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Abstract
Insulin-secreting pancreatic B-cells are extremely dependent on their endoplasmic Key Words
reticulum (ER) to cope with the oscillatory requirement of secreted insulin to maintain » pancreatic beta cells
normoglycemia. Insulin translation and folding rely greatly on the unfolded protein » inflammation
response (UPR), an array of three main signaling pathways designed to maintain ER » unfolded protein
homeostasis and limit ER stress. However, prolonged or excessive UPR activation triggers response
alternative molecular pathways that can lead to p-cell dysfunction and apoptosis. An > NF-kB

» diabetes

increasing number of studies suggest a role of these pro-apoptotic UPR pathways in

the downfall of p-cells observed in diabetic patients. Particularly, the past few years
highlighted a cross talk between the UPR and inflammation in the context of both type
1 (T1D) and type 2 diabetes (T2D). In this article, we describe the recent advances in

research regarding the interplay between ER stress, the UPR, and inflammation in the

context of p-cell apoptosis leading to diabetes.
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Introduction

The endoplasmic reticulum (ER) is an intracellular
organelle responsible for several crucial features of cellular
homeostasis, such as protein maturation and transport
and Ca2+ homeostasis (Ellgaard & Helenius 2003, Walter
& Ron 2011). Therefore, maintaining the ER homeostasis
is crucial for proper cellular function and cells have
developed an adaptive response to the disruption of this
homeostasis named the unfolded protein response (UPR).
The UPR encompasses an array of signaling pathways
mediated by the action of three signaling proteins named
inositol-requiring protein la (IREla), protein kinase RNA
(PKR)-like ER kinase (PERK), and activating transcription
factor 6 (ATF6) (Walter & Ron 2011).

Upon ER stress, IREla autophosphorylates leading
to alternate splicing and translation of the active form of
the transcription factor XBP1 (XBP1s), which stimulates
the expression of chaperones and components of the
ER-associated protein degradation (ERAD) pathway (Pincus
etal. 2010, Walter & Ron 2011). Moreover, IREla selectively
degrades mRNAs (RIDD, regulated IRE1-dependent decay),
thereby decreasing the ER protein load (Maurel et al.
2014). PERK also undergoes autophosphorylation and
activation upon ER stress, leading to phosphorylation of
the eukaryotic initiation factor 2o (elF2a) and decreased
general translational activity, reducing ER protein overload
(Walter & Ron 2011). However, PERK-mediated elF2a
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phosphorylation also triggers selective induction of ATF4
(Luetal. 2004). Moreover, PERK directly phosphorylates and
activates the nuclear erythroid 2 p45-related factor 2 (NRF2)
by disrupting the NRF2-KEAP1 (Kelch-like ECH-associated
protein 1) complex (Cullinan & Diehl 2006). Both NRF2
and ATF4 induce the expression of antioxidant genes, which
counteracts the increase in reactive oxygen species (ROS) due
to the boosted oxidation/reduction reactions during UPR-
stimulated protein folding (Harding et al. 2003, Malhotra
& Kaufman 2007, Hybertson et al. 2011). However, PERK/
ATF4 can initiate pro-apoptotic responses via upregulation
of the C/EBP homologous protein (CHOP) (McCullough
et al. 2001, Oyadomari et al. 2002a,b, Oyadomari & Mori
2004). Activation of the third UPR branch, the transcription
factor ATF6, is mediated via cleavage by site-1 and site-2
proteases (SP1 and SP2) in the Golgi. Cleaved ATF6 regulates
the expression of several genes encoding chaperones, ERAD
components, and XBP1 (Hetz 2012). Notably, the three UPR
branches may be independently and differentially activated
depending on the type and duration of ER stress and the
cell type (Cardozo et al. 2005, Gomez et al. 2008, Engin et al.
2013). However, it remains unclear how this differential
activation is coordinated.

The UPR can be divided into two distinct phases:
the initial or the adaptive phase and the second or the
maladaptive phase. While the first phase is characterized
by cell survival and restoration of ER homeostasis by the
mechanisms described above, the second phase is initiated
under conditions of irreversible ER stress and results in
the activation of pro-inflammatory responses and cell
death (for more details of cell death pathways activated
during ER stress, please see reviews of Tabas & Ron 2011,
Gorman et al. 2012, Cao & Kaufman 2014).

Glucose homeostasis depends on a tightly regulated
secretion of insulin by the pancreatic p-cells. The ever-
changing demand for insulin production and secretion
in response to nutrient stimulation relies greatly on the
ER, to ensure synthesis and proper folding of pro-insulin
(Back et al. 2009, Hassler et al. 2015). As a result, p-cells
are exquisitely sensitive to additional ER pressure and
accumulating evidence indicate a major role of the UPR
in the context of p-cell demise leading to diabetes (Brozzi
& Eizirik 2016, Hasnain et al. 2016).

This article focuses on (1) the signal transduction
pathways involved in the UPR and their connections to
inflammation, (2) the specific role of the UPR in pancreatic
B-cell survival in the context of diabetes, (3) the interplay
between UPR signaling and inflammation in pancreatic
B-cells, and (4) the potential ER stress-targeting therapies
to treat diabetes.
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UPR and inflammation

The pro-inflammatory signaling pathways initiated
downstream of the UPR are mainly coordinated via
activation of the nuclear factor kB (NF-kB) and activating
protein  (AP)-1 transcription factors (Hotamisligil
2010, Garg et al. 2012). NF-«xB is a major modulator of
inflammatory responses controlled by the IkB kinase
(IKK) complex formed by IKKB, IKKa, and IKKy (Shih
et al. 2011). When stimulated, the IKK complex leads to
phosphorylation and degradation of the inhibitory B
(IxkB) protein, allowing NF-«B dimers to migrate to the
nucleus and induce the expression of several cytokines and
chemokines (Shih et al. 2011). During ER stress, NF-xB can
be induced due to PERK-mediated attenuation of protein
translation, leading to decreased levels of IkB proteins and
consequent increase of NF-xB (Fig. 1) (Deng et al. 2004).
IREla may also trigger NF-kB activation by binding to the
tumor necrosis factor (TNF)-receptor associated factor 2
(TRAF2), which activates the IKK complex (Kaneko et al.
2003, Hu et al. 2006) (Fig. 1). Loss of either IRE1a or PERK
reduces NF-kB during ER stress, indicating a synergistic
effect of these kinases on NF-xB activity (Tam et al. 2012).
In addition, two studies have shown that ATF6 stimulates
NF-kB activity downstream of AKT phosphorylation
(Yamazaki et al. 2009, Rao et al. 2014).

