Levoye et al. 2006Db), in a given cell type may:
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(i) activate the same signaling pathways as the
protomer(s) (neutral heterooligomeric) (Prinster
et al. 2005);

(ii) modulate signaling pathways (e.g. strength of
signaling) (AbdAlla et al. 2000, Terrillon et al. 2004);

(iii) activate pathways that differ from both protomers
(Hague et al. 2006, Rashid et al. 2007, Gomes et al.
2013);

(iv) bind ligand(s) that differ (e.g. also at allosteric
binding sites) (Durroux 2005);

(v) bind artificial ligands that modify signaling path-
ways such as bivalent ligands (Shonberg et al.
2011, Mohr et al. 2013, Yuan et al. 2013).

How is oligomerization detected experimentally?

In the last two decades, various methods have been
applied to detect GPCR-GPCR interactions (Table 1).
Each of these techniques exhibits both advantages
and disadvantages when compared with one another
and with regard to their aim; however, this field
is characterized by strong development and rapid

GPCR oligomerization 57:1 R64

advancement. Because of previous thorough reviews
of methods for the detection of oligomers (e.g. Persani
et al. 2007, Kaczor & Selent 2011, Bonomi & Persani
2013, Gomes et al. 2016), we will not describe the
particular methods in detail, but will merely provide a
brief overview of commonly used approaches. Currently
applied techniques can be subdivided based on their
methodological principles or experimental conditions as
follows: (i) antibody-based and antibody-independent;
(i) dynamic and nondynamic systems; (iii) analyses of
living, fixed or lysed cells; or (iv) in vitro cell culture
or an in vivo model. Antibody-based techniques, such
as co-immunoprecipitation, co-immunolocalization,
sandwich-ELISA or the proximity Iligation assay,
primarily recognize epitope tags (Table 1). Due to the lack
of specific GPCR antibodies, these techniques are often
limited to in vitro cell culture overexpression conditions.
Homo- or heteromer detection by antibody-based assays
are mostly used with differentially epitope-tagged GPCRs
and are effective in fixed or lysed cells (reviewed in e.g.
Skieterska et al. 2013, Gomes et al. 2014). In the case
of antibodies that exist for a specific GPCR or GPCR

Table 1 Methods that have been used to determine di- and oligomerization of GPCRs.

Method

Application

In vitro

In living cells In situ In vivo

Antibody-based
Co-immunoprecipitation (Co-IP)
Co-immunolocalization
Sandwich-ELISA

Proximity ligation assays (PLA)

mostly antibody-independent
Proximity biotinylation
Resonance energy transfer (RET)

FRET (F, fluorescence),

e.g. via

-fluorescent ligands or

-based on SNAP- and CLIP-tag technology
BRET (B, bioluminescence),

SRET (S, sequential),
TR-FRET (TR, time-resolved)

e.g. via antibody-based HTRF
Protein complementation assays (PCA)

e.g. based on fluorescent proteins, enzymes, ubiquitin
Photoactivated localization microscopy (PALM)
Fluorescence cross-correlation spectroscopy (FCCS)
Allosteric crosstalk

e.g. via radioligand binding

+ (+)

+ (+)

+
+

+ + + (+)

Dimer detection using antibody-based and antibody-independent techniques. Antibody detection primarily requires tagging of GPCRs. Due to the
availability of several primary GPCR antibodies and the possibility of tagged GPCR expression in animal models, in situ detection by antibody-based
methods may be possible (indicated by bracketed plus symbol). The most promising technique used to detect GPCR-GPCR interactions in the physiological
in vivo background is by analyzing allosteric crosstalk. The limitation of this method is the knowledge of adequate ligands, their detailed effects, and tissue

specificity (also indicated as bracketed plus symbol).
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oligomer, expression and detection of labeled GPCRs are
also possible in animal models.

Elaborate enhancement of methods and constantly
refined techniques even allow for the detection of GPCR
protomers and oligomers in living cells or tissue samples by
some antibody-independent methods. Of these methods,
the application of resonance energy transfer (RET) and
protein complementation assay (PCA) (for review see
e.g. Vidi & Watts 2009, Lohse et al. 2012, Ng et al. 2012,
Bonomi & Persani 2013, Ciruela et al. 2014, van Unen
et al. 2015) have been particularly used to detect GPCR
homo- or heteromerization.

Moreover, photo-activated localization microscopy
(PALM) and fluorescence fluctuation spectroscopy
techniques (FCCS) have been developed (for review see
Herrick-Davis et al. 2013, Hink & Postma 2013). These
straightforward methods permit a quantified interaction
monitoring of fluorescent-labeled GPCRs at a nanomolar
concentration level or even as single molecules without a
distance limit for interactions compared with RET.

The most promising methods to detect GPCR homo-
and heteromerization in in vivo systems are via the
analysis of allosteric crosstalk (Durroux 2005, Teitler &
Klein 2012). This method is based on the idea that the
dimerization process may lead to crosstalk between
interacting GPCRs and may result in cooperative binding
of ligands to these protomers. As a prerequisite, sufficient
knowledge of the relevant GPCR-ligand interdependency
(agonmist, antagonist, inverse agonist effects) is required to
analyze interactions with this method.

