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Abstract

Understanding the mechanisms linking obesity with hypertension is important in the

Key Words

current obesity epidemic as it may improve therapeutic interventions. Plasma aldosterone  » aldosterone

levels are positively correlated with body mass index and weight loss in obese patients is > synthesis

reported to be accompanied by decreased aldosterone levels. This suggests a relationship  » adipocytes
>

between adipose tissue and the production/secretion of aldosterone. Aldosterone is
synthesized principally by the adrenal glands, but its production may be regulated

obesity-related
hypertension

by many factors, including factors secreted by adipocytes. In addition, studies have
reported local synthesis of aldosterone in extra-adrenal tissues, including adipose tissue.
Experimental studies have highlighted a role for adipocyte-secreted aldosterone in the
pathogenesis of obesity-related cardiovascular complications via the mineralocorticoid
receptor. This review focuses on how aldosterone secretion may be influenced by

adipose tissue and the importance of these mechanisms in the context of obesity-related

hypertension.
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Introduction

The obesity epidemic threatens to bring with it a significant
range of health problems including the increased risk of
hypertension and associated cardiovascular disorders.
Of note, Brambilla and coworkers found that increased
body mass index (BMI) was associated with treatment-
resistant hypertension in a group of 1312 European
patients with hypertension (Brambilla et al. 2013).
Several mechanisms could underlie the development
of hypertension in obesity, including direct pressure on
the kidney, sympathetic nervous system activity and the
over-activation of the renin-angiotensin-aldosterone
system (Hall et al. 2015). In this study, we focus on the
role of the mineralocorticoid hormone aldosterone in
this system and the effects of manipulating this steroid
hormone clinically and experimentally in obesity-related
hypertension and metabolic conditions.

Emerging evidence implicates the aldosterone in the
development of insulin resistance, metabolic syndrome
and treatment-resistant hypertension (Vogt et al. 2007,
Calhoun & Sharma 2010). Rising BMI has been shown
to positively correlate with increasing plasma aldosterone
levels in those with essential hypertension (Rossi et al.
2008) and similarly correlates with waist circumference
and blood pressure (Grim et al. 2005, Bochud et al. 2006,
Kidambi et al. 2007).

Synthesized in adrenocortical cells of the zona
glomerulosa, aldosterone is a blood pressure-regulating
hormone completing the
angiotensin—aldosteronesystem (RAAS). Aldosteroneexerts
its physiological effects through the mineralocorticoid
receptor (MR). MR is expressed in epithelial tissues such
as the renal collecting duct, the colon and sweat glands,

well-described  renin-
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where activation leads to insertion of transporters which
increase sodium and water reabsorption. The receptor
is also found in non-epithelial tissues such as the heart
(Sainte-Marie et al. 2007), the vasculature (Nguyen Dinh
Cat et al. 2010, McCurley et al. 2012) and adipose tissue
(Caprio et al. 2007, Nguyen Dinh Cat et al. 2011, Briones
et al. 2012). Interestingly, increased MR expression in
adipose tissue has been observed in obesity (Hirata et al.
2012, Urbanet et al. 2015). Mice on a high-fat diet not
only developed obesity, but also showed increased renal
expression of MR protein and its downstream target serum-
and glucocorticoid-regulated kinase-1 (SGK-1) (Tokuyama
etal.2012). MR binds both aldosterone and glucocorticoids
with high affinity. However, glucocorticoids (cortisol
for humans, corticosterone for rodents) circulate at
100- to 1000-fold higher concentrations than those of
aldosterone (0.1-1nM). In epithelial tissues, the enzyme
11beta-hydroxysteroid dehydrogenase type II (11b-HSD2)
allows aldosterone to selectively activate MR, by
converting cortisol to an inactive metabolite, cortisone
(Edwards et al. 1988, Funder 2005, Marzolla et al. 2012).
Adipocytes can synthesize and secrete aldoste-
rone which may exert autocrine and paracrine effects,
influencing adipose tissue and local structures such as the
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vasculature resulting in vascular remodelling (Nguyen
Dinh Cat et al. 2011, Briones et al. 2012). In keeping with
this effect on the vasculature, MR blockade has been
shown to effectively reduce blood pressure in obesity-
related hypertension, and the significant benefits in heart
failure are well documented (Pitt et al. 1999, 2003).

Aldosterone production by adrenal glands
Classical regulators

Steroid biosynthesis occurs in the adrenal cortex from the
precursor cholesterol. Cholesterol is initially converted
to pregnenolone by the mitochondrial enzyme P450scc
(side chain cholesterol cleavage) encoded by the gene
CYP11A1. The final step is catalyzed by two cytochrome
P450 enzymes that display differences in their enzymatic
activity, regulation and zonal distribution. 11-hydroxylase
(CYP11B1) synthesizes cortisol from 11-deoxyhydrocortisol
(DOCQ) in the zona fasciculata, whereas the aldosterone
synthase (CYP11B2) catalyses the conversion of DOC to
aldosterone in the zona glomerulosa (Fig. 1A).

