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Abstract

The pituitary adrenocorticotropic hormone (ACTH) plays a pivotal role in homeostasis and 

stress response and is thus the major component of the hypothalamo–pituitary–adrenal 

axis. After a brief summary of ACTH production from proopiomelanocortin (POMC) 

and on ACTH receptor properties, the first part of the review covers the role of ACTH 

in steroidogenesis and steroid secretion. We highlight the mechanisms explaining the 

differential acute vs chronic effects of ACTH on aldosterone and glucocorticoid secretion. 

The second part summarizes the effects of ACTH on adrenal growth, addressing its role as 

either a mitogenic or a differentiating factor. We then review the mechanisms involved in 

steroid secretion, from the classical Cyclic adenosine monophosphate second messenger 

system to various signaling cascades. We also consider how the interaction between the 

extracellular matrix and the cytoskeleton may trigger activation of signaling platforms 

potentially stimulating or repressing the steroidogenic potency of ACTH. Finally, we 

consider the extra-adrenal actions of ACTH, in particular its role in differentiation 

in a variety of cell types, in addition to its known lipolytic effects on adipocytes. In 

each section, we endeavor to correlate basic mechanisms of ACTH function with the 

pathological consequences of ACTH signaling deficiency and of overproduction of ACTH. 

Introduction

The adrenocorticotropic hormone (ACTH) (39 
amino acids (a.a.)) results from PC1/3 cleavage of the 
proopiomelanocortin (POMC) precursor and may 
be further cleaved by proconvertase 2 to generate 
α-melanocyte-stimulating hormone (α-MSH) (a.a. 1–13 
of ACTH) (Raffin-Sanson et  al. 2003, Dores et  al. 2014). 
ACTH is mainly produced in the corticotropic cells 
from the anterior pituitary, but is also produced in the 
brain, adrenal medulla, skin, and placenta (Vrezas et  al. 
2003, Bicknell 2008, Evans et al. 2012). As ACTH is the 

most potent stimulus of the adrenal cortex, most of the 
knowledge on its mechanism of action derives from studies 
on the adrenal cortex or ACTH receptor-expressing cells.

The adult adrenal cortex is divided into three zones. 
At the periphery, under the capsular of tight connective 
tissue, the thin zona glomerulosa (ZG) consists of small 
cells organized as loops around capillaries, then the zona 
fasciculata (ZF) occupies the major part of the cortex, with 
cells that change progressively from radial centripetal 
columns, separated by sinusoids to a less-organized 
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network, becoming the zona reticularis (ZR). Cells from 
the adrenal cortex, as for all steroid-producing cells, are 
characterized by the presence of lipid droplets containing 
cholesteryl esters (CE) as precursors for steroidogenesis. 
These lipid droplets are scarce and small in ZG and 
becomes large and numerous in the outer fasciculata. In 
the cells from ZR, lipid droplets vary in size and shape 
(NussDorfer 1986, Vinson 2003). The adrenal glands are 
also highly vascularized (Vinson & Hinson 1992, Bassett &  
West 1997) and innervated by pre- and post-ganglionic 
sympathetic fibers, sensory fibers, and vagal fibers  
(Vinson et al. 1994, Holgert et al. 1998).

Overview of the ACTH–MC2R complex

The ACTH receptor, called melanocortin 2 receptor  
(MC2R), cloned in 1992 (Mountjoy et al. 1992), is a member 
of the family of five melanocortin receptors (MCRs), 
which include MC1, MC3, MC4, and MC5 that bind the 
MSH peptides. This distinct family of G protein-coupled 
receptors (GPCRs) act primarily through cAMP as a second 
messenger. MCRs are characterized by their unusually 
short sequence and the absence of highly conserved a.a. 
residues or motifs common to most GPCRs. MC2R is both 
the smallest MCR and the smallest known GPCR (297 a.a). 
Compared with other MCRs, MC2R is unique in that it 
binds ACTH only and does not possess affinities for other 
melanocortins (for reviews see Cone 2006, Dores 2009).

Another important progress in understanding how 
the ACTH–MC2R complex is able to stimulate cAMP 
production was the discovery of melanocortin-2 receptor 
accessory protein 1 (MRAP, often called MRAP1) by 
Metherell et al. (2005). In the absence of melanocortin-2 
receptor accessory protein (MRAP), MC2R is non-
functional (i.e. there is no production of cAMP, even if 
the receptor is correctly addressed to the cell membrane). 
We (Kilianova et al. 2006, Roy et al. 2007) and others have 
been able to decipher the mechanisms of expression and 
regulation of MC2R in melanocortin-2 receptor accessory 
proteins (MRAPs) expressing cells. The role of MRAP1 as 
well as the relative roles that the various forms of MRAPs 
identified thereafter has been documented in several 
recent reviews (Hinkle & Sebag 2009, Cooray & Clark 2011, 
Jackson et al. 2015, Clark 2016). Another particularity is 
that ACTH treatment of adrenocortical cells (4 h or more) 
increases the expression of MC2R (Penhoat et  al. 1989, 
Mountjoy et al. 1994), as well as the level of MRAP and 
MRAP2 (Hofland et  al. 2012). Short-term stimulation of 
MC2R-expressing cells with ACTH (15–60  min) induces 
MC2R desensitization and internalization through a  

PKA-dependent mechanism (Rani et  al. 1983, Baig et  al. 
2001), possibly acting in synergy with PKC (Kilianova 
et al. 2006, Chan et al. 2011, Gallo-Payet & Battista 2014).

Studies on structure–activity relationships have 
determined that ACTH(1–16) is the minimal sequence 
required for ACTH binding to MC2R and downstream 
signaling (Kapas et al. 1996, Chen et al. 2007). In addition, 
some ACTH fragments not only lack activity, but act as 
competitive antagonists of full-length ACTH, as is the 
case for ACTH(7–38) (Kapas et al. 1996). The latter is now 
known as corticotropin-inhibiting peptide (CIP) (Li et al. 
1978). However, ACTH(11–24) has been described as a 
competitive antagonist of ACTH(1–39) (Seelig et al. 1971, 
Kapas et al. 1996), whereas in another study, it has been 
reported to stimulate corticosterone production of ZF 
cells and aldosterone production of ZG cells, in addition 
to potentiating the effects of ACTH(1–39) (Szalay et  al. 
1989). The a.a. 6–9 (HFRW sequence) is essential for cAMP 
production and has been called the ‘message sequence’, 
whereas the a.a. 15–18 (KKRR sequence) essential for the 
binding of ACTH to MC2R has been called the ‘address 
sequence’ (Dores 2009). Mutations in the HFRW or KKRRP 
motifs of ACTH (Liang et al. 2013) in the POMC gene, or 
a non-functional PC1/3 in corticotropic cells (Seidah &  
Chretien 1999), abrogate the hypothalamo-pituitary-
adrenal  (HPA)-activating axis (Dores 2009, Dores et  al. 
2014). The properties of MC2R are reviewed by Peng Loh  
and Robert Dores in this issue (Cawley et  al. 2016,  
Dores et al. 2016).

Illustrating the importance of these sequences in ACTH 
action, we discovered a mutation (p.R8C; HFRW > HFCW) 
that abolishes ACTH binding and cAMP production in 
MC1R-, MC2R-, and MC4R-expressing cells (Samuels 
et al. 2013). ACTH-R8C was found to be immunoreactive, 
but failed to bind and activate cAMP production in  
MC2R-expressing cells, whereas α-MSH-R8C failed to 
bind and stimulate cAMP production in MC1- and  
MC4-expressing cells. Discovery of this mutation indicates 
that, in humans, the His6Phe7Arg8Trp9 (HFRW) sequence 
is important not only for cAMP activation but also for 
ACTH binding to MC2R (Samuels et al. 2013).

Pathological consequences of MC2R deficiency for the 
adrenal cortex

Mutations in the MC2R gene are responsible for 25% of 
familial glucocorticoid deficiency (FGD) and mutations 
in the MRAP gene, encoding the MC2R accessory protein 
MRAP, are responsible for 20% of FGD (Meimaridou 
et al. 2013, Jackson et al. 2015). FGD is an autosomal 
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recessive disorder resulting in cortisol deficiency, 
due to resistance of the adrenal cortex to the action 
of ACTH. Postmortem examination of adrenal glands 
from FGD patients demonstrated a disorganization of 
glomerulosa cells and almost completed absence of ZF 
and ZR, suggesting that MC2R and/or MRAP may be 
important for the development of adrenal zonation 
(Gorrigan et al. 2011).