Oligomerization of receptors in endocrine
regulation

Endocrine regulatory circuits consist of releasing
hormones secreted from the hypothalamus. These
hormones activate their cognate receptors on
specialized pituitary cells, which subsequently lead
to pituitary hormone release. The anterior pituitary
hormones function at their end organs, which may be
an endocrine gland. These hormones exert their action
or further modulate end-organ hormone secretion,
which is regulated in a negative feedback manner to
the hypothalamus and the pituitary as it is known for
the regulation of growth, thyroid function, fertility-
reproduction and adrenal functions. Furthermore,
many other endocrine functions such as energy
metabolism or glucose homeostasis are tightly regulated
by hormone/receptor feedback systems.

What is known about oligomerization of GPCRs involved
in endocrine regulation?

Many receptors for releasing hormones and tropic
hormones have been suggested to comprise of homo- or
heterooligomers, whereby these findings are primarily
based on in vitro studies. Although oligomerization of
GPCRs is known for several of GPCR subfamilies (Young
et al. 2007, Harikumar et al. 2008, Ng et al. 2012, Ng &
Chow 2015), we will focus on several examples from the
largest GPCR family, family A, to provide insights into
linked aspects.

GPCRs of the pituitary-thyroid axis

In specific cells, the pituitary thyrotropin-releasing
hormone (TRH) binds to the TRH receptor (TRHR) (Sun
et al. 2003). In addition to TRHR expression in the
pituitary, extrapituitary TRHR localization has also been
found in various areas of the brain (Cao et al. 1998, Heuer
et al. 1999, Bilek 2000). The TRHR may form homomers
(Kroeger et al. 2001) in the absence of the ligand; however,
ligand stimulation is suggested to further increase
homooligomerization (Kroeger et al. 2001, Zhu et al.
2002). TRHR dimerization was found to affect trafficking
but not signaling (Song & Hinkle 2005) and potentiated
hormone-dependent receptor phosphorylation (Song
et al. 2007).

There are two different subtypes of TRHR in rodents.
These receptor subtypes are able to heterooligomerize,
which has been found to change their functional
properties in terms of p-arrestin recruitment (Hanyaloglu
et al. 2002).

The secreted hormone thyrotropin (TSH), in turn,
activates the thyroid gland via binding to the thyrotropin
receptor (TSHR), which induces the production of
thyroxine (T,) and triiodothyronine (T;). The TSHR has
been previously reported to homooligomerize (Latif et al.
2001, Davies et al. 2002), which is most likely independent
from TSH stimulation (Bonomi & Persani 2013; Urizar
et al. 2005) or constitutive activation by mutation
(Zoenen et al. 2012, Biebermann et al. 2012b). In regards
to the TSHR, interaction between the receptor protomers
occurs at the transmembrane bundle (Urizar et al. 2005),
but an additional role of the extracellular domain on
the oligomer constitution is proposed based on BRET
experiments (Urizar et al. 2005). In the same study, further
experimental evidence for negative cooperativity with
respect to ligand binding was demonstrated and supports
a functional relevance of homomers. This is of general
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importance to further understand endocrine regulation
at a wide range of ligand (hormone) concentrations
with the highest level of sensitivity occurring at lower
hormone concentrations (Urizar et al. 2005). This is
true for physiological TSH concentrations in serum
that span one order of magnitude (Bianco et al. 2014).
Moreover, a recent study leads to the observation that
two TSH molecules bound at a TSHR homodimer are
necessary to activate Gq (IP) (Allen et al. 2011). Further
support for a functional role of TSHR oligomerization is
provided by studies showing dominant negative effects by
pathogenic mutations (Calebiro et al. 2005), which can
be best explained by mutual interrelations between TSHR
protomers.

The receptors of the hypothalamic-pituitary-gonadal
(HPG) axis

The first step in the production and release of the
gonadotropins lutropin (LH) and follitropin (FSH) is
binding of gonadotropin-releasing hormone (GnRH) to
its receptor (GnRHR) in the pituitary. Different studies
revealed that the GnRHR is able to form microaggregates
(oligomers) due to GnRH stimulation (Conn et al. 1982a,b,
Cornea etal. 2001, Kroeger et al. 2001). Evidence of human
GnRHR dimerization derives from mutant receptors that
inhibit ligand binding and second messenger production
of wild-type via a dominant negative effect (Brothers
et al. 2004). Interestingly, in the protochordate Ciona
intestinalis, which lacks a hypothalamus-pituitary-gonad
axis, four different subtypes of GnRHR exist (reviewed in
Satake et al. 2013). One of the receptor subtypes (R4) is
an orphan receptor and modulates the functionality of
a further particular GnRHR receptor subtype in terms of
intracellular Ca2+ elevation and ERK phosphorylation
(Sakai et al. 2008). Moreover, GnRHR-mediated cAMP
signaling is decreased in the heterodimeric constellation
between this orphan GnRHR and another paralog due to a
shift from Gs to Gi signaling (Sakai et al. 2012). However,
how GnRHR oligomerization influences the expression
and secretion of the gonadotropins LH and FSH has not
yet been thoroughly investigated (Satake et al. 2013).