AP1 is a dimer composed of transcription factors
from different families of proteins such as JUN, FOS,
ATF, and MAF (Davis 2000). The diversity of AP1 dimers
implicates this transcription factor in different cellular
responses. Thus, AP1 modulates inflammation by
upregulating the expression of cytokines, chemokines,
and other pro-inflammatory molecules (Angel et al. 2001,
Shaulian & Karin 2001, Efer]l & Wagner 2003). Several pro-
inflammatory genes have binding sites for both AP1 and
NF-xB (Angel et al. 2001). During ER stress, AP1 activation
can be initiated downstream of IREla, via TRAF2-
mediated JNK phosphorylation (Fig. 1) (Urano et al. 2000).
Moreover, both NF-xB and AP1 signaling may be activated
by ROS generated during ER stress (Garg et al. 2012).

Besides NF-xB and AP1, the UPR may trigger pro-
inflammatory responses via XBP1ls and ATF4, since
these transcription factors were shown to stimulate
the expression of pro-inflammatory cytokines and
chemokines, such as TNF, IL6, IL8, C-X-C motif ligand 2
(CXCL2), and C-X-Cmotifligand 3 (CXCL3) in endothelial
cells during UPR (Gargalovic et al. 2006). ATF4 was also
shown to contribute to LPS-induced C-C motif ligand 2
(CCL2) production in endothelial cells and retina and IL6
in macrophages (Iwasaki et al. 2014, Huang et al. 2015).

http:/jme.endocrinology-journals.org
DOI: 10.1530/JME-15-0306

© 2016 Society for Endocrinology
Printed in Great Britain

Published by Bioscientifica Ltd.


http://dx.doi.org/10.1530/JME-15-0306
http://jme.endocrinology-journals.org

Journal of Molecular Endocrinology

K MEYEROVICH, F ORTIS and

others

Endoplasmic reticulum stress 57:1 R3

- I.’"H‘aé.r.o_pila-_gré- ——

Txnip

P-1 pre-mRNA

Splim-i

fTrAr2

@\/

__ SRS =
@ “NF KB @

3

¥ TNF-a @ Misfolded prot
V' OIFN-y
¥ owp
¥ 23,124
Qo
e T
- -
- \
" !
- Chaperones
pa XBP-1s JLWi ERAD
QNN TIEA components

INK

(inos) 1up

Pro-inflammatory

ic

b ] S ———

; i
\ \Lp Translation arrest . ,
i i ATF4
3 : P Q ZRSOTS
a ’ A
(_(z%)_—i ATF4 .
ipids e {selecﬂﬁé‘fﬁgﬂaﬂcn] - N\ f;
2
Cytoplasm . _Nucleus -~

Figure 1

Schematic representation of the possible cross talks between UPR and pro-inflammatory pathways in pancreatic p-cells under ER stress. Pro-inflammatory
cytokines (IL1B, TNF, IFN, 1L23, and IL24), lipids (free fatty acids), IAPP aggregates, and Serca2 blockers induce ER stress by diverse mechanisms such as NO
formation, ROS production, and ER calcium depletion leading to UPR activation in pancreatic p-cells. UPR-mediated activation of IRE1« (by its
dimerization and phosphorylation) may lead to the recruitment of the adaptor protein tumor necrosis factor receptor-associated factor 2 (TRAF2)
leading to activation of NF-xB (via IkBa degradation) and JNK. JNK activation in turn increases AP1 activity and both AP1 and NF-kB migrate to the
nucleus to induce expression of pro-inflammatory genes. Under pro-inflammatory stimulation, JNK (via AP1) upregulates CHOP expression, consequently
increasing IkBa degradation, NF-kB activation and elevated NO production further potentiating ER stress responses. Furthermore, IRE1a induces the
alternative splicing of XBP1s, which may increase NF-xB activation via its inhibitory effect on FOX01. Finally, IRE1a increases degradation of miRNA that
targets Txnip, leading to increased activation of the NLRP3 inflammasome and IL1B production, under certain conditions. Activation of the PERK arm in
ER-stressed p-cells might activate NF-kB via ATF4-mediated increase in the expression of CHOP. Moreover, PERK inhibits general protein translation (via
phosphorylation and activation of elF2a), which may also increase NF-xB activation, due to inhibition of de novo IkBa expression. Finally, PERK was also
shown to contribute to the activation of the NLRP3 inflammasome and IL1p release. Furthermore, cytokine-induced ER stress stimulates translocation of
citrullinated BiP to the plasma membrane where it may activate the immune system, thereby contributing to the inflammatory response in the islets.
This ER stress-mediated inflammatory state contributes to the maintenance of ER stress and probably leads to p-cell demise. Additional information and

supporting references are provided in the text.

Furthermore, XBP1sisimplicated in synergistic production
of type 1 interferons (IFNs), for example, IFN-B or IFN-
a, in response to combination of ER stress and Toll-like
receptor (TLR) signaling in macrophages (Martinon et al.
2010, Zeng et al. 2010).

Both the UPR and inflammation are important
protective cellular/tissue responses that when deregulated
can lead to cellular damage. In line with this, UPR
dysfunction is involved in many autoimmune and
inflammatory disorders, such as diabetes (Hotamisligil

2010, Kaser & Blumberg 2010, Oslowski & Urano 20114,
Chaudhari et al. 2014).