With aldosterone’s role in the physiology and patho-
physiology of the cardiovascular system, it is important to
consider the regulation of its biosynthesis and secretion
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Synthesis of aldosterone and regulators. (A) Synthesis of the mineralocorticoid hormone aldosterone and cortisol from cholesterol. Aldosterone is
synthesized in the zona glomerulosa of the adrenal cortex by a series of enzyme steps leading to the conversion of cholesterol to aldosterone. There are
two critical enzyme steps: (1) the conversion of cholesterol to pregnenolone cholesterol side-chain cleavage enzyme (CYP11A1) and (2) the conversion of
corticosterone to aldosterone by the aldosterone synthase (CYP11B2). However, cortisol is synthesized in the zona fasciculata of the adrenal glands.
CYP11A1, cholesterol side-chain cleavage enzyme (P450c11); 3p-HSD, 3p-hydroxysteroid dehydrogenase; CYP1121A, 21-hydroxylase (P450c21); CYP11B1,
11p-hydroxylase; CYP11B2, aldosterone synthase. (B) Main regulators of aldosterone synthesis by the adrenals. A variety of factors modify the
aldosterone secretion: the most important are the angiotensin Il (Angll) and high concentrations of potassium (K+).
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from the adrenal cortex, especially the signalling pathways
involved in the secretory response to the controllers of
aldosterone production (Fig. 1B) (Jaisser & Farman 2016).
Angiotensin II (Ang II) and elevated serum potassium
(K+) are the two main regulators of aldosterone produc-
tion, whereas adrenocorticotrophic hormone (ACTH) and
other proopiomelanocortin peptides, sodium, vasopres-
sin, dopamine, atrial natriuretic peptide, beta-adrenergic
agents, serotonin and somatostatin are minor modulators
(Hattangady et al. 2012, Bollag 2014).

Treatment with Ang II or high levels of K+ results in
a dose-dependent increase in aldosterone production by
human adrenocortical H295R cells (Bird et al. 1993, Rainey
et al. 1993). These agents have parallel effects on CYP11B2
mRNA levels, whereas activation of the protein kinase A
(PKA) pathway by cAMP analogues preferentially increases
CYP11B1 mRNA (Bird et al. 1995, Denner et al. 1996, Bassett
et al. 2000). Ang II binds to G-protein-coupled receptors,
activating phospholipase C which hydrolyzes PIP2 to IP3,
increasing intracellular calcium (Ca?*) ions which activates
Ca?*-calmodulin-dependent protein kinase (CaMK), and
diacylglycerol-dependent protein kinase C (Hu et al. 2012,
Felizola et al. 2014). ACTH, however, binds to the cell-surface
melanocortin-2 receptor, which activates adenylate cyclase,
produces cAMP and activates downstream PKA (Bassett
et al. 2004). It is possible that these pathways have different
efficiencies — perhaps the Ang Il-mediated G-protein
signalling pathway is simply better at increasing production
of the necessary enzymes. The principle action of ACTH is in
the zona fasciculata of the adrenal cortex where it stimulates
the PKA-mediated phosphorylation of steroidogenic proteins,
including the rate-limiting steroidogenic acute regulatory
(STAR) protein (Arakane et al. 1997), which promotes the
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transport of cholesterol into the mitochondria (Lin et al.
1995), where a number of enzymatic reactions lead to
terminal glucocorticoid synthesis (cortisol in humans,
corticosterone in rodents). By stimulating K+ excretion,
aldosterone constitutes a negative feedback loop.

Adipocyte-derived factors

Approaches using adipose tissue-conditioned media to
determine its effects on adrenocortical cell lines show
increased steroidogenesis, both in murine and cellular
models, following exposure to conditioned media
(Ehrhart-Bornstein et al. 2003, Nagase et al. 2006, Krug
et al. 2007). These studies suggest that the adipose tissue
secretome contains ‘mineralocorticoid-releasing-factors’
that stimulate aldosterone synthesis in adrenocortical
cells including aldosterone production which is increased
in obese spontaneously hypertensive rats (Nagase
et al. 2006). This further suggests a direct link with
cardiovascular pathologies (Ehrhart-Bornstein et al. 2003,
Krug & Ehrhart-Bornstein 2008).