The receptors for FSH (FSHR) and LH/CG (LHCGR)
play a crucial role in reproductive physiology (Themmen
& Huhtaniemi 2000). First indications for LHCGR
oligomerization were achieved from studies where co-
expression of binding-deficient (with full signaling capacity)
and signaling-inhibited (with diminished binding capacity)
receptor fragments partially restored ligand-induced signal
generation (Osuga ef al. 1997). This was the first indication

of a functional interrelation between LHCGR monomers.
For the FSHR, transactivation was found to most likely
induce biased signaling in terms of the generation of only
one of two potentially induced hormone signals, but not
both simultaneously (Ji et al. 2004).

In 2004, constitutive and agonist-dependent self-
association of the LHCGR was demonstrated (Tao
et al. 2004, Fanelli 2007) as well as the negative effects
of inactive LHCGR mutants on wild-type receptor
signaling in oligomeric constellations (Tao et al. 2004).
Moreover, the functional rescue of two loss-of-function
mice LHCGR mutants, a ligand binding defective and
a signaling defective that both suffer from infertility in
the homozygous state, was proven (Rivero-Muller et al.
2010), which pointed to a physiological relevance of
LHCGR oligomerization and receptor-protomer interplay.
Recently, a sophisticated method of single molecule
analysis has revealed contacts of interacting LHCGR
variants (Jonas et al. 2015).

Furthermore, heteromerization of FSH and
LHCGR co-expressed in in vitro cell systems have been
observed (Feng et al. 2013, Mazurkiewicz et al. 2015). In
granulosa cells, LHCGR and FSHR are co-expressed and
LHCGR/FSHR interaction is speculated to play a role
during granulosa cell differentiation.

Besides the classical form of endocrine feedback
regulation comprising the hormone/receptor systems in
the hypothalamus, pituitary, and end-organs, and their
feedback regulation, many primary nonendocrine tissues
also express and secrete hormones such as leptin and
adiponectin (adipocytes), ghrelin (stomach), and PYY
cholecystokinin (gut). Action of these hormones is tightly
regulated and their receptors are reported to constitute
and function as oligomers.

One prominent example is body weight
maintenance. The most important pathway of weight
regulation is the leptin-melanocortin pathway that
communicates peripheral signals to the hypothalamus,
where information is integrated to an orchestrated
reaction resulting in the maintenance of a constant body
weight (Cone 2005, Oswal & Yeo 2007, Biebermann
et al. 2012a, Farooqi 2014). From the periphery,
anorexigenic hormones, such as the adipocyte-derived
leptin or the pancreatic p-cell-derived leptin, affect
their receptors on neurons of the arcuate nucleus in
the hypothalamus (ARC). As a result, the expression of
orexigenic peptides, such as neuropeptide Y (NPY) and
agouti-related peptide (AgRP), is repressed. Moreover,
the expression of pro-opiomelanocortin (POMC) is
enhanced, which gives rise to the expression of a
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Figure 4

A complex of GPCR homo-/heterodimer interaction networks. Many
members of the family A GPCRs have been reported to constitute
homodimers and form heteromers (examples used here for this scheme
(Pfeiffer et al. 2002, Ramsay et al. 2002, Mandrika et al. 2005, Ellis et al.
2006, Rios et al. 2006, Decaillot et al. 2008, Juhasz et al. 2008, Navarro
et al. 2008, Vilardaga et al. 2008, Schellekens et al. 2013, Muller et al.
2013b)). Moreover, several of the so far analyzed subjects are able to
heteromerize with different GPCRs such as the ghrelin receptor (GHSR,
bold letters) (Jiang et al. 2006, Rediger et al. 2009, 2011, Schellekens

et al. 2013). Consequently, the spectrum of potential interaction partners
widens the putative modification of physiologically relevant signaling
properties in dependency on the GPCR expression pattern in a particular
cell type. For a comprehensive overview of available experiments and
GPCR oligomer literature, see also the ‘The G Protein Coupled Receptor-
Oligomerization Knowledge Base Project’ (Khelashvili et al. 2010). This
scheme demonstrates a fragmented section of reported GPCR homo-
and heteromers, whereby arrows indicate interactions between
monomers (Fig. 2C) or homodimers (Ferre 2015) (potentially in
constellations as suggested in Fig. 2D iii, iv and v). Dotted arrows
indicate potentially more and/or thus far unknown partners. GHSR,
ghrelin receptor; MC3R, melanocortin-3 receptor; 5HT2C,
5-hydroxytryptamine (serotonin) receptor 2C; 5HT1B,
5-hydroxytryptamine (serotonin) receptor 1B; GPR83, G-protein-coupled
receptor 83; OPRM1, Mu opioid receptor; DRD1/DRD2, dopamine-1 and
dopamine-2 receptors; Cb1R, cannabinoid receptor 1.

variety of additional peptides. Important peptides
include «- and p-melanocyte-stimulating hormones
(MSHs) that are capable of activating melanocortin 3
and 4 receptors (MC3R and MC4R) in the ARC and in
the nucleus paraventricularis (PVN).