Pancreatic -cell susceptibility to ER stress

The two main forms of diabetes are T1D and T2D. T1D is
primarily caused by an autoimmune attack leading to p-cell
destruction and insulin deficiency (Seino et al. 2010). T2D
is triggered by the combination of insulin resistance and
impaired p-cell function and survival, mostly secondary
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to metabolic factors through a process referred to as
glucolipotoxicity (Seino et al. 2010). Both pathologies
are characterized by decreased fp-cell mass secondary to
apoptosis; however, p-cell loss is more marked in T1D
and is a relative late event in T2D, probably contributing
to secondary failure of oral therapies (Christoffersson
et al. 2016, Hara et al. 2016). In T1D, pro-inflammatory
cytokines are early mediators of B-cell apoptosis, while in
T2D a combination of high glucose, cholesterol, and free
fatty acid (FFA) levels contribute to p-cell death. Cytokines,
high glucose, and FFAs induce ER stress in p-cells (Eizirik
et al. 2008, Cnop et al. 2010, Brozzi & Eizirik 2016). CHOP
and BiP levels are increased in islets from individuals with
T1D as compared with nondiabetic individuals (Marhfour
et al. 2012). In islets from T2D patients, an increased ER
density together with augmented levels of CHOP and the
ER chaperones BiP and DNAJC3 (also known as pS8IPK)
was observed as compared with nondiabetic controls
(Huang et al. 2007, Laybutt et al. 2007, Marchetti et al.
2007). These studies suggest an involvement of the ER
stress pathways in the development of both T1D and T2D.

B-cells are unique due to their capacity to sense
blood glucose and to respond to changeable demands in
insulin secretion. An increase in insulin production, up
to 20-fold induced by glucose, is a common physiological
response of B-cells that results in an intense trafficking of
proteins through the ER (Eizirik et al. 2008). Therefore,
B-cells express high levels of the UPR transducers IREla
and PERK, which are necessary for strict quality control
of pro-insulin synthesis and to limit oxidative stress
induced during the insulin folding, a process that could
lead to p-cell failure (Lipson et al. 2006, Eizirik et al. 2008,
Back et al. 2009, Oslowski & Urano 2011a, Hassler et al.
2015). Thus, p-cell exposure to intermittent physiological
levels of high glucose increases pro-insulin production
with a controlled and regulated UPR activation, which
contributes to proper f-cell function and survival
(Oslowski & Urano 2011a). However, chronic exposure to
hyperglycemia induces prolonged activation of the IREla
pathway leading to p-cell apoptosis (Lipson et al. 2006,
2008, Elouil et al. 2007, Pirot et al. 2007a, Hou et al. 2008,
Han et al. 2009, Jonas et al. 2009). Sustained activation of
ATF6 also contributes to p-cell dysfunction via inhibition
of the insulin promoter activity and induction of p-cell
death (Seo et al. 2008). Similarly, persistent XBP1s
production hampers -cell function, eventually leading
to apoptosis (Allagnat et al. 2010). Sustained PERK
activation/elF2a phosphorylation contributes to p-cell
apoptosis via inhibition of protein translation leading to
decreased levels of the anti-apoptotic protein MCL1 and
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by inducing the pro-apoptotic protein CHOP (Oyadomari
et al. 2002b, Scheuner et al. 2005, Cnop et al. 2007, Song
et al. 2008, Allagnat et al. 2011, 2012).

Several studies in animal models demonstrated a
prominent role for the different UPR pathways on p-cell
survival and function (Eizirik et al. 2008, Volchuk & Ron
2010). Moreover, mutations in diverse genes leading to
pB-cell ER stress contribute to the development of diabetes
in humans (Inoue et al. 1998, Delepine et al. 2000, Stoy
et al. 2007, Colombo et al. 2008, Polak et al. 2008, Liu
etal. 2015, Sun et al. 2015). These results suggest that tight
control of ER homeostasis is crucial to maintain p-cell
function and survival.

Inflammation induces ER stress in pancreatic
p-cells

Type 1 diabetes

The most evident role of inflammation-induced ER stress in
pancreatic B-cells is in the context of T1D (Brozzi & Eizirik
2016). At early stages of the disease, T-cells, macrophages,
dendritic cells, and natural Killer cells surround the
islets in a process called insulitis (Eizirik et al. 2009).
During insulitis, p-cells are exposed to pro-inflammatory
cytokines and free radicals, such as interleukin-1p (IL1p),
TNEF, IFN-y, interleukin-17 (IL17), and NO secreted by
these infiltrating immune cells, inducing a first wave of
p-cell apoptosis (Eizirik et al. 2009). Cytokine-mediated
p-cell death is a complex phenomenon involving NO
production, activation of the diverse transcription factors
(e.g., NF-xB and STAT1), MAP kinases (e.g., JNK), and ER
stress that culminate in the induction of the intrinsic pro-
apoptotic pathway (Eizirik ef al. 2009, Gurzov & Eizirik
2011). In addition, pro-inflammatory cytokines stimulate
the expression and secretion of cytokines and chemokines
by the p-cells themselves, initiating a pro-inflammatory
dialog between p-cells and the immune system (Eizirik
et al. 2009, Grieco et al. 2011). This contributes to
massive T-cell infiltration within the islets and final
B-cell destruction (Eizirik et al. 2009, Grieco et al. 2011).
Recent evidences suggest that ER stress is also involved
in the pro-inflammatory responses induced by cytokines
in p-cells (see below, ER stress-induced inflammation in
pancreatic p-cells).

Increased expression of ER stress markers is observed
in insulitis-positive and cell-containing islets of T1D
patients (Marhfour ef al. 2012). In line with these
results, virus-inducible autoimmune diabetes in the
diabetes-resistant BB (BBDR) rat is accompanied by an
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activation of the IRE1a/XBP1 pathway preceding insulitis
and a later increase in CHOP expression and caspase 3
activation coinciding with diabetes development (Yang
et al. 2013). Moreover, expression of ER stress markers
and f-cell dysfunction appear before the development of
hyperglycemia in nonobese diabetic (NOD) mice, in which
a clear increase in the expression of NF-xB target genes is
observed (Tersey ef al. 2012). These results indicate, in vivo,
a cross talk between inflammatory signaling and ER stress
induction that probably contributes to diabetes onset.