Adipocyte-derived factors are proposed to mediate
their effects through the canonical Wnt-signalling pathway
(Schinner et al. 2007) and ERK1/2 mitogen-activated protein
kinase (MAPK) signalling, resulting in increased STAR
expression and sensitization to Ang II stimulus. However,
this effect is not critically dependent on Angiotensin II via
its receptor type 1 (AT,R) (Krug et al. 2007). As adipocytes
are also located within the adrenal glands, the factors they
release may influence adrenals in a paracrine manner
(Ehrhart-Bornstein et al. 2003). We describe three well-
characterized adipocyte-derived factors that influence
adrenal aldosterone secretion: leptin, adiponectin and
complement-C1q TNF-related protein-1 (CTRP-1) (Fig. 2).
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Figure 2

Novel regulators of aldosterone production in adrenals. New regulators of the secretion of aldosterone by the adrenal glands have been identified such

as leptin, adiponectin and complement-C1q TNF-related protein-1 (CTRP1).
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Leptin Leptin, known as the ‘satiety hormone’, is
a 16kDa protein encoded by Ob gene and secreted
mainly from white adipose tissue; it can be secreted in
lower levels from other tissues, such as mammary gland,
stomach, muscle, bone marrow, placental and fetal tissues
(Friedman 2014, Park & Ahima 2015). Leptin receptors
are highly expressed in the hypothalamus where they
are required for the regulation of appetite, energy
expenditure, body weight, thermogenesis, fertility and
immune function (Ahima et al. 1996, Wada et al. 2014,
Freitas Lima et al. 2015, Park et al. 2015). Downstream
signalling in the central nervous system and peripheral
tissues includes Janus-activated kinase/signal transducer
and activator of transcription (Jak/STAT), insulin receptor
substrate (IRS)/phosphatidylinositol 3 kinase (PI3K), SH2-
containing protein tyrosine phosphatase 2 (SHP2)/MAPK
and 5’-adenosine monophosphate-activated protein
kinase (AMPK)/acetyl-CoA carboxylase (ACC) (Yang et al.
2007, Park & Ahima 2014). Interestingly, serum leptin
levels are significantly elevated in most obese individuals
and correlate with BMI (Mantzoros 1999, Ahima 2008).
Numerous investigations ranging from clinical and animal
model studies to in vitro analyses implicate leptin in the
pathogenesis of obesity-related cardiovascular diseases
(Sweeney 2010, Hou & Luo 2011). Obese individuals can
develop ‘leptin resistance’ where they become insensitive
to the metabolic effects of leptin, but not to effects on the
cardiovascular system (Pan et al. 2014, Balland & Cowley
2015, Sainz et al. 2015). In a recent study, Huby and
coworkers investigated whether leptin directly regulates
aldosterone secretion by adrenals and whether this leptin-
mediated aldosterone production impairs cardiovascular
function (Huby et al. 2015). They showed that the leptin
receptor and CYP11B2 are co-expressed in human and
rats adrenal zona glomerulosa cells. They demonstrated
that a) genetic reduction or increase in leptin signalling,
respectively, prevents or enhances adrenal CYP11B2
expression and aldosterone release; b) endogenous and
exogenous leptin directly activates CYP11B2, resulting in
increased production of aldosterone via Ca%*-dependent
mechanisms. This is independent of the renin-angiotensin
and sympathetic nervous systems. Moreover, the authors
demonstrated MR-dependent induction of endothelial
dysfunction by leptin which was associated with increased
levels of cardiac pro-fibrotic markers (Huby et al. 2015).

Adiponectin Adiponectin isa specific adipocyte-secreted
protein that is metabolically active and anti-inflammatory
(Sowers 2009, Nigro et al. 2014). Adiponectin can improve

insulin sensitivity and is inversely associated with obesity
and insulin resistance, two common comorbidities in
cardiovascular disease (Antoniades ef al. 2009, Shibata
et al. 2012, Nigro et al. 2014, Antonopoulos et al. 2015).
Adiponectin receptors are present in human and mouse
adrenal glands (Rossi et al. 2006, Li et al. 2009). In the
murine adrenocortical Y1 cell line, adiponectin decreased
steroidogenesis enzymes resulting in decreased aldosterone
and corticosterone production (Li et al. 2009). However, in
primary cultured rat adrenal cells, adiponectin increased
steroidogenesis (Paschke et al. 2010). Additionally, in cultured
human adrenocortical cells, adiponectin increased STAR
expression and cortisol production, a process dependent
on AMPK, Akt and ERK1/2 signalling. This may be an
important regulatory system given that glucocorticoids are
reported to decrease adiponectin secretion by adipocytes
(Degawa-Yamauchi et al. 2005, Iwen et al. 2008). Levels of
adiponectin are decreased in obese db/db mice and this is
prevented by MR antagonism (Guo et al. 2008).

CTRP-1 Complement-C1lq TNF-related protein-1
(CTRP-1) is an adiponectin paralogue with 30-50% shared
sequence homology and may share some of adiponectin’s
biochemical properties. CTRP-1 is primarily and highly
expressed from cells in the stromal vascular fraction of
adipose tissue and is also specifically expressed in the zona
glomerulosa of murine and human adrenal cortex and in
vascular wall tissue (Wong et al. 2008). Jeon and coworkers
demonstrated that CTRP-1 regulates adrenal aldosterone
production through increases in intracellular Ca?+ levels
and induction of CYP11B2 expression (Jeon et al. 2008).
Moreover, CTRP1 did not increase the transcription of
CYP11B1, the enzyme responsible for glucocorticoid
synthesis. Previous reports found that Ang II increased the
transcription of CYP11B1 and STAR (Li et al. 2003, Romero
et al. 2004), and AT,R blockade had no effect, suggesting
that this aldosterone secretion induced by CTRP-1 is
independent of Ang Il-mediated regulation mechanism
(Jeon et al. 2008).