The MC4R, dominantly expressed in the PVN, is the
most prominent GPCR in weight regulation (Cone 2005,
Biebermann et al. 2012a) and appetite control (Garfield
et al. 2015). Investigation of a naturally occurring
heterozygous MC4R mutation in a patient suffering from
severe early-onset obesity, a dominant-negative effect of
the mutant on the wild type was detected, which can
be best explained by homomerization of the MC4R and
MC4R-MC4R variant (Biebermann et al. 2003). Further
support for MC4R oligomerization has been provided by
kinetic studies of ligand binding (Kopanchuk et al. 2006).
The MCA4R is also capable of interacting with other GPCRs

that are expressed in the PVN (Fig. 4), although these
results have only been indicated in in vitro studies (Rediger
et al. 2009). In vivo studies confirming these preliminary
results are lacking.

An interesting study on MC4R oligomerization
revealed receptor determinants that are involved in the
constitution of protomer interfaces. Inhibition of MC4R
oligomerization could be achieved by domain substitution
using the noninteracting cannabinoid-1 receptor
(PiechowsKi et al. 2013). Substitutions of the MC4R ICL2
and adjacent regions of TMH3 and TMH4, with respective
regions of the cannabinoid-1 receptor, lead to partial
MCA4R dimer dissociation. Most importantly, the signaling
capacity was increased in monomeric MC4R variants,
which indicates a link between receptor dimerization and
the signaling capacity.

In the hypothalamus, the MC3R is expressed on POMC
and AgRP/NPY neurons (Barsh etal. 2000, Redigeretal. 2011).
The MC3R is known to be embedded in a network of GPCR
interactions with e.g. the ghrelin receptor (GHSR) (Fig. 4).
Interaction of MC3R with GHSR leads to the upregulation
of a-MSH-stimulated signaling and the downregulation
of basal- and ghrelin-induced GHSR signaling (Rediger
et al. 2011). Both the GHSR and the MC3R have been
reported to have further diverse GPCR interaction partners
(Borroto-Escuela et al. 2014) and also interact with orphan
GPCRs such as GPR83 (Muller et al. 2013b). This, in turn,
makes predictions of any physiological/functional impact
due to modifications at the MC3R, the MC4R, or further
interacting partners difficult.

The GPR83 was recently identified as
determinant involved in body weight regulation (Muller
et al. 2013b). So far this orphan receptor is expressed e.g.
in the thymus and hypothalamus (Harrigan et al. 1989,
1991, Brezillon et al. 2001). Most importantly, GPR83 has
been previously found to be involved in the control of
circulating adiponectin levels (De Moerlooze et al. 2000),
and Gpr83 expression is decreased in obese mice when
compared with lean mice (Muller et al. 2013b). Moreover,
GPR83 constitutes homodimers but also has the capacity
for heteromerization, as has been demonstrated by
heteromerization with the ghrelin receptor (Muller et al.
2013a). Interaction between both receptors leads to
inhibition of the GHSR signaling capacity.

The signaling output of the previously mentioned GPCR
interaction network (e.g. MC3R, GHSR and GPR83) is most
likely crucial for the integration of all peripheral and central
signals that are involved in energy metabolism. Future
elucidation of combinatorial possibilities will be a matter of
experimental confirmation and discussions (Fig. 4).

a new
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Table 2 Examples of GPCR dimers involved in endocrine regulation.

Homomers Heteromers

References

Weight and appetite regulation and/or metabolism
MC3R-MC3R MC3R-GHSR, NPY2R, MOR
MC4R-MC4R MC4R-5HTR1B, GPR7

GPR83-GPR83 GPR83-GHSR, MC3R

GHSR-GHSR GHSR-MC3R, GPR83, SSTR5, DRD1/2, 5SHTR2C
GIPR-GIPR GIPR-GLPR

TAART-TAAR1 TAAR1-ADRA2A, D2R

NPY2R-NPY2R NPY2R-MC3R

NPY1R-NPY1R

NPY5R-NPY5R

Reproduction

PROKR2-PROKR2

FSHR-FSHR FSHR-LHCGR

LHCGR-LHCGR LHCGR-FSHR

GnRHR-GNRHR

(Rediger et al. 2011, 2012)

(Biebermann et al. 2003, Tarnow et al. 2008,
Rediger et al. 2009)

(Muller et al. 2013a,b)

(Rediger et al. 2011, 2012, Kern et al. 2012,
Park et al. 2012, Schellekens et al. 2013,
Muller et al. 2013b)

(Schelshorn et al. 2012, Ng & Chow 2015)

(Harmeier et al. 2015, Dinter et al. 2015b)

(Dinger et al. 2003, Rediger et al. 2009)

(Dinger et al. 2003)

(Marsango et al. 2011)

(Ji et al. 2002, 2004, Tao et al. 2004, Feng et al. 2013,
Mazurkiewicz et al. 2015)

(Ji et al. 2002, 2004, Tao et al. 2004, Feng et al. 2013,
Mazurkiewicz et al. 2015)

(Cornea et al. 2001, Kroeger et al. 2001)

This overview represents examples of GPCRs that are involved in endocrine regulation, which have been reported to comprise homo- or heteromers.
The examples in brackets are confirmed in their interaction but have not yet been functionally characterized.