Effects of ACTH on the adrenal cortex
Steroids produced by the adrenal cortex

The adrenal cortex produces several steroid hormones, 
the most important being cortisol (glucocorticoid), 
aldosterone (mineralocorticoid), and androgen precursors. 
All these hormones are essential for homeostasis as 
well as survival. Disorders of the adrenal glands lead to 
classical endocrinopathies such as Cushing’s syndrome,  

Addison’s disease, hyperaldosteronism, and the  
syndromes of congenital adrenal hyperplasia (CAH) 
(Miller & Auchus 2011).

Aldosterone is produced exclusively in the ZG due 
to the specific expression of P450 aldosterone synthase 
(P450aldo, CYP11B2), whereas cells from the ZF and ZR, 
which express P450c11β-hydroxylase (P450c11, CYP11B1), 
synthesize glucocorticoids (GC) (cortisol in humans, 
bovine, and dogs and corticosterone in rodents, except 
hamsters that produce cortisol). However, the ZR, through 
P450c17,20 lyase (CYP17A1), produces the androgen 
precursors, dehydroepiandrosterone (DHEA), its sulfated 
derivative DHEAS (which circulates at concentrations 
1000 times higher than DHEA) and androstenedione, 
at least in humans and higher primates, but not in 
rodents (Vinson 2003, Arlt & Stewart 2005) (Fig. 1). The 
relative thickness of each zone is correlated with the 
efficacy and daily production of steroids (Rainey 1999). 

Figure 1
Steroidogenesis in the three zones of the adrenal cortex. (A) Hematoxylin- and eosin-stained section of an adult rat adrenal gland. Scale bar, 100 μm.  
(B) Free cholesterol is recruited in three enzymatic pathways, leading to aldosterone in zona glomerulosa; corticosterone or cortisol in zona fasciculata 
and zona reticularis; and dehydroepiandrosterone (DHEA), DHEAS, and androstenedione in zona reticularis. Cholesterol is cleaved in the inner 
mitochondrial membrane by P450 cholesterol side-chain cleavage enzyme (P450scc/CYP11A1) into pregnenolone. Further steps involve the enzymes 
indicated in the figure. The steps indicated in red take place in the mitochondria and the steps indicated in blue take place in the endoplasmic 
reticulum. Data from Arlt & Stewart PM (2005).

http://dx.doi.org/10.1530/JME-15-0257
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Indeed, the amount of aldosterone needed to control 
salt balance is 100- to 1000-fold lower than that needed 
to control carbohydrate metabolism, and in humans, 
daily production of aldosterone is in the order of pmol/L  
(100–150  g/day), compared with the nmol/L range for 
cortisol/corticosterone (10–20 mg/day) and mol/L range 
for DHEAS (up to 20 mg/day) (Arlt & Stewart 2005).

Mineralocorticoids, such as aldosterone, stimulate 
sodium reabsorption, hence maintaining blood volume 
and pressure in sodium-depleted conditions. Excessive 
aldosterone secretion not only leads to hypertension 
and electrolyte imbalance, but is also associated with 
cardiometabolic complications (Funder & Reincke 
2010, Briet & Schiffrin 2011). However, GC (cortisol, 
corticosterone, and cortisone) are implicated in a broad 
range of metabolic functions, including anti-inflammatory 
responses, stress response, and behavior (Chan et  al. 
2011, Corander & Coll 2011), increasing blood glucose 
concentrations through their action on glycogen, protein, 
and lipid metabolism (Arlt & Stewart 2005). However, 
chronically elevated GC levels alter body fat distribution, 
increase visceral adiposity, and are responsible for several 
metabolic abnormalities leading to metabolic syndrome 
(Dallman et al. 2004).

Role of ACTH in corticosteroid rhythmicity

Circulating GC levels are higher during the activity period 
(day for diurnal species and night for nocturnal species), 
and peak levels are linked to the beginning of the activity 
period (for rats, nadir in the morning and peak in the 
late afternoon). These circadian changes in ACTH and 
corticosterone are associated with circadian expression 
of steroidogenic genes and those involved in ACTH 
signaling (Park et al. 2013). In addition to the driving role 
established by the suprachiasmatic nucleus (SCN) (Chung 
et  al. 2011, Ota et  al. 2012), sensitivity of the adrenal 
glands to ACTH stimulation could be regulated through 
adrenal splanchnic innervation (Ulrich-Lai et  al. 2006a) 
and by intra-adrenal circadian clockwork (Son et al. 2008). 
Interestingly, in rats, although the Mc2r gene is induced by 
ACTH, Mc2r mRNA is at its highest levels in the morning, 
when ACTH is minimal. By contrast, MRAP expression 
peaks in the evening, consistent with the circadian 
rhythm of ACTH. These data suggest that it is the circadian 
rhythm of MRAP, rather than of MC2R, that results in 
increased adrenal sensitivity to ACTH in the evening (Park 
et al. 2013). By contrast, the circadian rhythm of plasma 
aldosterone in recumbent normal subjects on a regular 

diet is independent of ACTH, but regulated by the activity 
of plasma renin (Williams et  al. 1972). An exception is 
found in patients with aldosterone-producing adenomas, 
where short-term decrease in ACTH (by administration 
of dexamethasone) eliminates or markedly alters the 
circadian variation of plasma aldosterone, suggesting that 
patients with primary aldosteronism have a circadian 
rhythm of plasma aldosterone mediated by changes in 
ACTH (Kem et al. 1975).

Jet lag or sleep perturbations results in a transient 
mismatch between the internal circadian time and 
the external light–dark cycle. Over long periods, these 
changes are associated with increased body mass index 
and alterations in the levels of circulating insulin, 
glucose, and GCs (Van Cauter et  al. 2008). Moreover, 
alterations in GC rhythmicity and dissociation of GC 
secretion from ACTH secretion occur during various 
pathological conditions, including Cushing’s syndrome, 
metabolic syndrome, mood disorders, and even 
Alzheimer’s disease (Bornstein et al. 2008, Chung et al. 
2011, Russell et al. 2014).

Effects of ACTH on steroidogenesis

Under physiological conditions, cortisol and adrenal 
androgen secretion are controlled primarily by ACTH, 
although having a more complex action on ZG and 
aldosterone secretion. The response of adrenocortical 
cells to ACTH can be divided into two phases: the acute 
phase, which occurs within seconds to minutes, involves 
transcription-independent stimulation of adrenal steroid 
synthesis, although the more sustained phase affects not 
only steroidogenic capability, but also size and structural 
integrity of the gland, as evidenced by the atrophy 
observed after hypophysectomy or in POMC-deficient 
animals (Coll et al. 2004) (Chan et al. 2011, Corander & 
Coll 2011).

The acute response of ACTH involves mobilization 
and delivery of free cholesterol from lipid droplets 
to the inner mitochondrial membranes where it is 
metabolized by P450scc/CYP11A1 to pregnenolone – the 
first enzymatic step in the steroid hormone biosynthetic 
pathway. The transfer of free cholesterol from the outer 
to the inner mitochondrial membrane is triggered by 
phosphorylation and activation of the steroidogenic 
acute regulatory protein (StAR) (Stocco 2000, Jefcoate 
2002), the rate-limiting protein of steroidogenesis. In ZG  
cells, such effects also involve calcium (Ca2+)- and 
calmodulin-dependent processes (Cherradi et  al. 1996). 
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StAR does not act alone but is part of a multi-protein 
complex, which includes translocator protein (TSPO) 
(Rone et  al. 2009) but also arachidonic acid (AA) 
metabolites (Maloberti et al. 2007). Then, the various steps 
of steroidogenesis take place alternatively in mitochondria 
and in the endoplasmic reticulum (where the three 
cytochrome P450 enzymes and one hydroxysteroid 
dehydrogenase (3β-HSD) are localized) and in a  
zone-specific manner, as illustrated in Fig. 1 (Stocco et al. 
2005, Miller & Auchus 2011). Of note, steroids (which 
are lipoplytic hormones) are immediately released after 
synthesis, in contrast to peptidic hormones, which are 
stored in secretory vesicles.