Most data indicate that CTRP-1 is increased in
obesity, although conflicting results exist. Kim and
coworkers showed increased CTRP-1 levels in obese db/db
mice and Zucker fatty rats (Kim et al. 2006). However,
Peterson’s group reported decreased levels of CTRP-1
in diet-induced obese mice, and that transgenic CTRP1
overexpressing mice are protected from obesity through
increased AMPK activation and subsequent increased
fatty acid oxidation and energy expenditure (Peterson
et al. 2012). In addition, CTRP-1 levels were increased
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in adiponectin-null mice (Peterson et al. 2012). Kim
and coworkers reported a specific relationship between
inflamed adipose tissue, stromal vascular fraction and
CTRP-1, suggesting that the dysregulation of CTRP-1
levels in obesity is strongly associated with chronic
inflammation in adipose tissue (Kim et al. 2006).

Additionally, patients with metabolic syndrome and
type 2 diabetes have increased circulating levels of CTRP-1
compared with healthy individuals. This is positively
correlated with BMI, fasting glucose, TNF-a (tumour
necrosis factor-alpha) and HBAlc (glycated haemoglobin
Alc) (Chalupova et al. 2013, Xin et al. 2014). Circulating
levels of CTRP-1 are also increased in non-obese
hypertensive patients; hence, CTRP-1 has been suggested
as a critical protein associated with the pathophysiology
of obesity-related hypertension (Jeon et al. 2008).

Non-adrenal production of aldosterone
Cardiovascular and central nervous systems

Extra-adrenal aldosterone production may represent
important local regulatory mechanisms in tissues reliant
on a dynamic vascular supply. In the cardiovascular
system, the machinery for aldosterone production is
found both in endothelial and smooth muscle cells
(Takeda et al. 1995, Hatakeyama et al. 1996, Takeda et al.
1996). Transcripts of Cyb11b2 are increased in aortas from
spontaneously hypertensive rats (Wu et al. 1998), and
isolated rat mesenteric arteries produce aldosterone (Takeda
et al. 1995). Key steroidogenesis enzymes, including the
terminal enzymes for corticosterone and aldosterone
synthesis, are also expressed in the rat heart (Silvestre et al.
1998). Interestingly, aldosterone levels in the rat heart are
approximately 17-fold higher than in plasma, possibly
owing to a slower degradation rate (Delcayre & Silvestre
1999). In the central nervous system, neurosteroids were
first established in 1987 when P450scc was found to be
expressed in white matter (Le Goascogne et al. 1987) and
other cells of the brain including neurons and glial cells
(Zwain & Yen 1999, Kushida & Tamura 2009). Star is highly
expressed throughout the brain with maximal levels in
the cerebellum (Furukawa et al. 1998), and both Cyb11b1
and Cybl11b2 are expressed in the brain (Stromstedt &
Waterman 1995, Gomez-Sanchez et al. 1996, 1997).

Adipose tissue

Machinery for aldosterone synthesis and MR
expression Included in the several hundred factors

produced by adipocytes are components of the renin-
angiotensin system (Thatcher et al. 2009). Along with the
expression of NR3C2 (MR) and NR3C1 (GR) in adipocytes
(Caprio et al. 2007, 2011, Campbell et al. 2011), the
necessary components for endogenous
production are present in rodent and human adipocytes
(Nguyen Dinh Cat et al. 2011, Briones et al. 2012). Briones
and coworkers demonstrated adipocyte secretion of
aldosterone which was increased in obese animals and
upon stimulation with Ang II. This adipocyte-derived
aldosterone may in turn impact on adipocyte biology by
regulating adipogenesis, but also on vascular function
in an MR-dependent manner (Briones et al. 2012).
Mechanisms of regulation of aldosterone production
by adipocytes include both calcineurin/nuclear factor
of activated T (NFAT) cells signalling pathways (Briones
et al. 2012) and ROS-dependent pathways (Rios et al.
2015). Recently, the role of adipocyte-derived aldosterone
was also implicated in renal disease. In fifth/sixth
nephrectomized rats (a model of chronic renal failure)
and in patients with chronic kidney disease (CKD), plasma
levels of aldosterone and CYP11B2 expression in adipose
tissue are increased, as well as MR nuclear expression and
its downstream signalling targets (Hosoya et al. 2015).
Treatment with MR antagonist spironolactone ameliorated
insulin resistance in patients with CKD, and partially
reversed impaired glucose tolerance in nephrectomized
rats. It was suggested that adipocyte-derived aldosterone
production may be contributing to the pathogenesis of
insulin resistance in patients with CKD (Tirosh et al. 2010,
Hosoya et al. 2015). In our studies, the ratio between
adrenal- and adipocyte-derived aldosterone in mouse and
humans for the levels of the aldosterone synthase is four
times (Briones et al. 2012). Thus, the relative significance
of this adipocyte-derived aldosterone compared with that
of the zona glomerulosa remains an interesting question
to elucidate. We demonstrated that this adipocyte
aldosterone affects vascular signalling such as pro-fibrotic
and pro-inflammatory signalling pathways (Nguyen Dinh
Cat et al. 2011). Presumably, the actions of adipocyte
aldosterone contribute to the effects of circulating levels
of aldosterone.