Exposure of rat primary f-cells to IL1p+IFN-y
in vitro decreases the expression of Serca2b, the main
Ca2+ pump driving Ca?+ influx into the ER, leading
to ER Ca?+ depletion and activation of the UPR in
rat pancreatic p-cells (Cardozo et al. 2005). Cytokine-
induced ER stressin rat primary p-cellsis a consequence
of NF-kB-mediated NO production, since inhibition
of NO prevents Serca2b downregulation, splicing of
XBP1 and CHOP upregulation (Fig. 1) (Cardozo et al.
2005). By contrast, in mouse p-cells/islets, cytokine-
mediated Serca2b downregulation and UPR activation
are independent of NO production (Chan et al. 2011).
However, in these fB-cells, the free radical contributes
to the activation of pro-apoptotic responses by
upregulating CHOP and decreasing the expression of
ER chaperones (Chan et al. 2011). In human p-cells,
pro-inflammatory cytokines also induce ER stress
responses (Allagnat et al. 2012, Brozzi et al. 2015) and,
similar to mouse p-cells, this effect is independent
of NO production (Brozzi et al. 2015). The factors
inducing ER stress in cytokine-treated human p-cells
remain to be determined.

Cytokine-induced UPR in p-cells is characterized by a
strong activation of the PERK-ATF4-CHOP pathway and
a defective induction of ER chaperones, probably due to
the lack of ATF6 activation and a modest increase in XBP1
splicing (Rasschaert et al. 2003, Cardozo et al. 2005, Ortis
etal. 2010). Moreover, IFN-y potentiates IL1p-induced death
of a rat insulinoma cell line (INS-1E cells) by decreasing
the expression of spliced Xbpl mRNA and several ER
chaperones (Fig. 1) (Pirot et al. 2006). Cytokine-mediated
NO production was shown to inhibit the expression of
the ER chaperones, foldases, and degradation enhancers,
decreasing the capacity of a mouse insulinoma cell line
(MIN®6) cells and primary mouse p-cells to alleviate ER
stress (Chan et al. 2011). In line with these in vitro results,
the levels of XBP1s and ATF6 are diminished in islets
from T1D patients and two mouse models of T1D (NOD
and RIP-LCMV-GP (rat insulin promoter-lymphocytic
choriomeningitis virus—-glycoprotein)) (Engin et al. 2013).
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Interestingly, administration of the chemical chaperone
TUDCA increases ATF6 expression and decreases f-cell
death, islet inflammation, and development of diabetes
in these mouse models (Engin et al. 2013). These results
indicate that a defective expression of ER chaperones may
contribute to p-cell susceptibility to ER stress and cell
death in T1D.

Type 2 diabetes

Obesity, a major risk factor for T2D, is characterized by
systemic low-grade chronic inflammation in the form
of increased circulating levels of pro-inflammatory
cytokines such as TNE IL1p, and IL6 and lower levels of
anti-inflammatory adipokines such as adiponectin and
omentin (Pereira & Alvarez-Leite 2014). In line with this,
elevated circulating levels of pro-inflammatory cytokines
characterize the early (or pre-clinical) stages of T2D and
exhibit a graded increase with the disease progression
(Duncan et al. 2003, Grossmann et al. 2015). Interestingly,
recent studies also suggest links between inflammation
and ER stress in T2D patients at the level of the immune
system. Thus, peripheral blood mononuclear cells (PBMCs)
of T2D patients express higher levels of BiP, CHOP, and
thioredoxin-interacting protein (TXNIP), and lower levels
of IkBa and NRF2 (Lenin et al. 2015, Mozzini et al. 2015),
suggesting chronic ER stress in PBMCs and increased pro-
inflammatory signals in those patients. Whether these
relatively low levels of circulating cytokines affect p-cell
survival in vivo remains unclear, although they seem to
affect the secretory function of INS1E cells in vitro (Eizirik
1991, Zhang & Kim 1995, Kiely et al. 2007). FFAs may
also activate TLR2 and TLR4 in mouse islets, leading to
the expression of pro-inflammatory factors via NF-«xB
(Eguchi et al. 2012, Pal et al. 2012, Yin et al. 2014). This
local inflammation probably contributes to increased
recruitment of immune cells, particularly macrophages,
in the vicinity of islets in T2D patients, promoting a pro-
inflammatory environment and UPR activation (Eguchi &
Manabe 2013, Cucak et al. 2014). Islets from T2D patients
produce amyloid polypeptide (hIAPP), which aggregates
to form amyloid fibrils. Interestingly, extracellular
hIAPP aggregation provokes ER stress and impairs the
ubiquitin—proteasome pathway in INS-1 cells (Haataja et al.
2008). Thus, while lipids, via Ca2+ modulation and ROS
generation, are probably the major cause of ER stress, p-cell
dysfunction, and apoptosis in T2D (reviewed in (Cnop et al.
2010)), lipid-induced inflammation together with adipose-
tissue-mediated low-grade inflammation likely contribute
to ER stress and to the progression of the disease (Fig. 1).
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Recently, Hasnain et al. (2014) provided a direct
evidence for the role of inflammation in ER stress
induction in T2D. Thus, they showed that IL23 and 1124
are increased in islets of T2D patients, and that blocking
these cytokines partially reduced oxidative and ER stress
in the islets and improved glucose tolerance in obese
mice (Fig. 1) (Hasnain et al. 2014). The authors further
demonstrated that administration of IL22, a cytokine
that decreases ROS formation, was able suppress ER stress
and improve islet function, leading to the restoration of
glucose homeostasis in these animals (Hasnain et al. 2014).
Overall, there is a growing amount of evidence suggesting
that inflammation contributes to UPR induction and
p-cell fate in both T1D and T2D.