Further examples of GPCRs involved in endocrine
regulation, which have been reported to oligomerize,
are the prokineticin-receptor 2 (PROKR2), the oxytocin
receptor (OTR) (Table 2), or dopamine receptor (D2R).
Several examples will be provided to pinpoint the
complexity and common occurrence of oligomerization.

The OTRand vasopressinreceptors (AVPRs: V1aR, V1BR,
V2R) belong to a subclass of family A GPCRs. The OTR and
OT are involved in memory and learning, stress regulation
and anxiety, and aggressive, sexual and maternal behaviors
(e.g. Argiolas 1992, Malik et al. 2012, Ebner et al. 2013).
Moreover, the OTR is involved in thermoregulation and
brain development (Gimpl & Fahrenholz 2001, Kasahara
et al. 2013). In the periphery, the OTR is expressed in the
uterus and in the myoepithelial cells of the mammary
gland at the end of pregnancy, and plays an important
role during labor and milk ejection in a positive feedback
manner (Viero et al. 2010). Several diseases or pathogenic
conditions are associated with the function of this receptor
including autism and schizophrenia (Gimpl & Fahrenholz
2001). It was recently reported that OTR and vasopressin
receptors form homo- and heterodimers in vitro and in
vivo (Albizu et al. 2010b). Negative cooperative binding
of oxytocin at the OTR was observed in in vitro systems,
which points to a functional significance of dimerization
(Albizu et al. 2006). It has been suggested that constitutive
homodimerization and heterodimerization between the
OTR and the V1aR and V2R is established early in the

endoplasmatic reticulum (ER) and that ligand binding at
the plasma membrane does not modify the dimerization
state (Terrillon et al. 2003). Heterodimerization of V1aR
and V2R vasopressin receptors determines the interaction
with p-arrestin and their trafficking patterns (Terrillon et al.
2004). Of note, heteromerization may be of physiological
relevance in tissues where the aforementioned receptors
are co-expressed, such as heterodimers with the D2
dopamine receptor in the striatum (Romero-Fernandez
et al. 2013). Heterodimerization was also reported for
OTR and -2 adrenergic receptors. This interaction
modifies ERK1/2-activation allosterically in dependency
of ligand treatment (agonists or antagonists) (Wrzal et al.
2012a,b). Interestingly, direct interactions between V1b
and the corticotropin-releasing hormone receptor 1 were
recently described (Murat et al. 2012). Via costimulation,
this heterodimer mediates a synergistic catecholamine
secretion compared with single ligand stimulation.
Moreover, vasopressin potentiated CRH-induced cAMP
accumulation and CRH potentiated AVD-induced inositol
phosphate production. Vasopressin and CRH are both
involved in the regulation of adrenocorticotropin and
insulin release (Murat ef al. 2012).

Four major dopaminergic pathways exist in the central
nervous system (CNS). The nigrostriatal system is critical
for movement and the mesolimbic and mesocortical
neurons play a major role in cognitive functions including
feeding, affect, reward, sleep, attention, memory and
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learning (Perreault et al. 2014). Dopamine receptors have
been suggested to be divided into two classes related to
their signaling capacities (Beaulieu & Gainetdinov 2011):
D1-class receptors (D1 and DS subtypes) activate the
adenylyl cyclase and increase cAMP levels; and D2-class
receptors (D2, D3 and D4 subtypes) inactivate the adenylyl
cyclase. Regions where the D2R is expressed include
the striatum, nucleus accumbens, olfactory tubercle
and hippocampus (Beaulieu & Gainetdinov 2011). The
D2R comprises homomers (Guo et al. 2003, 2005) and
a multitude of heteromers (Perreault et al. 2014), e.g.
with the DIR, D4R, D5R, adenosine A2 receptor (A2R),
serotonin 2A receptor (SHT-2AR), OTR, and the histamine
H3 receptor (H3R). A functional relevance for the
DI1R/D2R heterodimer has not yet been confirmed
(Frederick et al. 2015). Recently, in vivo relevance for
GHSR/DI1R interrelation was found to be involved in
hippocampal behavior and memory (Kern et al. 2015).
Dopaminergic pathways play a critical role in diseases such
asParkinson’s disease (nigrostriatal system), schizophrenia,
and addiction (mesolimbic and mesocortical system)
(Li & Ma 2013). In schizophrenia, cortical D2Rs may be
hypersensitive to dopamine (Seeman et al. 2005, 2007) or
present in increased amounts in some regions.

The prokineticin system is related to several
physiological and pathological conditions (Maldonado-
Perez et al. 2007, Negri et al. 2007, Zhou et al. 2012).
Knockout mice models for both ligand and receptor
revealed the role of PROK2 signaling in olfactory bulb
morphogenesis and sexual maturation, and suggested
PROK2 and PROKR2 as strong candidate genes for
human GnRH deficiency (Ng et al. 2005, Matsumoto
et al. 2006). The PROKR2 is involved in the pathogenesis
of hypogonadotropic hypogonadism (Dode et al. 2006,
Bonomi et al. 2012). Pathogenic germline PROKR2
mutations hypogonadism
have been identified to cause modulation of distinct
intracellular pathways (biased signaling modulation)
(Libri et al. 2014, Sbai et al. 2014), whereby the PROKR2
wild type activates different G-protein subtypes (Chen
et al. 2005). PROKR2 variants have been further described
in patients with idiopathic combined pituitary hormone
deficits (CPHD) including gonadotropin deficiency
(Raivio et al. 2012, Reynaud et al. 2012). The PROKR2
also forms constitutive homomers in vivo (Marsango et al.
2011), and specific protomer-protomer interfaces for the
oligomer have been suggested (Sposini et al. 2015). Future
investigation of the relationship between oligomerization
and pathogenic biased signaling modulation at this
receptor is of interest.