aldosterone

Regulators of adipocyte aldosterone production

Ang ll/calcineurin-NFAT Based on the work from Yamashiro
and coworkers that reported regulation of CYP11B2
and aldosterone production via calcineurin-dependent
pathway in adrenocortical cells (Yamashiro et al. 2010),
Briones and coworkers also showed involvement of
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this pathway in adipocyte-derived aldosterone. In
differentiated 3T3-L1 adipocytes, Ang II/AT,R regulates
Cyb11b2 expression and adipocyte-secreted aldosterone
in a calcineurin/NFAT-dependent manner, an effect
blocked by FAD286 (selective CYP11B2 inhibitor). Indeed,
calcineurin inhibitors (cyclosporin A and FK506) and the
specific NFAT inhibitor (VIVIT) abrogated Ang II-induced
aldosterone secretion by adipocytes. In addition, Ang II
stimulated NFAT nuclear translocation, an effect blocked
by AT,R blocker candesartan, and decreased NFATc4
phosphorylation, which was restored by cyclosporin A
and FK506 (Briones et al. 2012) (Fig. 3A).

CETP inhibitors Cholesteryl ester-transfer protein (CETP)
inhibitors increase the levels of high-density lipoprotein.
Clinical trials of the CETP inhibitors torcetrapib (Barter
et al. 2007) and dalcetrapib (Schwartz et al. 2012) revealed
hyperaldosteronism and hypertension as clinically
relevant adverse effects. Rios and coworkers showed that
in a human adipocyte model, CETP inhibitors increased
CYP11B2, CYP11B1 and STAR expression. In adipocytes,

this was associated with an increase in ROS generation and
activation of peroxisome proliferation-activated receptor-
gamma (PPAR-G) and signal transducer and activator of
transcription 3 (STAT3) (Rios et al. 2015) (Fig. 3B). This
regulation of aldosterone production in adipocytes sheds
light on the close relationship between hypertension
and hyperaldosteronism. The precise contribution of
adipocyte-derived aldosterone remains to be determined;
however, the adverse effects observed with CETP inhibitors
infer a greater systemic role than currently accepted.

Reactive oxygen species Rajamohan and coworkers
demonstrated that ROS are key regulators of aldosterone
production in adrenal glands. In human and rat
adrenocortical cells, Ang II increased ROS levels through
upregulation of NADPH oxidase (Nox) 1, 2 and 4 and
ultimately resulted in increased CYP11B2 levels and
aldosterone production. Importantly, this process was
blocked or attenuated by not only an AT,R antagonist
but also antioxidants, pharmacological Nox inhibition

and siRNA-mediated Nox silencing. Similarly, exogenous
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Figure 3

Regulation of aldosterone production in adipocytes. (A) Angiotensin Il via its receptor type 1 (AT,R) regulates the aldosterone synthase (CYP11B2)
expression and the adipocyte-secreted aldosterone in a calcineurin/nuclear factor of activated T (NFAT)-dependent manner. (B) Cholesteryl ester-transfer
protein (CETP) inhibitors regulates the aldosterone synthase (CYP11B2) expression through increase in ROS generation and activation of peroxisome
proliferation-activated receptor-gamma (PPAR-G) and signal transducer and activator of transcription 3 (STAT3). AGT, angiotensinogen; Ang,
angiotensin; ROS, reactive oxygen species; STAR, steroidogenic acute regulatory protein.
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hydrogen peroxide can increase CYP11B2 activity, leading
to increased aldosterone production by adrenocortical
cells (Rajamohan et al. 2012). Several reports show
increased ROS levels in adipose tissue from obese and/or
hypertensive animals (Furukawa et al. 2004), raising the
possibility of adipose tissue-derived ROS as the molecular
connection between increased aldosterone levels and
obesity-related hypertension. However, caloric restriction
and exercise can improve the state of oxidative stress
(Imayama et al. 2012). Nonetheless, a cause and effect
relationship between oxidative stress and obesity is not
well understood. Adipose tissue from obese db/db mice
showed oxidative stress, increase in Cyb11b2 expression,
resulting in aldosterone production by mature adipocytes
(unpublished observations). The Nox1/4-inhibiting
compound GKT137831 decreased CybI11b2 mRNA levels
and adipocyte-derived aldosterone production in obese
db/db mice suggesting that oxidative stress does contribute
to the pathogenesis of obesity.