ER stress-induced inflammation in
pancreatic p-cells

ER stress, NF-kB, and JNK signaling

Although this research area is not yet well developed,
different lines of evidence support a role for the UPR in
inducing and/or amplifying inflammatory responses
in pancreatic p-cells. They are mainly focused on the
transcription factor NF-xB, a key regulator of pro-
inflammatory responses in these cells (Cardozo et al. 2005,
Ortis et al. 2010, 2012). Microarray analysis of INS-1E
cells exposed to the Serca2 blocker and ER stress inducer
cyclopiazonic acid (CPA) demonstrated modulation
of pro-inflammatory genes, some of them which are
NF-xB dependent (Pirot et al. 2007a). Thus, CPA-treated
INS-1E cells express increased levels of the chemokines,
CXCL1 and CXCL2; the cytokines IL1f, TNF, TNF ligand
superfamily member 1 (TNFSF1, previously known as TNEF-
f), and IFN-y receptor; and decreased levels of IL6, IL1S,
and CCLS (Pirot et al. 2007a). Later studies showed that
CPA and another Serca2 blocker, namely thapsigargin,
induce NF-kB activation in INS-1E cells and human islets
(Tonnesen et al. 2009, Igoillo-Esteve et al. 2010). Notably,
NF-xB activation and expression of its downstream genes
induced by the Serca2 inhibitors are of a much lower
magnitude than that observed in p-cells treated with
pro-inflammatory cytokines (Pirot et al. 2007a, Tonnesen
et al. 2009, Igoillo-Esteve et al. 2010). While TNF and IL1p
induce a strong NF-«xB activation due to binding to their
respective receptors (Shih et al. 2011), the mechanisms
linking Serca2 inhibition with NF-«xB activation in p-cells
were not fully investigated. Translational attenuation
does not seem to be the main mechanism since salubrinal,
a selective inhibitor of el[F2a dephosphorylation, did not
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modify CPA-mediated NF-kB activation in human islet
cells (Igoillo-Esteve et al. 2010). However, thapsigargin was
shown to potentiate cytokine-mediated NF-xB activation
and pro-inflammatory gene expression by increasing IkBa
protein degradation in MING6 cells (Chan et al. 2012). ER
calcium depletion is probably an important trigger of
NF-xB activation in f-cells, since tunicamycin, an agent
inducing ER stress via inhibition of protein glycosylation
(Oslowski & Urano 2011b) does not induce or potentiate
NF-B activation in MIN6 and rat primary p-cells (our own
unpublished data) (Chan et al. 2011). A subsequent study
by Miani et al. (2012) showed that INS-1E cells or primary
rat p-cells exposed to a low concentration of CPA are
sensitized to IL1p-mediated pro-inflammatory responses.
Thus, expression of NF-kB downstream genes such as
FAS, CCL2, CXCL1, and iNOS, as well as NO production
were higher in p-cells pre-exposed to CPA, as compared
with cells treated with IL1p alone. This effect was due
to a XBP1-mediated degradation of the NF-kB-inhibitor
fork head boxO1 (FoxO1) protein (Fig. 1), suggesting
pro-inflammatory properties of XBP1 (Miani et al.
2012). However a recent article showed that IRE1a/XBP1
ablation in adult mouse islets leads to increased levels of
IL1B, iNOS, and CXCL2 after exposure to high glucose
(Hassler et al. 2015). The authors suggest that this increase
in pro-inflammatory gene expression occurs downstream
of elevated ROS formation in Irela/- islets and is not a
direct effect of XBP1 on these genes (Hassler et al. 2015).
Therefore, the outcome of the pro- or anti-inflammatory
effects of XBP1 in p-cells seems to be context dependent
and defined by the balance between its anti-apoptotic/
anti-oxidative responses versus its direct pro-inflammatory
signaling. This is in agreement with data obtained in other
tissues showing that while XBP1 deficiency may stimulate
inflammation (Kaser et al. 2008), XBP-1 signaling may
also directly induce pro-inflammatory responses (Smith
et al. 2008, Martinon et al. 2010, Zeng et al. 2010, Hu et al.
2011, Ziogas et al. 2015).

The transcription factor CHOP is induced upon ER
stress downstream of the PERK pathway (Fig. 1) (Oyadomari
& Mori 2004). CHOP contributes to rodent and human
pB-cell apoptosis and its expression is upregulated in islets
from both T1D and T2D patients (Laybutt et al. 2007,
Cunha et al. 2008, Allagnat et al. 2012). Besides its pro-
apoptotic role, recent studies revealed a pro-inflammatory
role for CHOP in different disease models, including
myocardial inflammation (Miyazaki et al. 2011), lung
damage induced by LPS (Endo et al. 2005), chemical
hepatocarcinogenesis (DeZwaan-McCabe et al. 2013), and
high fat diet-induced diabetes (Maris et al. 2012). Other

http:/jme.endocrinology-journals.org
DOI: 10.1530/JME-15-0306

© 2016 Society for Endocrinology
Printed in Great Britain

Published by Bioscientifica Ltd.


http://dx.doi.org/10.1530/JME-15-0306

Journal of Molecular Endocrinology

K MEYEROVICH, F ORTIS and
others

studies have also shown that CHOP positively regulates
the expression of pro-inflammatory cytokines such as IL1§
and IL8 and chemokines such as CCL2 in different tissues
(Kodama et al. 2005, Endo et al. 2006, Cucinotta et al.
2008, Suyama et al. 2008, Namba et al. 2009). In INS-1E
cells and rat primary p-cells CHOP contributes to NF-xB
activation by promoting IkBa degradation and subsequent
po6S translocation to the nucleus (Fig. 1) (Allagnat et al.
2012). This leads to an increased expression of key NF-xB
target genes involved in apoptosis and inflammation,
including iNOS, FAS, IRF7, IL15, CCLS, and CXCLI0
(Allagnat et al. 2012). The mechanisms by which CHOP
regulates NF-kB activation are not yet clear. Moreover, the
impact of CHOP knockdown in in vivo models of T1D is
controversial. Thus, backcrossing NOD mice with Chop-/~
mice did not prevent or delayed diabetes incidence (Satoh
et al. 2011). However, Chop-- mice are protected against
multiple low-dose streptozotocin (MLDSZT)-induced
diabetes (Ariyama et al. 2008). The observed protection
against MLDSZT, however, suggests that Chop deletion
may favor p-cell survival in a model where inflammation
plays a key role, as suggested by the previously described
protection afforded by inhibiting NF-kB expression in
B-cells from MLDSZT-treated mice (Eldor et al. 2006).