In ZF, chronic treatment with ACTH (from hours 
to days) increases the expression of a number of genes 
including those involved in cholesterol availability,  
through selective lipoprotein-derived cholesterol (Kraemer 
2007, Hu et al. 2010) and synthesis of the enzymes required 
for steroidogenesis, including StAR (Fleury et al. 1998). These 
latter actions are mediated by various transcription factors, 
one of the most important being the nuclear receptor 
NR5A1/steroidogenic factor 1 (SF1) (required not only for 
the expression of most of the steroidogenic enzymes, but 
also for the development of the adrenal cortex) (Sewer & 
Waterman 2003, Schimmer et al. 2006, Schimmer & White 
2010, Xing et  al. 2010, Miller & Auchus 2011). Chronic 
treatment with ACTH also increases the volume of the 
adrenal glands and blood flow within it (Mazzocchi et al. 
1986, Thomas et al. 2004). Chronic stress (which mimics 
chronic ACTH treatment) induces hyperplasia in the outer 
ZF and hypertrophy in the inner ZF, but reduces the size 
and properties of the ZG. These effects are associated with 
elevated corticosterone responses (Ulrich-Lai et al. 2006b).

Effects of ACTH on protection against reactive oxygen 
species accumulation

Intense steroidogenesis in ZF leads to oxidative stress 
due to lipid peroxidation, and to the production of 
reactive aldehyde metabolites such as isocaproaldehyde 
(Hornsby & Crivello 1983, Lefrançois-Martinez et  al. 
1999). This may explain the large quantity of endogenous 
anti-oxidant compounds (vitamin E, β-carotene, and 
vitamin C) (Hornsby & Crivello 1983) and the presence 
of enzymes implicated in detoxification of steroidogenesis 
by-products (Martinez et al. 2001) in the adrenal glands 
(Lefrançois-Martinez et  al. 1999, Chinn et  al. 2002). 
To prevent cell toxicity, these reactive oxygen species 
(ROS) are metabolized to isocaproic acid by a family of  
aldo-keto reductases (AKR), including Akr1b8 and 

Akr1b7 in mice and AKR1B10 in humans (Lefrançois-
Martinez et  al. 1999, Pastel et  al. 2012). These enzymes 
are highly expressed in the adrenal glands, and their 
levels of expression are correlated with the level of ACTH 
(Schimmer et al. 2007).

Another mechanism used by cells to circumvent 
the negative side effects of intense steroidogenesis 
is through induction of 24-dehydrocholesterol 
reductase (DHCR24) (a member of the flavin adenine 
dinucleotide (FAD)-dependent oxidoreductase family) 
(Sarkar et  al. 2001). As for AKR1B7, in human and 
rat adrenocortical cells, SELective Alzheimer disease 
INdicator 1 (seladin-1) is more abundant in ZF/ZR than 
in ZG, and ACTH treatment increases its expression and 
its nuclear localization (Battista et  al. 2009). Overall, 
chronic levels of ACTH increase transcription of the 
genes that encode the steroidogenic enzymes, but also 
those involved in ROS detoxification (such as AKR 
and seladin-1), thereby maintaining optimal steroid 
production and reduction of harmful lipid aldehydes 
(Lefrançois-Martinez et al. 1999).

Acute effect of ACTH on aldosterone secretion and 
consequences of chronic ACTH treatment

The role of ACTH in the ZG and in aldosterone secretion 
is subject to controversy and probably more complex 
than currently perceived. Indeed, in vivo studies suggest 
that ACTH is rather a weak stimulus of aldosterone 
secretion; however, based on in vitro studies, ACTH 
is the most potent stimulus of aldosterone secretion. 
Continuous intravenous administration of ACTH leads 
to a sustained stimulation of cortisol secretion but to a 
transient stimulation of aldosterone secretion, followed 
by a decrease in prestimulation levels by 72 h. By contrast, 
pulsatile infusion of ACTH leads to a stimulation of 
aldosterone secretion, which is maintained for up to 72 h 
(Seely et al. 1989). Moreover, aldosterone secretion is more 
sensitive to low doses of ACTH(1–24) than the secretion 
of cortisol or DHEA (Daidoh et  al. 1995), especially in 
humans under conditions of low-sodium intake (Rayfield 
et al. 1973, Kem et al. 1975, Nicholls et al. 1975).

Moreover, sustained exposure to ACTH (2  days or 
more) leads to transformation of the ZG cells into ZF cells. 
From a mechanistic point of view, several mechanisms 
may explain this transient response of glomerulosa cells 
to ACTH. In primary cultures of bovine adrenocortical 
cells, a 2  h ACTH treatment was sufficient to increase 
17α-hydroxylase (P450c17) and 11β-hydroxylase 
(P450c11) activity by 55-folds in mitochondria from 
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ZF cells, although the latter was reduced by 50% in 
mitochondria from ZG cells, as for 18-hydroxylase activity 
(P450c11B2). In addition, in ZG cells from adrenal glands of  
ACTH-treated rats (6  days, 2UI/day), Ang II receptors 
and Ang II-stimulated aldosterone are markedly 
decreased (Aguilera et al. 1981), whereas the production 
of deoxycorticosterone and precursor steroids is 
conversely increased, indicating a blockade in the late 
step of aldosterone synthesis (Bird et  al. 1996). These 
functional changes are accompanied by a morphological 
transformation of ZG cells into ZF-like cells (Manuelidis 
& Mulrow 1973, Hornsby et  al. 1974, Muller 1978, 
Crivello & Gill 1983, Pudney et  al. 1984). In particular, 
mitochondria changed from an elongated shape with 
lamellar and tubular cristae to a homogeneous population 
of round or ovoid mitochondria with ovoid cristae, as in 
ZF cells (Armato et al. 1974, Riondel et al. 1987) (Vinson 
2003, Corander & Coll 2011, Hattangady et  al. 2012,  
Gallo-Payet & Battista 2014). 

Effect of ACTH on adrenal growth

The adrenal cortex is a very dynamic organ, in which 
secretory activities correlate with morphology and 
structure according to external stimuli or environmental 
conditions. For example, a sodium-deficient diet increases 
width and volume of ZG, without affecting ZF. A study 
conducted with adrenals from 61 surgical/autopsy patients 
from 1 day old to 92 years old has revealed that the ZG was 
well developed in human adrenals from newborn to the 
third decade. However, after 40 years of age, an important 
decrease in ZG was observed. ZG cells become scattered 
and both ZG and ZF are surrounded by a progenitor 
zone, which has the ability to differentiate bidirectionally 
into either ZG-topped columns or ZF-topped columns, 
according to secondary aldosteronism or to exposure to 
severe stresses. These authors suggest that the involution 
of ZG with age may be due to the current high-sodium/
low-potassium diet in humans compared with earlier 
human populations even as recently as 50  years ago 
(Aiba & Fujibayashi 2011).

However, ACTH deficiency decreases, while ACTH 
treatment increases the volume of ZF (Rebuffat et  al. 
1989, Thomas et al. 2004). Knockout of the Mc2r gene in 
mice leads to neonatal lethality in most of the animals, 
possibly as a result of hypoglycemia. Animals surviving 
to adulthood have a marked atrophy of the ZF. However, 
the ZG remains fairly intact, although aldosterone 
secretion was significantly decreased (Chida et al. 2007). 

These results confirmed and extended the importance of 
the ACTH–MC2R complex in adrenal development, as in 
the production of corticosterone and probably aldosterone 
(Chida et  al. 2007). Supporting this conclusion is the 
recent observation of high levels of expression of MC2R 
and MRAP in the undifferentiated zone, which contains 
stem cells (Gorrigan et al. 2011).