AMPK activators In a published abstract, White
and coworkers demonstrated that pharmacological
activators of AMPK increase aldosterone secretion from
cultured adipocyte models. In the murine adipocyte
cell line 3T3-L1, the AMPK activator 5-aminoimidazole-
(AICAR)
aldosterone secretion into culture medium. Similarly, in
the human adipocyte cell line SW872, the specific AMPK
activator A769662 increased the aldosterone secretion
along with STAR expression. However, when SW872 cells
were treated with the diabetes drug and non-specific
AMPK activator metformin, aldosterone secretion was
not changed (White, personal communication). AMPK
is a key energy regulator activated in low-energy states
and is known to stimulate mitochondrial biosynthesis
(Marcinko et al. 2014). Although the effect described
here was initially unexpected, the author suggests it may
be reasoned by a direct effect on mitochondrial number
and therefore steroid production. Alternatively, this
effect may represent a mechanism in the autoregulation
of adipose tissue perfusion during starvation,
when adipocyte-secreted vasoactive factors may be
required without influencing systemic blood pressure.
Considering that AMPK activity is reduced in adipose
tissue of insulin-resistant obese patients undergoing
bariatric surgery (Gauthier et al. 2011), it is likely that
this mechanism may not be relevant in such individuals
and therefore may represent a dynamic physiological
rather than chronic pathophysiological regulation of

4-carboxamide ribonucleotide increased

adipocyte aldosterone secretion. One study assessed the
effect of AICAR on adrenal steroidogenesis focussing on
androgen production. Here, AICAR activated AMPK in
human adrenocortical cells (H295R) and increased the
activity of CYP17A1-17,20 lyase to facilitate androgen
production. The authors did not investigate the effects
on aldosterone production (Hirsch et al. 2012). As
discussed in the ‘Adipocyte-derived factors’ section
adiponectin, which signals via AMPK, was found to
have different effects on steroidogenesis in cultured
adrenal cell lines from different species including
increased STAR expression and cortisol secretion in
H2935R cells. In addition, adiponectin increased ACTH
secretion from the mouse AtT20 pituitary cell line and
rat primary pituitary cells, suggesting influence over
steroidogenesis at different stages of the hypothalamic—
pituitary—adrenal axis (Chen et al. 2014). It would be of
interest to define the effect of adiponectin on adipocyte
aldosterone production and to further examine the
AMPK dependence of such effects.

Role of MR activation in adipose tissue Despite its
key role in renal sodium reabsorption and blood pressure
control, MR activation regulates important physiological
functions in adipose tissue including differentiation of
preadipocytes into matures adipocytes (Caprio et al. 2007,
2011) and promotion of adipose tissue inflammation via
induction of cytokines (adipokines) including TNF-o,
monocyte chemotactic protein-1 (MCP-1) and IL-6 in
white adipose tissue, while decreasing the thermogenic
activity and lowering uncoupling protein-1 (UCP-1)
transcription of brown adipose tissue (Zennaro et al. 2009,
Kargi et al. 2014). Interestingly, MR mRNA expression
positively correlates with increasing BMI in humans
and is increased in obese db/db mice (Hirata et al. 2012,
Urbanet et al. 2015). This suggests that MR over-activation
in adipose tissue triggers deleterious effects within the
adipose tissue; in particular, it contributes to insulin
resistance and oxidative stress and to the development
of  obesity-associated  cardiovascular  complications
(Sowers et al. 2009). Our group recently demonstrated
that adipocyte-specific MR over-activation in mice leads
to insulin resistance, visceral obesity and dyslipidaemia
(Urbanet et al. 2015), as well as vascular dysfunction
through redox-sensitive-dependent
(Nguyen Dinh Cat et al. 2016). Adipose tissues from
these transgenic mice displayed increased levels of ROS,
markers of macrophages and pro-inflammatory cytokines,
including IL-6, MCP-1 and RANTES (regulated on

mechanisms
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activation, normal T cell expressed and secreted) versus
controls. In our conditional transgenic mouse model
over-expressing MR in adipocytes, we do not know
whether aldosterone or glucocorticoid activates MR in
adipose tissue. This question remains under debate as
reports showed that adipocytes do not have significant
11b-HSD2 activity and yet maintain a relatively high
level of 11b-HSD1 activity, allowing glucocorticoids to
be the main ligand for adipocyte-MR (Kargi et al. 2014).
Moreover, visceral obesity and metabolic syndrome have
been associated with increased adipose 11b-HSD1 activity,
further increasing intra-adipocyte cortisol concentrations
(Morton et al. 2004, Koska et al. 2006, Stimson &
Walker 2007).