In summary, when activated by pro-inflammatory
cytokines, the transcription factor NF-xB regulates UPR
responses of p-cells. However, the UPR positively regulates
NF-xB activity and pro-inflammatory responses, increasing
apoptotic signaling and expression of pro-inflammatory
cytokines and chemokines that may contribute to p-cell
demise (Fig. 1).

As mentioned above, JNK is another player linking
ER stress to inflammation in other cell types. In p-cells,
IL1p+IFN-y-mediated JNK activation is partially mediated
by IREla (Fig. 1) (Brozzi et al. 2014). Although the pro-
apoptotic role for JNK in p-cells is well established
(Bonny et al. 2001, Nikulina et al. 2003), few studies have
evaluated and demonstrated a pro-inflammatory role
for JNK in these cells (Hou et al. 2011, Tan et al. 2013,
Lawrence et al. 2015). One of the mechanisms by which
JNK contributes to ER stress-mediated inflammation in
B-cells is by upregulating CHOP expression (Fig. 1) (Pirot
et al. 2007b, Allagnat et al. 2012). Further studies are
necessary to evaluate the role of JNK in f-cell mediated-
pro-inflammatory responses.

ER stress, IL1g, and the inflammasome

Although controversial, it has been proposed that exposure
of mouse or human islets to high glucose concentrations
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induces production of IL1p contributing to p-cell apoptosis
and constitutes a common mechanism for p-cell death in
both T1D and T2D (Cnop et al. 2005, Mandrup-Poulsen
et al. 2010). IL1p production is mediated via the NLR
family pyrin domain containing 3 (NLRP3) inflammasome,
which in turn can be activated via increased expression of
TXNIP (Yoshihara et al. 2014). The chemical ER stressor,
thapsigargin, was shown to upregulate Txnip mRNA in
INS-1E cells, mouse, and human primary islets leading to
activation of the NLRP3 inflammasome and release of IL1,
contributing to p-cell death (Lerner et al. 2012, Oslowski
et al. 2012). While Txnip induction is directly modulated
by PERK (Oslowski et al. 2012), IREla exhibits an indirect
effect on Txnip via IREla-mediated degradation of a
repressive microRNA (Fig. 1) (Lerner et al. 2012). However,
a subsequent study failed to observe protection of mouse
NLRP3-- or caspase-1-/- islets against ER stress, glucose, or
glucolipotoxicity-mediated cell death (Wali et al. 2014).
Moreover, genetic activation of NLRP3 specifically in
mouse p-cells did not induce IL1p expression/production
or increased cell death in response to glucolipotoxicity
stimuli (Wali et al. 2014). The latter results contradict a
role for IL1p or NLRP3 inflammasome in high-glucose-
and/or ER stress-mediated p-cell death and are consistent
with other studies that failed to show a role for IL1p under
these conditions (Kharroubi et al. 2004, Cnop et al. 2005,
McKenzie et al. 2010). Notably, IL1p alone does not induce
apoptosis in primary p-cells (Eizirik & Mandrup-Poulsen
2001, Cardozo et al. 2005). Therefore, further studies are
necessary to clarify the role of ER stress in IL1f production
and its involvement in p-cell death in diabetes.

ER stress and antigen presentation

In T1D, initiation and progression of the disease is related
to the presence of p-cell-specific autoantibodies (van Belle
et al. 2011). Notably, the majority of p-cell autoantigens
recognize proteins produced in the ER (van Belle et al. 2011).
Pro-inflammatory cytokines induce both ER stress and
assembly of the MHC complex in the organelle (Rasschaert
et al. 2003, Cardozo et al. 2005). Therefore, it is plausible that
cytokine-mediated UPR could influence post-translational
modification of proteins, leading to production and
presentation of potential autoantigens. It was previously
shown that ER calcium depletion drives the translocation
of ER-resident proteins BiP, GRP94, and calreticulin in
the plasma membrane (Peters & Raghavan 2011), which
may have pro- or anti-inflammatory outcomes depending
on the protein and cellular context (Panayi & Corrigall
2006, Peters & Raghavan 2011, Raghavan et al. 2013,
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Pockley et al. 2014). A recent publication showed that
cytokines and ER stressors induce translocation of BiP
to the plasma membrane in INS-1E, MIN6 cells, and
mouse islets (Rondas et al. 2015). Interestingly, pro-
inflammatory cytokines, but not ER stressors, induced
BiP citrullination in INS-1E cells (Rondas et al. 2015).
Citrullinated BiP induced production of autoantibodies
that stimulated effector T-cells in pre-diabetic NOD mice
(Fig. 1) (Rondas et al. 2015). The presence of citrullinated
proteins correlates with activation of the immune system
in autoimmune diseases (Blass et al. 2001, Shoda et al.
2011) and increased response to citrullinated GAD6S
peptides is observed in T1D patients (McGinty et al. 2014).
Another evidence that ER stress response may influence
B-cell antigen presentation is delayed appearance of
autoantibodies observed in NOD mice knockout for Chop
(Satoh et al. 2011). However, the mechanism leading to
this delayed antibody response was not investigated in
this study (Satoh et al. 2011). A recent elegant publication
showed that p-cells transfer antigenic epitopes to antigen
presenting cells via a direct membrane contact (Vomund
et al. 2015). This is a novel mechanism, however, not
specific for ‘diabetic’ p-cells, since it was observed in
both diabetic and nondiabetic mice and in nondiabetic
humans. Interestingly, high glucose increased the transfer
of epitopes (Vomund et al. 2015). The mechanism for
this increase has not been yet investigated, but it would
be interesting to verify whether it is not due to high
glucose-induced ER stress. Further work is necessary to
clarify the role for ER stress in the process of autoantibody
production in patients with T1D and its consequences on
p-cell autoimmunity (Marre et al. 2015).