The mechanisms involved in adrenocortical 
remodeling are complex and sometimes redundant, with 
the aim of preserving or restoring homeostasis or coping 
with stress (Pihlajoki et al. 2015). There are indications 
that ACTH is involved in various aspects of the 
dynamic organization of the adrenal cortex, namely cell 
migration and proliferation. It is generally assumed that 
proliferation takes place either under the capsule (stem 
cell region), in the ZG itself, or in the outer part of ZF and 
that cell senescence occurs mainly in ZR (Wolkersdorfer 
& Bornstein 1998, Kim et  al. 2009). To discriminate 
between the effect of ACTH on cell proliferation or on cell 
hypertrophy, Engeland and his group have used a 14-day 
chronic variable stress paradigm in adult male rats. They 
found that chronic stress induced hyperplasia in the 
outer ZF, hypertrophy in the inner ZF and medulla, and 
reduced cell size in the ZG. These effects were associated 
with elevated corticosterone responses to ACTH (Ulrich-
Lai et  al. 2006b). However, there are indications that 
proliferation is probably not mediated by ACTH, but 
rather by other POMC-related peptides. Indeed, in vivo 
immunoneutralization of circulating ACTH reduces 
corticosteroid levels, but increases mitogenesis (Estivariz 
et al. 1982); cell proliferation in the ZF in Mc2r-knockout 
mice is comparable to cell proliferation in wild-type 
mice (Chida et  al. 2007), whereas in Pomc-knockout 
mice, the absence of cell proliferation results in the 
atrophy of adrenal glands (Coll et al. 2004, Karpac et al. 
2005). Further in-depth investigations have revealed 
that the active domain of POMC-derived peptide 
is a small fragment, N-POMC (50–74) (also named  
γ3-melanocyte-stimulating hormone, γ3-MSH). This 
aspect is reviewed further in this issue by Andy Bicknel  
(Bicknell et al. 2001, Bicknell 2016).

In isolated cells in culture, ACTH inhibits cell 
proliferation to favor steroid secretion (Hornsby & Gill 
1977, Mattos et al. 2011). It is now relatively well accepted 
that ACTH is preferentially a differentiation factor 
controlling steroid secretion rather than a proliferation 
factor. However, ACTH favors cell survival when viability 
is compromised, a protective effect occurring only when 
the adrenal glands are intact. Indeed, quartering of 
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the glands enhances basal apoptosis and, interestingly, 
abolishes ACTH-induced inhibition of apoptotic 
DNA fragmentation, without altering ACTH-induced 
corticosterone secretion. These data suggest that the global 
organ architecture is required for modulation of adrenal 
cell survival by ACTH (Carsia et  al. 1997). In another 
study conducted in mice, adrenal atrophy was observed 
after 14  days of dexamethasone treatment: a condition 
that suppresses ACTH secretion. Such treatment induced 
an important decrease in adrenal weight and cellularity, 
due to inhibition of cell proliferation, induction of cell 
apoptosis, and progressive regression of the vascular 
network. These data support the concept that ACTH had 
a trophic action on the adrenal cortex through a dual 
mechanism involving antiapoptotic effect and effects on 
vasculature (Thomas et al. 2004).

Effect of ACTH on gene expression

All the above effects of ACTH have been confirmed by 
measurements of gene expression (Xing et  al. 2011, 
Nishimoto et al. 2012, Rege et al. 2014). In this regard, the 
Y1 mouse adrenocortical cell line is a model that has been 
widely used to identify changes in gene expression after 
treatment with ACTH. This cell line shares many features 
with normal cells from the adrenal cortex (Rainey et al. 2004, 
Schimmer et  al. 2006). For example, a 15K mouse cDNA 
microarray was used to identify genome-wide changes in 
gene expression after a 20 min ACTH treatment with effects 
measured 24  h latter. ACTH affected the levels of 1275 
annotated transcripts, of which 46% were up-regulated. 
Not surprisingly, the transcripts up-regulated in response 
to ACTH are those implicated in steroid biosynthesis and 
metabolism, transcription factors involved in the expression 
of the steroidogenic enzymes, and signaling molecules 
involved in the hormonal regulation of steroidogenesis. 
The transcripts down-regulated in response to ACTH are 
associated with DNA replication, mitotic activity, nuclear 
transport, and RNA processing. Such results are consistent 
with the growth-inhibiting effects of ACTH that are 
observed in Y1 cells under the conditions used in this study 
(Schimmer et al. 2006).

The signaling pathways of ACTH action

Although several second messengers have been described, 
the primary events following ACTH binding to MC2R is 
adenylyl cyclase (AC) activation and cAMP production 
together with Ca2+ influx. Thereafter, cAMP can directly 

activate various protein kinases, including protein kinase 
A (PKA), protein kinase C (PKC), mitogen-associated 
protein kinase (MAPK), ion-channels, guanine nucleotide 
exchange factors, or transcription factors.

In addition to human or nonhuman adrenocortical 
cells, two cell lines have been widely used to investigate 
the most selective signaling pathways, namely the Y1 
mouse adrenocortical cell line and the NCI-H295R 
cells, involved in aldosterone secretion (Rainey et  al. 
2004). Indeed, in NCI-H295R cells, the expression of  
CYP11B2/Ang II is high, but level of expression of MC2R 
is low, whereas in Y1 cells, the expression of CYP11B2 
and Ang II receptors is low, but the expression of MC2R 
is high.

Cyclic AMP and Ca2+: lessons from structure–activity 
relationships

Since the pioneering work of Lefkowitz et  al. (1970), 
several studies have shown that cAMP and Ca2+ interact 
closely through positive feedback loops to enhance 
steroid secretion (Fakunding et  al. 1979, Fakunding & 
Catt 1980, Kojima et al. 1985a, Gallo-Payet & Payet 1989). 
The question of whether Ca2+ influx is consecutive to 
cAMP production and/or Ca2+ and cAMP are associated 
with different domains of the ACTH molecule is not yet 
resolved. Indeed, there are arguments supporting the view 
that ACTH(1–10) can stimulate steroid secretion through 
Ca2+, without detectable changes in cAMP, whereas 
ACTH(5–24) or forskolin increases cAMP, and when 
used together, the two fragments reproduce the effects 
of ACTH(1–24) (Li et  al. 1989). ACTH does not induce 
a rapid and transient Ca2+ influx (such as Ang II, which 
acts through phosphatidylinositol 4,5-bisphosphate 
(PtIns(4,5)P2), but instead induce a slow, but sustained, 
Ca2+ influx. The latter is mainly mediated by PKA-
dependent phosphorylation of L-type Ca2+ channels 
(Tremblay et  al. 1991), as stimulation of aldosterone by 
ACTH is completely inhibited by verapamil, an L-type 
Ca2+ channel blocker (Kojima et  al. 1985b, Gallo-Payet 
et al. 1996) (Hattangady et al. 2012, Gallo-Payet & Battista 
2014). Some studies have shown that rat ZG cells are 
much more sensitive to extracellular Ca2+ than ZF cells 
(Schiebinger et  al. 1985). However, in bovine adrenal 
glands, sensitivities to Ca2+ of ZF cells and ZG cells are 
similar. Specifically, ACTH and O-nitrophenyl sulfenyl-
ACTH (NPS-ACTH) (an analog of ACTH that does not 
increase cAMP) increase intracellular Ca2+ and stimulate 
cortisol synthesis by bovine ZF cells at concentrations 
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that produce little or no increase in cAMP synthesis (Liu 
et al. 2010).

At least in ZG cells, Ca2+ acts on almost all steps of 
steroidogenesis: Gs activation of AC, cholesterol ester 
hydrolase activity, activation of intramitochondrial 
cholesterol transfer, and expression of StAR and most 
steroidogenic enzymes (Cherradi et al. 1998). The role of 
calcium/calmodulin-dependent protein kinase (Ca2+-CaMK)  
in adrenal aldosterone production has recently been 
confirmed, using both pharmacological and molecular 
approaches (Nanba et al. 2015). Nishimoto and coworkers 
(Nishimoto et  al. 2012, 2013) have compared the 
transcriptional profiles of ZG and ZF in rats. Although 
similarities between early ACTH events in ZG and ZF were 
detected, important differences were identified. With 
the exception of Cyp11b2 and the gene encoding Ang II 
receptor type 1, these authors identified genes encoding 
extracellular matrix proteins, Ca2+ and K+ channels, as well 
as transforming growth factor beta (TGF-β), and members 
of the WNT/β-catenin and ACTH signaling pathways 
(Nishimoto et al. 2013).

Mechanisms regulating cAMP production  
and Ca2+ influx

Cyclic AMP levels and Ca2+ influx are regulated by 
multiple and sophisticated mechanisms. In particular, the 
intracellular concentration of cAMP is partly determined 
by (1) a balance between AC activation through the 
GTP-binding protein Gs and inhibition through the 
GTP-binding inhibitory protein Gi (Hausdorff et  al. 
1987, Begeot et al. 1988, Hausdorff et al. 1989); and (2) 
several isoforms of ACs (AC5/6, insensitive to Ca2+, AC3, 
activated by Ca2+, and AC4, activated by the βγ subunits 
of G proteins) (Shen et al. 1997, Côté et al. 2001). Studies 
of gene expression of the rat ZG indeed showed that AC3 
and AC4 are selectively enriched in ZG (Nishimoto et al. 
2013); (3) several isoforms of phosphodiesterases (PDEs), 
in particular cGMP-PDE2 (the highest concentrations 
being found in the ZG (McFarlane & Sowers 2003)) and 
PDE8, important in regulating corticosterone secretion in 
ZF cells (Tsai & Beavo 2011).