associated with central

GPCRs in interaction with non-GPCR proteins

In addition to the above-described interactions between
GPCRs in homomeric or heteromeric constellations,
GPCRs are also able to associate with proteins that are
capable of modifying signaling properties. They may
impact trafficking or act as allosteric modulators (Maurice
et al. 2011a). Furthermore, GPCRs also act as scaffolding
proteins that link the receptor to downstream effectors
(Walther & Ferguson 2015). Interacting proteins may
interfere with the receptor either on the intracellular site
or on the transmembrane spanning proteins and interact
with the transmembrane helices (Kristiansen 2004).

Intracellular interacting proteins

Many interacting proteins exist, modifying the efficacy or
mode of signaling and localization of the GPCRs (reviewed
in Ritter & Hall 2009, Maurice et al. 2011a, Walther &
Ferguson 2015). Examples of intracellular proteins can
be subdivided into arrestin, PDZ (postsynaptic density
95/disc large/zona occludens-1)-containing proteins, and
non-PDZ-containing proteins (Walther & Ferguson 2015),
which are a large group of scaffolding proteins modifying
GPCR functions. PDZ-containing proteins are a diverse
group of proteins such as the Na+-H+ exchange regulatory
factor (NHERF) (Dunn & Ferguson 2015), which changes
signaling properties from Gs/adenylyl cyclase activation
of the parathyroid hormone receptor (PTHR) to Gq/11
phospholipase C signaling (Ardura & Friedman 2011). For
B-adrenergic receptor 2 (ADRB2), NHERF1 acts as a trigger
for receptor resensitization, whereas in the absence of
NHERF1, ADRB2 is degraded (Hall et al. 1998). A further
example for non-PDZ-containing proteins that modulate
GPCR function is the adaptor protein 14-3-3tau, which
decreases FSH-induced cAMP accumulation (Cohen et al.
2004). Moreover, lysosomal degradation for the §-opioid
receptor occurs in the presence of an additional type of
interacting protein, the GPCR-associated sorting protein
1 (GASP1), whereas in the absence of GASP1, the receptor
is resensitized (Whistler et al. 2002).

Interacting transmembrane proteins

Identification of receptor activity modifying proteins
(RAMPs), the single transmembrane-spanning proteins,
underline a new mode of the functional regulation
of GPCRs. It was initially identified as an obligatory
factor for calcitonin gene-related peptide (CGRP) to
activate its receptor, the calcitonin receptor-like receptor
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(CL-R) McLatchieetal. 1998). Different members of RAMP
modify ligand specificity such as RAMP1 associated with
CL-R to facilitate CGRP binding; however, association
with RAMP2 to CL-R enables adrenomedullin to bind
to CL-R (McLatchie et al. 1998). Since then, different
members of the RAMP family have been identified.
All RAMPs interact with CL-R, the calcitonin and the
VPACI1 receptor; however, other GPCRs, such as glucagon
or the PTHR, function together with distinct RAMPs
(Hay et al. 2006).

The importance of interacting proteins for GPCR
function is further evidenced by various examples.
Previously, investigation of the functional aspects of the
ACTH receptor (MC2R, melanocortin 2 receptor) in vitro was
inconceivable as cell surface expression in different cell types
was impossible. This changed with the identification of the
melanocortin receptor-associated protein (MRAP) (Metherell
et al. 2005), a single transmembrane-spanning protein that
escorts the MC2R to the cell surface. Other melanocortin
receptors (MC1R, MC3R, MC4R and MCS5R) are able to
traffic to the cell surface in the absence of interacting
proteins; however, melanocortin  receptor-associated
protein 2 (MRAP2), which is primarily expressed in the
hypothalamus, has been identified to influence the function
of these MCRs (Cooray & Clark 2011, Jackson et al. 2015).
Moreover, prokineticin receptor-1 (PROKR1) is the first non-
melanocortin GPCR that is regulated by MRAP2 (Chaly
et al. 2016). This suggests a new pathway by which MRAP2
regulates energy homeostasis by inhibition of PROKR1.