ER stress-targeting therapies

As described above, several studies support an important
role for ER stress in the pathogenesis of T1D and T2D.
Therefore, the development of strategies to prevent or
alleviate ER stress in p-cells may prove useful for prevention
and/or treatment of these diseases. Approaches targeting
the UPR for therapeutic purposes remain largely in their
infancy, but several strategies aimed at improving ER
function in pancreatic $-cells are emerging (Fig. 2).

Targeting the chaperone capacity of the cells

One strategy to alleviate ER stress in p-cells relies on the
use of chemical chaperones. Two compounds, in particular
4-phenyl butyric acid (4-PBA) and taurine-conjugated
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ursodeoxycholic acid (TUDCA), show promising results
regarding diabetes therapy. As mentioned above, TUDCA
administration at the pre-diabetic stage reduces diabetes
incidence in the NOD and RIP-LCMV-GP mouse models
of T1D and this reduction is accompanied by improved
survival and preserved insulin secretion (Engin et al.
2013). In vitro, TUDCA inhibits elF2a phosphorylation
and restores thapsigargin-induced p-cell dysfunction
in porcine islets (Fig. 2) (Lee et al. 2010), while 4-PBA
ameliorates palmitate-induced GSIS inhibition in primary
rat islet cells (Choi et al. 2008). Besides -cell dysfunction,
ER stress also contributes to insulin resistance in T2D
(Salvado et al. 2015). Both PBA and TUDCA alleviate ER
stress in obese mice, restoring insulin sensitivity and
normoglycemia (Ozcan et al. 2006). Importantly, these
compounds also improved insulin sensitivity in obese
subjects (Kars et al. 2010, Xiao et al. 2011). However, no
evidence of improved p-cell function was provided in these
studies and despite these encouraging results, additional
research is required to better clarify by which mechanism
these compounds are acting, verify their specificity, and
explore their long-term benefit and safety.

Another potential strategy is to increase the folding
capacity of the ER by enhancing endogenous chaperone
expression in p-cells. Valproic acid (VPA), a drug widely
used for the treatment of epilepsy and mood disorders
(Chen et al. 2014), has been shown to increase the
expression of BiP, reduce expression of CHOP, and protect
from ER stress-induced neuronal cell death in various rat
models (Fig. 2) (Wang et al. 1999, Bown et al. 2002, Penas
etal. 2011, Zhang et al. 2011, Lee et al. 2014). Interestingly,
Huang et al. recently demonstrated that VPA protects rat
INS-1 cells from palmitate-induced ER stress and apoptosis
via GSK-3p inhibition, independent of ATF4/CHOP
pathway (Huang et al. 2014). Notably, GSKB3 inhibition
also protects p-cells against both chemical ER stress- and
cytokine-mediated p-cell apoptosis (Srinivasan et al. 2005,
Fukaya et al. 2016). One of the possible mechanisms
could be stabilization of the anti-apoptotic protein MCL1,
since inhibition of GSK3p hampers cytokine-mediated
MCL1 degradation and protects INS-1E and human p-cells
against apoptosis (Meyerovich K, Ortis F, Allagnat F and
Cardozo AK unpublished observations). Further studies
are required to extend these findings in animal models
and explore the potential efficacy of VPA and/or GSK3p
inhibition on p-cell death in vivo.

Studies carried out in neuronal cells suggest that
the BiP inducer X (BIX) compound protects against
ER stress-induced neuronal cell death in mice (Fig. 2)
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ER stress-targeting therapies. Several strategies to improve ER function in pancreatic p-cells are emerging. (1) The use of the chemical chaperones
4-phenyl butyric acid (4-PBA) and taurine-conjugated ursodeoxycholic acid (TUDCA) show promising results regarding diabetes therapy, although their
mode of action remains largely unknown. (2) Several compounds such as valproic acid (VPA) or BiP inducer X (BiX) may promote the expression of
endogenous chaperones, thereby reducing ER stress and apoptosis. (3) Two novel compounds, namely telithromycin and RH01687, were shown to inhibit
CHOP and promote p-cell function and survival during ER stress. (4) Strategies aimed at blocking pro-apoptotic UPR pathway such as ASK1 or JNK activity
downstream of IRE1a have been shown to protect against ER stress-mediated cell death. Notably, the anti-apoptotic properties of GLP1 are partly
mediated by reduced ER stress through actions on ASK1 and the transcription factor JunB downstream JNK (5). GLP1 may also stimulate BiP expression.
(6) Finally, other anti-diabetic therapies such as pioglitazone, metformin, or resveratrol have been shown to reduce ER stress in p-cells through unknown

mechanisms.

(Kudo et al. 2008, Inokuchi et al. 2009). Whether or not
this compound might be of interest for the treatment of
diabetes, in general, and the survival of pancreatic p-cells,
in particular, remains to be assessed.

Targeting the UPR

The PERK-elF2a pathway plays a central role in the UPR
pro-apoptotic signaling (Laybutt et al. 2007, Song et al.
2008, Allagnat et al. 2012). Thus, salubrinal, a compound
preventing elF2a dephosphorylation and driving
CHOP expression, increases the sensitivity of rat and
human pancreatic p-cells to fatty-acid-induced ER stress
and apoptosis (Cnop et al. 2007, Ladriere et al. 2010).
Moreover, upregulation of CHOP and downregulation
of the anti-apoptotic protein MCL1 contributes to ER