Effects of ACTH on electrical properties  
of adrenocortical cells

Adrenocortical cells are characterized by a very negative 
resting membrane potential ranging from −78 to −90 mV 
(thus similar to that found in excitable cells) and by 

the presence of several channels, including (1) voltage-
dependent K+ and Ca2+ channels; (2) two types of Ca2+ 
channels: the T-type or low-voltage-activated channels 
(referred to as Cav3.x after the channels were cloned) and 
the L-type channels or high-voltage-activated channels 
(Cav1.x); (3) voltage-independent Ca2+ channels; and (4) 
background channels (such as TASK and TREK channels) 
(the ‘tandem of P domains in a weak inwardly rectifying 
K+ channel’). In addition, as excitable cells, adrenocortical 
cells are able to generate spontaneous action potentials 
(Matthews & Saffran 1973, Lymangrover 1980, Tabares & 
Lopez-Barneo 1986, Enyeart 2005, Guagliardo et al. 2012, 
Gallo-Payet & Battista 2014).

An important difference between ZG and ZF cells is 
their sensitivity toward K+ ions (which are involved in 
cell depolarization, and therefore Ca2+ influx) and thus 
higher impact on aldosterone secretion, compared with 
corticosterone/cortisol secretion in ZF cells (Enyeart 
2005, Guagliardo et  al. 2012, Gallo-Payet & Battista 
2014). Such observations could explain that, in humans, 
aldosterone secretion is more sensitive to low doses 
of ACTH(1–24) than the secretion of cortisol or DHEA 
(Daidoh et al. 1995), especially in conditions of sodium 
depletion (Rayfield et al. 1973, Kem et al. 1975, Nicholls 
et al. 1975). In rat and human ZG cells, binding of ACTH 
to its receptor induces a rapid membrane depolarization, 
in part due to blockade of K+ channels (Payet et  al. 
1987, 1994). Simultaneously, depolarization transiently 
abolishes T-channel activity (Durroux et  al. 1991) and 
increases the amplitude of the L-type current, through a 
cAMP-dependent or a PKA-dependent phosphorylation 
of these L-type channels (Durroux et al. 1991).

Early studies conducted in Y1 cells do not support 
the concept that activation of voltage-dependent Ca2+ 
channels is an important mechanism for steroidogenesis 
(Coyne et  al. 1996), as the steroidogenic response to 
ACTH was observed even in the presence of blockers 
known to affect both Ca2+ and K+ channels or in a medium 
containing low calcium concentration, suggesting that 
extracellular Ca2+ is not critical for a steroidogenic 
response (Coyne et  al. 1996). However, subsequent 
studies performed with ZF cells from bovine origin 
have shown that ACTH affects the activity of various 
channels. ACTH inhibits bTREK-1 channels, inducing 
depolarization, which in turn induces activation of 
T- and L-type Ca2+ channels. Mibefradil, a specific 
T-channel blocker, inhibits ACTH-induced cortisol 
secretion in fasciculata cells (Enyeart et  al. 1993). This 
mechanism is independent of PKA but can be mimicked 
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by exchange protein directly activated by cAMP (Epac)-
specific cAMP analogs (Liu et  al. 2008). Epacs also 
enhance the expression of both Cav3.2 and functional 
Ca2+ channels (Liu et al. 2010). The contribution of Ca2+ 
to genome-wide actions of ACTH has been explored in 
Y1 cells (Schimmer et al. 2007). Cells were treated with 
the Ca2+ ionophore A23187 (10 μM) for 24 h to promote 
Ca2+ influx and changes in transcript accumulation 
were profiled using the 1.7 K human cDNA array. One 
hundred and twenty nine transcripts were up-regulated 
and 127 were down-regulated by this treatment, and 45 
of these matched transcripts were regulated by ACTH. 
Interestingly, most of the ACTH-regulated transcripts 
assigned to the Ca2+ signaling pathway by these criteria 
also fulfilled criteria for activation via the cAMP pathway 
(Schimmer et al. 2007), further indicating that Ca2+ and 
cAMP are not independent, but closely interconnected.

Secondary intracellular events and implication of 
extracellular matrix (ECM) and cytoskeleton

Although cAMP-PKA-Ca2+ mediates most of the effects 
of ACTH, a number of PKA-independent effects of cAMP, 
including involvement of the exchange protein, were 
directly activated by cAMP (Epac1/2) (Liu et  al. 2010). 
Moreover, the observations that ACTH and/or cAMP 
induced morphological changes of adrenal cells from flat 
and adherent to round and loosely attached prompted 
many investigators to investigate how the cytoskeleton 
(in particular through reorganization of the actin filament 
network and its associated proteins) was implicated in 
ACTH responses (Feuillolley & Vaudry 1996, Côté et  al. 
1997, Hall & Almahbobi 1997, Sewer & Li 2008).

Over the years, some of these non-canonical pathways 
have been well documented. For example, it has been 
known for decades that ACTH stimulates arachidonic 
acid (AA) release through a cAMP- and PKA-dependent 
mechanism and its lipoxygenase products (Hirai et  al. 
1985) are part of a complex of proteins that participate in 
the activation of StAR (Kang et al. 1997, Wang et al. 2003), 
but also in the transport of cholesterol into mitochondria 
(Cooke et  al. 2011). Breakdown of phosphatidylinositol 
4,5-bisphosphate (PtIns(4,5)P2) has been reported, both 
in bovine ZF cells (Bird et  al. 1990) and in rat ZG cells 
(Gallo-Payet & Payet 1989). However, the production of 
inositol trisphosphate induced by ACTH is not sufficient 
to release Ca2+ from intracellular stores, thus suggesting 
that diacylglycerol (the other second messenger resulting 
from PtIns(4,5)P2 breakdown) and subsequent PKC 
activation may have a role in ACTH-induced steroid 

secretion (Cozza et al. 1990) or in the functional zonation 
of the adrenal cortex. It has been shown that PKC-induced 
activin A suppresses ACTH stimulation of CYP17A1 in the 
ZG to favor steroidogenesis toward aldosterone secretion, 
thereby contributing to functional adrenocortical 
zonation (Hofland et al. 2013).

The contribution of cell–matrix interactions to 
intracellular events leading to steroidogenesis is now 
well documented (Cheng & Hornsby 1992), in which 
fibronectin and collagens favor steroid synthesis and 
laminin favors cell proliferation (Otis et  al. 2007), 
chemotaxis, and haptotaxis (Feige et  al. 1998). Binding 
of ECM components to their receptors, integrins, favors 
tyrosine phosphorylation of several focal adhesion 
proteins that facilitate spreading of cells on their 
substratum, in particular on fibronectin and collagens. 
The rounding up of the cells following ACTH stimulation 
is correlated with both a loss of focal adhesions and a 
specific decrease in paxillin phosphorylation. This latter 
effect is mediated by the phosphotyrosine phosphatase, 
SHP-2 (Rocchi et  al. 2000), itself activated by PKA-
dependent serine phosphorylation. This last step has been 
reported to be essential for cAMP-induced corticosterone 
secretion (Sewer & Li 2008, Cooke et al. 2011, Gallo-Payet 
& Battista 2014). Li and Sewer ( 2010) showed that these 
cytoskeleton-associated modifications may dictate the 
nature of the steroid production. These examples support 
the view that the morphological and functional responses 
to PKA activation in steroidogenic cells are closely related 
to cytoskeleton dynamics in interaction with ECM and 
integrins (illustrated in Fig. 2).