Aldosterone: clinical implications and
targets

Obesity-related hypertension

Knowing that adipocytes can regulate both local adipose
and adrenal aldosterone secretion, it is tempting to
conclude that adipocytes are responsible for elevations in
blood pressure in obesity. Primary hyperaldosteronism,
due to either a unilateral adrenal adenoma or bilateral
gland hyperplasia, is associated with insulin resistance
in obese hypertensive patients (Catena et al. 2006,
Garg et al. 2010), and such metabolic complications
appear to be directly related to aldosterone as they are
corrected by either adrenalectomy or MR antagonist.
Aldosterone production is increased in normotensive
overweight subjects and has a weak correlation with
insulin resistance measured by homeostatic model
assessment (HOMA-IR) (Bentley-Lewis et al. 2007).
Obesity-associated inflammation contributes to the
development of insulin resistance. Aldosterone has
direct effects within adipose tissue including inducing
insulin resistance and inflammation, again suggesting
that aldosterone might be a link between obesity,
insulin resistance and inflammation (Gilbert & Brown
2010, Tirosh et al. 2010, Bruder-Nascimento et al. 2014).
Furthermore, in 3T3-L1 adipocytes, aldosterone was
reported to degrade IRS-1 and IRS-2 via GR-mediated
increased ROS which was associated with increased
phosphorylation of nuclear factor kappa B (Wada et al.
2009). There is much interest in the mechanisms of
aldosterone signalling in adipose tissue and it has been
questioned whether there is an as yet undiscovered
mechanism by which it mediates non-genomic effects
(Nguyen Dinh Cat & Jaisser 2012).

As there is a wealth of evidence implicating aldoste-
rone in the pathogenic mechanisms of obesity-related
hypertension, it is of significant interest to consider the
benefits of manipulation of this system and when this
should be considered during the course of treatment.

Inhibitors of aldosterone synthesis and MR-activity
Spironolactone and eplerenone

Spironolactone Spironolactone is a non-selective MR
antagonist which also antagonizes androgen and
progesterone. In the UK, it is recommended for use in
treatment-resistant hypertension, but is not licensed
for this indication (NICE guidelines CG127 2011). It is
used widely to treat heart failure and there is a wealth
of evidence demonstrating its mortality benefits in this
condition most notably from the landmark RALES study
(Pitt et al. 1999). Unfortunately, it has some intolerable
side effects due to the non-selective nature of its action,
most frequently gynaecomastia which affected 10% of
men in the RALES study (Pitt et al. 1999).

The potential benefits of spironolactone in metabolic
conditions such as obesity-related hypertension are of
interest and the literature to date is largely supportive
of a beneficial role. In a group of obese hypertensive
individuals treated with an ACE inhibitor with or
without spironolactone, spironolactone was found
to have greater benefits in blood pressure and urine
albumin excretion (Bomback et al. 2009). Spironolactone
improved LV function and decreased circulating
pro-collagen levels in obese patients with impaired LV
diastolic function (measured by mitral annular velocity)
(Kosmala et al. 2013). Moreover, spironolactone may
influence adipokine secretion such as adiponectin, which
is normally decreased in obesity. In individuals with
poorly controlled diabetes, spironolactone increased
circulating levels of adiponectin but not in those with
adequate glycaemic control (Matsumoto et al. 2006).
Another study looking at the metabolic condition
polycystic ovary syndrome found that spironolactone
was beneficial in obese subjects who after 1 year had
improved insulin sensitivity measured by homeostatic
model assessment of insulin resistance (HOMA-IR) and
decreased triglycerides (Zulian et al. 2005). Experimental
studies have shown that MR, rather than the GR, is
required for normal steroid-induced adipogenesis
(Caprio et al. 2007). The same group has also shown that
MR antagonism in vivo and in vitro can lead to browning
of white adipocytes demonstrated by increased UCP-1
expression (Armani et al. 2014).
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Eplerenone Eplerenone, a more selective MR antagonist,
also benefits patients with heart failure (Zannad et al. 2011)
and interestingly has additional benefits in those with
diabetes following myocardial infarction compared with
those without diabetes (O’Keefe et al. 2008). A substudy
of the EMPHASIS trial examined diabetes risk, and found
no difference in the incidence of type 2 diabetes in heart
failure patients with or without eplerenone treatment
(Preiss et al. 2012). In studies assessing endothelial
function, eplerenone improved brachial artery flow-
mediated dilatation in subjects with increased BMI
(Hwang et al. 2013), and in C57BL/6 mice on high-fat diet,
eplerenone attenuated impaired endothelium-dependent
acetylcholine-induced vasorelaxation of aortic rings
(Schifer et al. 2013). Further evidence from preclinical
studies supports a metabolic benefit of eplerenone. In
a canine study, eplerenone attenuated high-fat-diet-
induced increases in weight and blood pressure further
implicating aldosterone or at least the MR in obesity-
related hypertension (de Paula et al. 2004). Hirata and
showed that eplerenone reduces insulin
resistance and macrophage infiltration in adipose in db/
db and ob/ob mouse models of obesity (Hirata et al. 2009).
However, in C57/B16 mice on a 60% high-fat diet for 20
weeks with or without eplerenone or adrenalectomy, serum
aldosterone was highest in the group receiving eplerenone
and was unaffected by high-fat diet alone. Eplerenone
did not affect diet-induced weight gain or fatty liver but
did prevent blood pressure elevation and attenuated
diet-induced rises in serum insulin and HOMA-IR
(Gamliel-Lazarovich et al. 2013). Another study that
treated obese db/db mice from 8 to 25 weeks of age with
eplerenone also showed no change in weight, but there
was a prevention of pro-inflammatory gene expression in
retroperitoneal adipose tissue (Guo et al. 2008).