stress-mediated p-cell apoptosis downstream of PERK
(Laybutt et al. 2007, Allagnat et al. 2012). Therefore,
compounds that prevent elF2a phosphorylation and
subsequently CHOP expression might prove useful for
the treatment of diabetes. However, salubrinal protects
neuronal cells from ER stress-induced cell death (Boyce
et al. 2005, Fullwood et al. 2012), suggesting the need
for cell-specific therapies when targeting UPR pathways.
Recently, the screening of a bank of compounds identify
telithromycin and RHO1687 as potential anti-apoptotic
molecules targeting CHOP and reducing tunicamycin-
induced apoptosis and restoring the insulin secretion
in vitro in fTC6 and MING6 (Fig. 2) (Tran et al. 2014). Further
studies are necessary to extend those findings in primary
cells and in vivo and test whether such molecules do not
have adverse effects on other organs.
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Another possibility to block CHOP expression is to act
on another upstream regulator, that is, JNK (Allagnat et al.
2012, Gurzov et al. 2012). As mentioned above, the kinase
JNK plays a central role in ER stress and pancreatic p-cell
dysfunction (Bonny et al. 2001, Nikulina et al. 2003).
Besides CHOP, JNK may activate other pro-apoptotic
proteins such as BID, BIM, and death protein 5 (DPS),
while inhibiting anti-apoptotic proteins such as BCL2 and
MCL1 (Dhanasekaran & Reddy 2008, Gurzov et al. 2009,
Allagnat et al. 2011, Santin et al. 2011). Moreover, JNK
activation resulting from ER stress contributes to insulin
resistance in insulin-stimulated cells and organs, such as
liver and adipose tissue (Kaneto et al. 2006). Therefore,
compounds targeting JNK activation may have a positive
impact on multiple organs in the context of T2D. The cell-
permeable peptide inhibitor of JNK (Fig. 2) (1) prevents
islet apoptosis after isolation (Noguchi et al. 2005),
(2) improves islet grafts survival (Noguchi et al. 2008),
and (3) prevents ER stress-induced CHOP expression in
rat INS-1E cells (Allagnat et al. 2012, Gurzov et al. 2012).
Further studies are required to test the potential of this
JNK inhibitor in vivo.

Cytokine-induced JNK activation is at least partially
mediated via the IREla pathway. However, targeting
IRElwx is not ideal since this protein is also responsible for
activation of Xbp1- and Irela-knockout mice are not viable
(Zhang et al. 2005). The best alternative is to interfere with
IREla downstream signaling leading to JNK activation.
It was recently shown that N-MYC interactor (NMI)
protein negatively modulates IRE1la-dependent activation
of JNK and apoptosis in rodent and human pancreatic
p-cells (Brozzi et al. 2014), thus NMI could be pointed as
a potential target. IRE1-mediated JNK activation is also
downstream of the apoptosis signal-regulated kinase
1 protein (ASK1). Interestingly, ASK1 is activated by ER
stress in MIN6 cells in vitro and ASK1 deficiency in vivo
decreases B-cell apoptosis and delays the onset of diabetes
in Akita mice (Yamaguchi et al. 2013). Therefore, chemical
inhibitors of ASK1 might provide cytoprotection in the
context of ER stress.

Existing treatments of T2D that reduce ER stress

One of the most promising avenues for the treatment of
diabetes relies on GLP1 receptor agonists such as liraglutide
and exenatide (reviewed in (Madsbad 2016)) and inhibitors
of the dipeptidyl peptidase-4 (DPP4) peptidase responsible
for rapid degradation of GLP1 (reviewed in Li et al. 2015,
Deacon & Lebovitz 2016, Nauck 2016). The anti-apoptotic
properties of GLP1 in p-cells are well known and they are
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at least partially mediated by reduced ER stress through
actions on several targets including BiP, ASK1, SIRT1, and
the transcription factors C/EBPs and JunB (Fig. 2) (Yusta
et al. 2006, Tsunekawa et al. 2007, Cunha et al. 2009,
Kwon et al. 2009, Widenmaier et al. 2009, Oh et al. 2013,
Kim et al. 2015).

Other existing treatments of T2D such as the insulin
sensitizers Metformin and Pioglitazone are known to
improve insulin sensitivity partly by reducing ER stress in
the liver and peripheral tissues (Fig. 2) (Singh et al. 2015).
Pioglitazone was recently shown to reduce ER stress
in Wfsl-deficient mice (Yamada et al. 2006), a genetic
model for ER stress-mediated p-cell loss and diabetes,
thus almost preventing the onset of diabetes in those
mice (Akiyama et al. 2009). Pioglitazone also protects
rat insulin-secreting cells from thapsigargin-induced cell
death (Hara et al. 2014). Similarly, Metformin partially
protects INS-1 cells from palmitate-induced ER stress and
cell death (Simon-Szabo et al. 2014). The fact that current
T2D therapies act, at least partly, through modulation of
UPR pathways underscores the central role of ER stress in
p-cell dysfunction and death.

An array of additional molecules with anti-oxidant
properties improve several circulating markers of T2D
such as fasting blood glucose, HbAlc, insulin, and lipid
(LDL and triglycerides) levels (Azadmehr et al. 2014,
Szkudelski & Szkudelska 2015). Among them resveratrol
was shown to protect against ER stress-driven cell dysfunc-
tion in the context of obesity-related disorders and diabetes
(Andrade et al. 2014, Guo et al. 2015). However, further
studies are required to better characterize the molecular
mechanisms regulating the effects of resveratrol in p-cells.

Conclusions

Research on the UPR is a relatively new field and although
its role on p-cell function, dysfunction, and survival is well
studied, the role of the UPR in p-cell pro-inflammatory
responses is just beginning to be elucidated. Thus, ‘sterile’
(non-inflammatory/chemically induced) UPR activation is
able to induce pro-inflammatory responses in $-cells. However,
p-cell exposure to pro-inflammatory cytokines released in and
from the islets in both T1D and T2D induces UPR responses
that in turn may potentiate inflammation and contribute to
p-cell death. The mechanisms by which the UPR modulates
inflammation are not completely clarified, but the available
data indicates that it is context-dependent. Recent studies
showing that manipulating UPR responses may decrease
inflammatory responses and reduced diabetes developments
in animal models of both T1D and T2D indicate that these
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pathways are of relevance and can be used as new targets for
interventional therapies to prevent these diseases.

As discussed in this article, ER stress and disrupted UPR
are likely to play a central role in the pathophysiology of
diabetes, not only at the -cell level, but also in the liver,
muscle, adipose tissue, and immune system. Therefore,
approaches aimed at reducing ER stress might have
beneficial effects on multiple organs. However, one should
keep in mind that certain strategies to protect p-cells might
have detrimental effects in other tissues. The studies
indicating that current therapies for treating T2D alleviate
ER stress and the fact that existing molecules already
used to treat other pathologies may also reduce ER stress
in p-cells provide exciting opportunities to advance the
treatment of diabetes.
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