Involvement of MAPK pathways  Initial studies 
performed with bovine and rat adrenocortical cells 
have shown that ACTH does not stimulate p44/p42mapk 
activity under conditions in which Ang II is effective 
(Chabre et  al. 1995, Gallo-Payet et  al. 1999), although 
in vivo ACTH increases ERK1 (p44mapk), but not ERK2 
(p42mapk) in ZG, but not in the inner zones (McNeill et al. 
2005). In Y1 adrenocortical cells (Lotfi et al. 1997, Le & 
Schimmer 2001), NCI-H295R cells (Janes et al. 2008), and 
more recently MC2R-transfected cells (Sebag & Hinkle 
2010, Roy et al. 2011), ACTH induces a rapid increase in  
p44/p42mapk phosphorylation while also promoting a lower 
but sustained and concentration-dependent p38 MAPK 
phosphorylation. The c-Jun N-terminal kinases pathway, 
however, was not stimulated under the same conditions. 
Examination of the mechanism involved indicates that 
cAMP participates in, but does not reproduce, p44/p42mapk 
activation by ACTH (Roy et  al. 2011), as ACTH is more 
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efficient in increasing p44/p42mapk phosphorylation than 
forskolin or cAMP analogs. Phosphorylated p44/p42mapk 
was observed in the cytoplasm rather than in the nucleus, 
supporting the view that localization of p44/p42mapk in the 
cytoplasm may be associated with cellular differentiation, 
such as steroid biosynthesis or hypertrophy or (Poderoso 
et al. 2008).

Other ECM components which affect cell 
morphology and function  In addition to the 
proteins mentioned above, other ECM components 
affect cell morphology and function. Among these are 
ephrins (EphA) and their receptors, which are mainly 
present in the ZG. Interestingly, the level of expression 
of EphA2 closely correlates with changes in the ZG 
phenotype, in particular it is increased in animals 

on a low-sodium diet (which increases ZG size), but 
decreased by ACTH treatment (which increases ZF size) 
(Brennan et  al.  2008). Another family of extracellular 
matrix proteins, thrombospondins, is expressed in 
bovine adrenal glands, with thrombospondin 2 (TSP2) 
promoting cell attachment but preventing spreading of 
adrenocortical cells in primary culture (Feige et al. 1998).

Gap junction channels  These channels facilitate 
direct exchange between adjacent cells, thus enabling 
propagation of signaling throughout neighboring cells. 
In vivo and in vitro studies have shown a strong positive 
correlation between ACTH-increased steroidogenesis 
of the adrenal glands and the expression of connexin  
43 (α1Cx43), the main component of gap junctions in the 
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Figure 2
Involvement of the extracellular matrix (ECM) and the cytoskeleton in ACTH-stimulated rat adrenal glomerulosa cells. (A) Immunofluorescence labeling 
of actin filaments and paxillin of rat glomerulosa cells, incubated without (Control) or with 10 nM ACTH for 5 min. Cells were processed for 
immunofluorescence labeling, using phalloidin coupled to Alexa-Fluor 594 nm for visualization of F-actin (red) and with anti-paxillin antibody coupled 
to Alexa-Fluor 488 nm for visualization of paxillin (green). Merged images are illustrated. Scale bars, 13 μm. (B) Illustration of signaling pathways linked 
to ECM and cytoskeleton. In control conditions, binding of fibronectin or collagen to their integrins promotes strong cell adhesion, evidenced by the flat 
polygonal morphology, the thin stress fibers across the entire cell and by the presence of focal adhesion points revealed by paxillin labeling, as 
illustrated by the green fluorescent dots in the left part of panel A. ACTH induces a rapid but transient formation of a dense F-actin ring at the cell 
membrane, with disruption of the stress fiber network, as illustrated in the right part of panel A. These changes are accompanied by a 
dephosphorylation of paxillin at the plasma membrane and by the activation of the actin-associated kinases, such as the phosphotyrosine phosphatase, 
SHP2, which increase cell functionality.
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adrenal cortex. However, there is an inverse correlation 
between Cx43 expression and cell proliferation in human 
adrenocortical tumors (Murray et al. 2003).

Adrenocortical pathologies associated with 
defective signaling pathways

Although mutations in genes encoding steroidogenic 
enzymes have long been described as the main cause 
of adrenal cortex pathologies, more recent molecular 
studies have shown that several intracellular mediators 
of ACTH action may also have an important impact on 
these pathologies, in particular in cortisol-producing 
adrenocortical tumors. For example, McCune–Albright 
syndrome is caused by mutations in the gene encoding the 
α-subunits of G proteins (GNAS); in Carney complex and 
in adrenocortical adenomas, inactivating mutations in 
the PRKAR1A gene (encoding the RIα subunit of PKA) lead 
to micronodular hyperplasias including a pigmented form 
referred to as primary pigmented nodular adrenocortical 
disease (PPNAD) (de Joussineau et al. 2012, Berthon et al. 
2015, Lacroix et al. 2015); mutations in PDE8B and PDE11A 
have been found in adrenal hyperplasia, Cushing’s 
syndrome, or in polycystic ovary syndrome (PCOS) 
(Horvath et al. 2006, Tsai & Beavo 2011, Leal et al. 2015). 
Decreased expression of cAMP-regulated aldose reductase 
(AKR1B1) is associated with malignancy in human 
sporadic adrenocortical tumors (Lefrançois-Martinez  
et al. 2004), or mutations in the components of the Wnt 
pathway are frequently found in adrenocortical tumors 
and carcinomas where β-catenin accumulates in the 
nucleus (El Wakil & Lalli 2011, Berthon et al. 2012). 

FGD, characterized by the failure of the adrenal 
cortex to produce GC, was first shown to be caused by  
loss-of-function mutations in MC2R. After the discovery of 
the causative role of MRAP1 in FDG, more recent studies also 
identified another protein from the same family, MRAP2, 
which seems to be linked to obesity (Meimaridou et al. 2013, 
Jackson et al. 2015). Finally, it is important to consider extra-
pituitary production of ACTH. In particular, recent studies 
indicate that cortisol secretion by adrenal glands in patients 
with macronodular hyperplasia and Cushing’s syndrome is 
regulated by ACTH produced in hyperplastic adrenal glands 
by a subpopulation of steroidogenic cells (Louiset et  al. 
2013). Following this discovery that the hypercortisolism 
associated with bilateral macronodular adrenal hyperplasia 
appears to be ACTH-dependent, ‘ACTH-independent 
macronodular adrenocortical hyperplasia (AIMAH)’ has 
been renamed as ‘primary macronodular hyperplasia 
(PMAH)’ (Louiset et al. 2013).

From genomics to physiopathology

Recent studies have shown dysregulated microRNA 
(miRNA) expressions in adrenocortical tumors. In 
particular, miR-483-3p, miR-483-5p, miR-210, and 
miR-21 were found to be overexpressed, whereas 
miR-195, miR-497, and miR-1974 were found to be 
underexpressed in adrenocortical cancers (Ozata 
et  al. 2011, Chabre et  al. 2013). These dysregulated  
miRNAs are detectable in serum samples and may 
be candidate serum biomarkers for distinguishing  
between benign and malignant adrenocortical tumors 
(Patel et al. 2013).

Gene expression profiling of human adrenocortical 
tumors using cDNA microarrays have identified several 
candidate genes as markers of malignancy (de Fraipont 
et  al. 2005). For example, PA represents the most 
common cause of secondary hypertension, characterized 
by dysregulation of aldosterone production (Cao 
et  al. 2012, Monticone et  al. 2012). The expression 
of aldosterone synthase (CYP11B2), MC2R, and their 
regulating transcription factors are increased in adrenal 
incidentaloma (AI)-hypertensive patients compared 
with normotensive patients and thus may be used to 
distinguish subclinical or atypical primary aldosteronism 
(PA) from AIs (Cao et al. 2012).