Existence of direct interactions between GPCRs/ion
channels and GPCRs/transporters

Direct protein—protein interactions have also been
reported for GPCRs and ion channels such as KIR
channels or voltage-gated calcium channel Cav 2.2 that
form a macromolecular ion channel/GPCR signaling
complex (Doupnik 2008, Benleulmi-Chaachoua et al.
2016). In turn, this leads to the idea of the possibility for
a direct interaction and functional association between
GPCRs and further transmembrane-spanning proteins.
Channel types such as Ca2+ ion transporting transient
receptor potential channels (TRPs) (Veldhuis et al. 2015)
or substrate transporters, such as members of the major
facilitator superfamily (MFS) (Law et al. 2008), are known
to be closely linked to the function of GPCRs or vice
versa. Specific signals from GPCRs located on sensory
neurons converge on members of the TRP family, leading
to channel sensitization and activation, which amplify

e.g. pain, itch and neurogenic inflammation (Veldhuis
et al. 2015). On the other hand, several GPCR ligands are
transported out of the cell by members of the MFS with
12-transmembrane helices (e.g. dopamine transporter).
Furthermore, transporter substrates, such as glucose
for cell metabolism, are transported into the cell by
MEFS members (e.g. glucose transporter (GLUT)). There
are few examples that support the notion of a direct
GPCR/channel (Yekkirala 2013) or GPCR/transporter
interactions, e.g. the observed interplay between the
ADRB2, GLUT4 and melatonin 1 receptor/Cav 2.2
(Dehvari et al. 2012, Benleulmi-Chaachoua et al. 2016),
or modulation of monoamine transporters by common
biogenic amines via the TAAR1 (Xie et al. 2008).
Altogether, this raises the possibility that an association
between different proteins and GPCRs should be of
importance due to a fast mutual or synergistic influence
on functional properties. This hypothesis requires further
and solid confirmation and validation.

GPCR oligomerization in endocrine
dysfunctions

Is there a direct link between GPCR oligomerization and
pathophysiology?

Malfunctions of approximately 100 GPCRs are associated
with various human diseases (Hutchings et al. 2010)
including viral infections, inflammation,
infertility, and metabolic and neurological disorders
(Seifert & Wenzel-Seifert 2002, Dorsam & Gutkind
2007, Garcia-Jimenez & Santisteban 2007, Schoneberg
et al. 2004, Vassart & Costagliola 2011). Almost 20% of
tumors harbor mutations in GPCRs and approximately
10% of cancer-related mutations have been identified
in G-proteins (O'Hayre et al. 2013). An overview of the
diverse roles of G-protein-coupled receptors (GPCRs)
in the pathophysiology of various human diseases,
subdivided into associations with obesity, diabetes,
cardiovascular diseases, allergies or cancers, can be found
in the excellent review by Heng and coworkers (2013).
The pathogenic triggers at GPCRs vary from hormonal
dysregulation, virus infections, mutations, or interactions
with autoantibodies. Interestingly, recently
reported that 365 human GPCRs are potential drug targets
(Garland 2013).

As described in the numerous examples above,
oligomerization is a common property for GPCRs (Ferre &
Franco 2010) and can also be addressed to receptors

cancer,

it was
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involved in endocrine regulation such as the TSHR,
LHCGR or MC4R (Table 2). Secondly, oligomerization
is of functional relevance, although it has/could not
have been rendered more precisely for all the GPCRs
described here so far. By combining these two facts, that
the correct function of GPCRs correlates with a specific
protomer/protomer arrangement, makes it very likely
that a dysfunction of GPCR signaling can also be due to
modified oligomeric properties, e.g. by mutants in the
protomer interfaces or in the ligand binding sites.

Despite the huge and increasing amount of in vitro
findings and potentially artificial data, the relevance of
GPCR oligomerization in vivo has been confirmed by
several examples (Overton & Blumer 2000) including
cases of pathophysiological importance (Tadagaki et al.
2011, 2012b, Tschische et al. 2011, Kern et al. 2015).
GPCRs, in relation to neurophysiological processes,
are one of the best studied subjects in this field (Gomes
et al. 2000, 2013, Prinster et al. 2005, Fuxe et al. 2012).
For example, a serotonin/glutamate receptor complex
implicated in psychosis has been identified in previous
studies and a role for GHSR in modulation of the D1R
function in memory and behavior (Gonzalez-Maeso et al.
2008, Kern et al. 2015). Heteromerization between the
dopamine receptor subtypes, D1IR and D2R, are likely
to be implicated in depression (Rashid et al. 2007). The
D1R-D2R heterodimer was detected at higher levels in the
postmortem striatum of patients than in normal subjects
(Pei et al. 2010). Furthermore, the pathophysiological
relevance of oligomerization was indicated in a specific
case for angiotensin receptor II (AT1R) and bradykinin
receptor-2 (B2R). The AT1R-B2R heterodimer is supposed
to be functionally correlated with preeclampsia, as this
heteromer was observed to be more abundant on platelets
from pre-eclamptic women than on platelets from
normotensive pregnant women (AbdAlla et al. 2001).
Moreover, for the GABAB receptors, signaling activity is
inhibited due to ligand-induced monomerization of the
obligatory dimers, which has an impact on neuropathic
pain sensitization (Laffray ef al. 2012).

For GPCRs involved in endocrine regulation, which
has omni-relevance in physiology and medicine, the
elucidation of heteromeric forms have only recently
started to become systematic (e.g. Rediger et al. 2009),
with the motivation to investigate the entire ‘interactome’
and ‘signalosome’ of particular receptors (Table 2). The
homomeric arrangement, even in an oligomer-monomer
equilibrium (Lambert 2010), defines e.g. the LHCGR or
TSHR per se as complexes. To date, there have been no

difficulties in adequately combining or incorporating
this property into current and previous mechanistical
explanations of activation or inactivation, with few
exceptions (Zoenen et al. 2012).