coworkers

Inhibitors of regulators of aldosterone
secretion Targeting the production of aldosterone to
benefit cardiometabolic disorders associated with high-
fat diet is intriguing given the benefits of MR antagonism.
There is certainly evidence of increased circulating
aldosterone in obese individuals, and this has been
mimicked in rodents upon high-fat diet resulting in both
increased circulating aldosterone and gene expression of
CYP11B2 in the adrenal glands (Northcott et al. 2012).
The metabolic functions of this enzyme have been
interrogated using a transgenic aldosterone synthase
knockout mouse model; these animals were less prone to

the elevated glucose, adipose tissue macrophage infiltra-
tion and hepatic steatosis associated with a 12-week high-
fat diet. However, weight gain was unchanged and fasting
insulin was highest in the aldosterone synthase knockout
mice on the high-fat diet (Luo et al. 2013). This suggests
involvement of aldosterone in some but not all of the
adipose tissue dysfunction related to insulin resistance
associated with obesity.

Driven by interest in this field, two novel drugs have
been developed to inhibit aldosterone synthase, FAD286
and LCI699, which have been used in a number of stud-
ies evaluating their benefits. From a clinical perspective,
these have ultimately been limited by the lack of specific-
ity for aldosterone synthase (CYP11B2) compared with
11B-hydroxylase (CYP11B1). However, there is now evi-
dence of benefit in Cushing’s syndrome and clinical trials
are ongoing in this area. Studies outlining the existing
evidence of these agents have been thoroughly reviewed
by Hargovan and Ferro (Hargovan & Ferro 2014).

Preclinical studies of FAD286 have focused on hyper-
tension and heart failure models. For example, FAD286
was found to significantly inhibit the renin—-angiotensin—
aldosterone system-mediated cardiac fibrosis and hyper-
tension in a transgenic mouse model overexpress-
ing human renin and angiotensinogen, although to a
lesser extent than the AT,R blocker, losartan (Fiebeler
et al. 2005). In addition, spontaneous hypertensive rats
treated with FAD286 and spironolactone displayed
severe dehydration and hyperkalaemia (Menard & Pascoe
2006). Another feature of aldosterone synthase inhibi-
tion is the increase of precursors such as deoxyhydrocor-
ticosterone/deoxyhydrocortisol (DOC) which may have
independent clinical effects.

Although designed to be more aldosterone synthase-
specific than FAD286, LCI699 was also shown to alter
cortisol synthesis and hypothalamic—pituitary-adrenal
function. Despite this, a number of trials have been pub-
lished relating to aldosterone dynamics including phase
1 and 2 studies which found a significant reduction in
circulating aldosterone (Amar et al. 2010, Rossignol et al.
2011). Additionally, LCI699 has been compared with
eplerenone in blood pressure regulation in two studies;
one showed similar blood pressure improvements com-
pared with eplerenone (Calhoun et al. 2011), whereas the
other showed no blood pressure reduction despite lower-
ing aldosterone levels (Karns et al. 2013).

It must be recognized that aldosterone is not the only
ligand for MR and cortisol may mediate a proportion of the
metabolic effects mediated via MR, particularly in adipose
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Summary of the pathophysiological roles of adipose aldosterone/MR activation in obesity-related hypertension.

tissue which lacks the cortisol converting enzyme 11-beta
hydroxysteroid dehydrogenase. Indeed, recent evidence
demonstrates that cortisol is co-secreted in around 10%
of cases of primary hyperaldosteronism (Spath et al. 2011,
Fujimoto et al. 2013).

Modulation of adipokines Knowing that
adipokines can modulate aldosterone secretion, we
consider that modulation of adipokines, through weight
loss, exercise or medication, may be directly responsible
for decreasing aldosterone and perhaps this is an area for
therapeutic manipulation. If we consider leptin, which
has been shown to increase aldosterone secretion, it may
be that this is an important mechanism in obesity-related
hypertension. However, this concept is complicated by
the common coexistence of leptin resistance in obesity
(Crujeiras et al. 2015) and that in the db/db mouse
model, where there is a point mutation of the leptin
receptor, aldosterone levels are elevated (Briones et al.
2012). Inhibiting leptin would therefore not seem a
viable target for the manipulation of this system. Further
identification of possible targets or adipokines involved
in aldosterone secretion would therefore be useful.

Summary and conclusion

Understanding the mechanisms linking obesity with
hypertension is important in the current obesity and
hypertension epidemic and might have implications for
the management of hypertension in overweight and obese
patients. We have outlined some mechanisms whereby
adipocytes may influence tissue and systemic aldosterone
levels and suggest this as an important new mechanism
linking obesity and hypertension. Figure 4 summarizes
the pathophysiological roles of adipose aldosterone/MR
activation in obesity-related hypertension.
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