Recent information also connects PA and channel 
deficiencies (channelopathies). Two background K+ 
channels have been associated with PA in rodents and 
humans: KCNK3 (TASK1) and KCNK9 (TASK3), one 
G-protein-activated inward rectifier K+ channel 4 (GIRK4, 
encoded by the KCNJ5 gene) and the voltage-dependent 
T-type Ca2+ channel (CaV3.2) (Chen et al. 2015). TASK1 
affects cell differentiation and prevents expression of 
aldosterone synthase in the ZF, whereas TASK3 controls 
aldosterone secretion in ZG cells (Bandulik et  al. 2014). 
Mice with single deletions of the Task1 or Task3 gene as 
well as Task1/Task3 double knockout mice display partially 
autonomous aldosterone synthesis. These deletions also 
have a profound impact on adrenal zonation (Davies et al. 
2008, Heitzmann et al. 2008). Indeed, deletion of Task1 
changed adrenal zonation and expression of CYP11B2, 
which was absent in the outermost ZG but was expressed 
to a large extent in the ZF. Furthermore, this expression 
pattern seemed to be restricted to females and to males 
before puberty. TASK channels maintain the membrane 
potential of ZG cells at a polarized ∼70  mV by being 
constitutively open and acting as a K+ leak channel. 
Decreased expression of TASK2 is also associated with a 
higher expression of miR-23 and miR-34, steroidogenic 
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acute regulatory protein, and CYP11B2, thus enhancing 
aldosterone production (Lenzini et al. 2014).
Besides TASK channels, mutations occurring near the 
selectivity filter of the inward rectifying K+ channel 
KCNJ5 (Kir3.4) also result in PA (Choi et  al. 2011). 
KCNJ5 mutations are prevalent in sporadic APAs. These 
mutations interfere with the selectivity filter of GIRK4 
causing Na+ entry, cell depolarization, and Ca2+ channel 
opening, resulting in constitutive aldosterone production 
(Mulatero et  al. 2013). Voltage-gated Ca2+ channels are 
also implicated in PA (Felizola et al. 2014). Indeed, calcium 
channel blockers can be efficiently used in the treatment 
of PA-related hypertension. The α-subunits of L-, N-, 
and T-type calcium channels have been analyzed in 74 
adrenocortical aldosterone-producing adenomas (APAs) 
and 16 cortisol-producing adenomas using quantitative 
RT-PCR. Among these channel subunits, only CaV3.2 
mRNA levels were significantly correlated with plasma 
aldosterone levels, CYP11B2 expression levels, and the 
presence of KCNJ5 mutations in APA, suggesting that 
they are involved in Ca2+-related aldosterone biosynthesis 
(Felizola et al. 2014).

Conclusion of ACTH and adrenal function

Although cAMP is still considered to be the main 
second messenger of ACTH action, and PKA the most 
important kinase stimulated by ACTH, each of the 
other ACTH effectors mentioned in this review are 
equally important modulators of ACTH response, 
as part of complex intracellular signaling platforms. 
The mechanism of action and regulation of StAR is 
an example of this complexity. StAR acts through a 
protein complex, the ‘transduceosome’ comprising, 
in addition to the TSPO, a voltage-dependent anion 
channel, a TSPO-associated protein 7 (PAP7), and 
protein kinase A regulatory subunit 1α (PKAR1A) 
(Miller & Auchus 2011, Manna et al. 2009, Rone et al. 
2009). All pathways implicated in steroidogenesis 
and adrenal growth are closely interconnected and 
probably dependent on the extracellular matrix and 
the cytoskeleton (for a summary, see Fig. 3 and 4). For 
example, cell environment is important to dictate the 
nature of steroids secreted (cortisol vs DHEA) and even 
the activation of transcription factors (e.g., Dosage-
sensitive sex reversal-adrenal hypoplasia congenita 
critical region on the X-chromosome, gene 1 (DAX1)) 
(Chamoux et  al. 2002, Battista et  al. 2005, Otis et  al. 
2007, Li & Sewer 2010). ACTH loses its protective effects 
when the adrenal architecture is disrupted (Carsia et al. 
1997). The precise mechanisms of interactions between 
the ECM and integrin receptors with the cytoskeleton 
and intracellular kinases is beginning to emerge but is 
yet to be correlated with in vivo physiology.

Extra-adrenal actions of ACTH

Evidence for the presence of MC2R in tissues other than 
the adrenal cortex begins to emerge. In many instances, 
MC2R has the same properties in other tissues as in the 
adrenal cortex, namely acting as a differentiating factor 
and using the same main signaling pathways. Some 
examples of ACTH action in tissues other than the adrenal 
cortex are given below.

ACTH and adipocyte functionality

The demonstration of the presence of both MC2R (ACTH 
receptor) and MC5R (α-MSH receptor), in murine 3T3-L1 
cells differentiated into adipocytes (Cammas et al. 1995, 
Noon et al. 2004, Moller et al. 2011), has confirmed earlier 
studies showing that ACTH stimulates lipolytic activity  
in mature adipocytes. Indeed, knockdown of Mc2r in  

ACTH

Second messagers

Kinases and phosphatases

Steroidogenesis

Growth-promoting activity

Channels

ECM-Integrins

Cytoskeleton-associated proteins

Module 1

Module 2

Module 3

Module 4

Module 5

Module 6•  Proliferation
•  Migration
•  Survival
•  Hypertrophy

MC2R/MRAPs

Figure 3
Overview of the main signaling modules implicated in the effect of ACTH 
on adrenocortical cells. Regulation of ACTH action on adrenocortical cells 
may occur at different levels that can be divided into modules: Module 1, 
ACTH binding to its receptor, MC2R; Module 2, production of second 
messengers; Module 3, modulation of membrane channels; Module 4, 
implication of the extracellular matrix and cytoskeleton; Module 5, 
activation of various kinases and phosphatases; and finally Module 6, 
proteins and enzymes engaged in steroidogenesis or trophic action. Each 
of these modules could be considered as independent signaling cascades 
that interact through some of their elements, as illustrated in Fig. 4.
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Figure 4
Illustrations of the main signaling cascades stimulated by ACTH, from binding to its receptor to cellular function in adrenocortical cells. (A) ACTH 
binds to MC2R and through interaction with MRAPs (Module 1) and initiates signaling, by activating Gs and various isoforms of ACs that increase 
cAMP. MC2R is also linked to Gi protein; activation of αi decreases the level of cAMP, whereas the release of βγ-subunits stimulates other 
effectors such as Mitogen-activated protein kinases  (MAPK) cascade or cationic Cl− channels (Module 2). Binding of cAMP to the regulatory 
subunits of protein kinase A results in the phosphorylation of several proteins, including steroidogenic acute regulatory protein  (StAR) and the 
hormone-sensitive lipase. Protein kinase A (PKA) also regulates the level of expression of the receptors implicated in the uptake of cholesterol 
and genes encoding the steroidogenic enzymes (Module 5). The final output of this cascade is steroidogenesis, which is initiated in the 
mitochondria. cAMP also has a number of PKA-independent effects, including involvement of the exchange protein directly activated by cAMP 
(Epac1/2). cAMP also regulates its own intracellular level through activation of phosphodiesterases, in particular, PDE2 and PDE8 (Module 5). (B) 
Simultaneously, ACTH induces depolarization of the cell membrane inducing Ca2+ influx (Module 3). PKA also activates Ca2+ influx through L-type 
channels. The subsequent increase in intracellular calcium (Cai) activates Ca2+-CaMK and steroidogenesis (Module 6). (C) Activated MC2R also 
interact with ECM and cytoskeleton-associated proteins (Module 4), modulating the phosphorylation and activation of a number of proteins that 
are involved in functional integrity of the cells. A decrease in paxillin phosphorylation and activation of the phosphotyrosine phosphatase, SHP2, 
itself activated by PKA-dependent serine phosphorylation is responsible for the rapid effect of ACTH on the rounding-up of adrenocortical cells 
in culture. SHP2 also induces dephosphorylation of specific substrate(s), including some involved directly or indirectly in steroidogenesis, such as 
the acyl-CoA synthetase (ACS4), which sequesters AA as arachidonyl-CoA (AA-CoA) (Module 5), hence participating in StAR activation and 
initiation of steroidogenesis (Module 6). Cytoskeleton-associated proteins and/or PKA are also implicated in the activation of the MAPK 
signaling, necessary to promote the trophic action of ACTH (Module 5). Clearly identified pathogenic mutations of key proteins are indicated in 
red. Among these mutations are loss of function of MC2R or MRAPs, activating mutations of the GNAS gene (encoding Gsα subunit), inactivating 
mutations of genes encoding the regulatory subunit of PKA (Ria) (PRKAR1A), encoding phosphodiesterases (PDE11A and PDE8B) or Aldo-keto- 
reductases (AKR1B1). Some mutations in voltage-dependent K+ channels are directly involved in primary aldosteronism, in particular mutations 
of the KCNJ5 gene encoding the potassium channel Kir3.4 (also called G-protein-activated inward rectifier potassium channel 4, GIRK4), and of 
the two genes KCNQ1 and KCNE1, encoding the pore- and regulatory subunits of the slowly activating delayed K+ current, Iks. The resulting 
sustained Ca2+ influx increases activation of CYP11B2 and thus sustained increase in aldosterone secretion. Finally, the temporal integration of 
these signaling pathways may be coordinated at the levels of signaling microdomains, for example, through A kinase-anchoring proteins, or 
AKAPs (not illustrated). 
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3T3-L1 cells reduces lipid content and inhibits expression of 
differentiation regulators such as peroxisome proliferator-
activated receptor (PPARγ2) (Noon et al. 2004, Betz et al. 
2012). ACTH and α-MSH are also potent inhibitors of 
leptin expression (Norman et  al. 2003). Studies from 
Iwen and coworkers (Iwen et  al. 2008) indicate that 
chronic stimulation of white adipocytes with high doses 
of ACTH decreases insulin-induced glucose uptake as 
well as the expression of visfatin and adiponectin genes, 
whereas the pro-inflammatory cytokine, interleukin-6 
(IL-6), and monocyte chemoattractant protein-1 mRNA 
levels are acutely up-regulated. Thus, ACTH could lead 
to dysregulation of energy balance, insulin resistance, 
and cardiometabolic complications when the pituitary–
adrenal axis HPA is dysregulated or is under chronic 
inflammation (Iwen et al. 2008).