In the GPCRs described here, one particular feature
potentially highlightsadirectlinkbetween oligomerization
and loss-of-function phenotypes: the dominant negative
effect of reported heterozygote mutants or distinct
receptor splice variants. Such dominant negative effects
have been observed for numerous GPCRs such as
rhodopsin (Kurada & O’Tousa 1995), AVPR2 (Zhu & Wess
1998), CCRS (Benkirane et al. 1997), LHCGR (Tao et al.
2004), TSHR (Calebiro et al. 2005), MC1R (Beaumont et al.
2005), GnRHR (Grosse et al. 1997, Brothers et al. 2004),
MC4R (Biebermann et al. 2003, Tarnow et al. 2008), or
the prostacyclin receptor (Ibrahim et al. 2010). Dominant
negative AT2R receptor oligomers induce G-protein arrest
and symptoms of neurodegeneration (AbdAlla et al. 2009).
For the aforementioned examples, it is generally assumed
that the negative effect of receptor variants is transferred
to the wild-type receptor by multimerization with the
modified and nonfunctional receptor variant.

For the GHSR, MC3R, MC4R, PROKR2 or GPHRs,
the occurrence of loss-of- or gain-of-function mutants in
patients with hypo- or hyperfunction have been described
(Themmen & Huhtaniemi 2000, Schoneberg et al. 2004,
Tao 2006, 2010, Vassart & Costagliola 2011, Rediger et al.
2012, Troppmann et al. 2013, Libri et al. 2014, Vassart &
Kleinau 2014). In particular, the mutations may cause
different mechanisms at the receptor on the molecular
level (excellently reviewed in Vassart & Costagliola 2011).
In case of gain-of-function, constitutively activating
mutations (CAMs) or substitutions leading to a loss of
ligand selectivity have been described. The interrelated
combination of both mechanisms caused by one single
side-chain substitution such as that reported for the FSHR
(Smits et al. 2003) is also feasible. Inactivating mutants
accompanied by a loss-of-function may influence many
individual or linked parameters at the receptor or ligand
such as decreased expression level or loss of ligand
binding capacity. In TSHR, pathogenic mutations lead to
diseased conditions such as congenital hypothyroidism
or nonautoimmune hyperthyroidism, whereas in the
LHCGR, male-limited precocious puberty (by CAMs)
or hypogonadism may be associated with inactivating
variants, although rare. CAMs of the TSHR have been
proven on their impact on oligomerization and a direct
modification of oligomeric states has not yet been
confirmed (Zoenen et al. 2012, Biebermann et al. 2012b).
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This does not exclude the possibility that natural mutations
in other receptors may indeed modulate oligomerization.
Moreover, the opportunity that inactivating mutations,
or a specific entity, interferes with a proper oligomer
function should be considered and systematically proven
in future studies.

Open aspects and future perspectives

Oligomerization is widely accepted to be a pivotal aspect of
GPCR function regarding transport, signal transduction,
signaling regulation and pharmacology. A certain number
of examples for relevant oligomers have been reported and
will further increase with the use of advanced methods
and by directed in vivo searches for GPCR oligomers.
Therefore, it is necessary to take GPCR oligomers into
consideration in comprehensively understanding their
physiological roles, and to explain interrelated processes
such as pathogenic dysfunctions and clinical disorders,
and in endocrine regulation. This perspective opens
fascinating avenues for potential directed and selective
pharmacological interventions. The incorporation of
oligomeric receptor models into strategies for GPCR
drug discovery and the targeting of homo- or heteromers
are both challenging and exciting for the identification
of new perspectives on the mechanisms of established
or new therapeutic agents. Therefore, studying GPCR
oligomerization and related structural-functional
consequences, including the physiological relevance,
is of importance. This includes the identification of
the particular GPCR interaction partners (interactome
analyses), which is dependent on physiological parameters
such as cell type or developmental stage.

A further major effort in future studies is the dissection
of functional effects induced by either monomers or
oligomers. This requires forced monomerization and
oligomerization of GPCRs, which is currently difficult to
achieve. Only a comparison of the properties of monomers,
homodimers, and those of wild-type receptor ‘mixtures’
present in a monomer/oligomer equilibrium will lead to
definitive answers for the functionality of the different
assembly states (Song etal. 2007, Lambert 2010, Teichmann
et al. 2012, 2014, Calebiro et al. 2013). Of specific note, at
the cell surface with a high number of expressed GPCRs
(likely to range between 10 and 100s, e.g. Regard et al.
2008) or many other transmembrane spanning proteins
such as transporters, it must be considered that many
different heteromers may indeed exist. Unfortunately,
current measurement methods do not simultaneously

detect quantitative numbers of homomers, heteromers
and monomers. This leaves open the possibility of
multiheteromers and multiple equilibriums for different
oligomers, expecting diverse oligomers of a particular
GPCR at the same time point. Finally, these questions must
be tackled in future studies, in line with the importance
of elucidating proteins expressed at specific cell types and
the further development of methods to study functional
oligomers in in vivo systems.
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