The role of melanocortins in the physiology of 
human adipocytes is yet to be fully elucidated. In 
ex  vivo experiments with human adipocytes from obese 
subjects, high expression levels of MC1R, but only low 
levels of MC2R, have been detected (Smith et  al. 2003). 
Nevertheless, MC2R is expressed in human mesenchymal 
cells (MSC) during adipogenic induction (Smith et  al. 
2003), suggesting that MC2R may have a role as a 
differentiating factor as in 3T3-L1 cells, but not in fully 
differentiated cells (Smith et al. 2003, Betz et al. 2012).

ACTH and matrix synthesis in mesenchymal cells

The expression of MCR in mesenchymal progenitor 
cell populations is also well documented (Evans et  al. 
2013). In particular, MC2R and MRAP are expressed in 
human and murine osteoblast cell lines, where they 
can play a role in differentiation through production 
of vascular endothelial growth factor (VEGF) (Zaidi 
et  al. 2010). In murine osteoblasts, ACTH appears 
to be a regulator of bone mass, enhancing collagen 
production (Isales et  al. 2010, Zaidi et  al. 2010), an 
effect occurring in a dose-dependent manner through a 
transient increase in intracellular Ca2+. Neither γ2-MSH, 
a potent MC3R agonist, nor α-MSH, a potent MC5R 
agonist, duplicates the effects of ACTH, indicating the 
specificity of ACTH-MC2R action. Mouse aorta-derived 
mesenchymal progenitor cells also express both MC2R 
and MC3R. These progenitors respond to ACTH by 
increasing collagen matrix synthesis and intracellular 
Ca2+ and suggest a role in the maintenance and repair 
of the vascular extracellular matrix (Evans et al. 2013). 
The same study indicates that both macrophages and 

mesenchymal cells are relevant sources of local POMC 
peptides.

ACTH and thymus growth

ACTH directly controls thymic growth through 
MC2R, which is expressed in thymic epithelium. 
Adrenalectomized mice treated with ACTH under 
conditions repressing endogenous ACTH secretion 
exhibit an increase in the number of thymocytes and 
splenic naive T-cells compared with control animals. 
These results show that ACTH directly controls 
thymocyte homeostasis independently of circulating GC 
(Talaber et al. 2015).

Involvement in the skin  In the skin, mRNA for 
MC2R and mRNAs for three obligatory enzymes of 
steroid synthesis, cytochromes P450scc, P450c17, and 
P450c21, have been detected in normal and pathological 
human samples (Slominski et  al. 1996b). In fact, all 
components of the pituitary–adrenal axis have been 
detected in the skin, suggesting a role in regulating 
immune system or hair growth. However, this remains 
to be better explored for ACTH–MC2R complex, as these 
latter actions are best known to be mediated by α-MSH 
peptide (Schauer et al. 1994, Slominski et al. 1996a).

In mouse testis  In fetal/neonatal mouse testis, the 
ACTH–MC2R complex is localized in Leydig cells, in which 
it stimulates androgen production. The mechanisms 
of action involve not only cAMP-PKA, but also AA (via 
phospholipase A2) and p44/p42mapk activation of StAR 
(Johnston et al. 2007).

In prostate cells  In the prostate cell lines, LNCaP, 
PC3, and DU-145 cells, ACTH, through MC2R-
induced cAMP, promotes concentration-dependent cell 
proliferation, suggesting that MC2R is involved in prostate 
carcinogenesis and that targeting MC2R signaling may 
provide a novel avenue in prostate carcinoma treatment 
(Hafiz et al. 2012).

ACTH also has a renoprotective effect in chronic  
kidney disease

In a rat model of tumor necrosis factor (TNF)-induced 
acute kidney injury, Si et  al. (2013) found that ACTH 
gel prevented kidney injury, corrected acute renal 
dysfunction, and improved survival. Morphologically, 
ACTH gel ameliorated TNF-induced acute tubular 
necrosis, associated with a reduction in tubular apoptosis.
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ACTH and brain function

The idea that the adrenal cortex through corticosteroids 
may have a role in mood has been recently reviewed 
(Vinson & Brennan 2013). Indeed, changes in mood are a 
common consequence of chronic corticosteroid therapy. 
Corticosteroids are known for their capacity to generate 
both euphoria and depression in humans, even if these 
effects are still poorly understood. It is also known that 
ACTH/MSH neuropeptides affect social behavior, interact 
with opiate binding sites, and possess antiepileptic 
properties. ACTH/MSH peptides also possess neurotropic 
activities, stimulating regeneration of damaged nerve cells 
(de Wied 1990, Vinson & Brennan 2013).

Taken together, the data summarized above suggest 
that the ACTH–MC2R complex is involved in cell 
differentiation, not only in adipocytes, but also in a 
variety of tissues, from mesenchymal cell populations to 
adipocytes as well as in steroidogenesis in skin, testis, and 
prostate. Furthermore, a high level of ACTH or increased 
expression of MC2R could contribute to HPA, or to 
metabolic-related pathologies.

Conclusion: challenges and perspectives

As we have shown in this review, signaling pathways 
(i.e. second messengers and subsequent intracellular 
events) in interaction with ECM and integrins control 
cell fate decisions that ultimately determine the behavior 
of adrenocortical cells toward steroidogenesis, growth, 
and eventually aberrant physiology and pathological 
consequences (see summary in Fig. 3 and 4). Some of 
the examples given in this review indicate that the  
time-dependent production of these intracellular 
mediators may be important to consider in the final 
cell response. Yet, a transient vs a sustained production 
of cAMP or MAPK activation does not elicit the same 
final response. Furthermore, in addition to the well-
described signaling cascades illustrated in Fig. 4, 
some other signaling pathways would deserve further 
exploration; in particular interaction of second 
messengers with the scaffold proteins, A kinase-anchoring 
proteins (AKAPs). AKAPs can target many signaling 
proteins to specific locations within the cell, creating 
preferential interactions on the scaffold. For example, 
AKAP79/150 can associate with K+ voltage-dependent  
channels, ACs, or L-type Ca2+ channels. AKAPs can 
increase the rate at which signal transduction occurs or 
increase the magnitude of the signal response (Dessauer 
2009, Greenwald & Saucerman 2011).

Computational models have been recently 
developed for the integration of quantitative data from 
complex systems that could be used as platforms to 
investigate the dynamic biochemical properties of cells. 
Studying the dynamics of pathway activity may provide 
prognostically relevant information different from the 
information provided by other types of biomarkers, due 
to their static nature (Hughey et al. 2010). Therefore, due 
to the complexity of the various interacting pathways 
involved in the regulation of adrenocortical functions 
(Figs 3 and 4), it would be interesting to develop similar 
models to explore the potential involvement of these 
pathways in specific adrenocortical pathologies. For 
example, alterations in one step could induce a switch 
activation from one function to another, resulting in 
the loss or gain of a physiological function, and thus in 
pathological situations (Lefrançois-Martinez et al. 2004, 
Horvath et al. 2006, Tsai & Beavo 2011, de Joussineau 
et al. 2012, Leal et al. 2015). The integration of various 
technologies (such as transcriptomics, proteomics, 
or metabolomics) combined with computational 
and mathematical models could be used to identify  
new therapeutic agents, drug targets, and novel 
biomarkers, as demonstrated for other paradigms in 
several recent publications (de Fraipont et  al. 2005, 
Choi et al. 2011, Patel et al. 2013, Lenzini et al. 2014, 
Resendis-Antonio et al. 2015).
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