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Abstract
Glucocorticoids are steroid hormones, essential in mammals to prepare for life after birth.

Blood levels of glucocorticoids (cortisol in most mammals including humans; corticosterone

in rats and mice) rise dramatically shortly before birth. This is mimicked clinically in the

routine administration of synthetic glucocorticoids to pregnant women threatened by a

preterm birth or to preterm infants to improve neonatal survival. Whilst effects on lung are

well documented and essential for postnatal survival, those on heart are less well known.

In this study, we review recent evidence for a crucial role of glucocorticoids in late

gestational heart maturation. Either insufficient or excessive glucocorticoid exposure before

birth may alter the normal glucocorticoid-regulated trajectory of heart maturation with

potential life-long consequences.
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Introduction
Glucocorticoids are steroid hormones produced by the

adrenal cortex. They regulate stress responses and exert

potent immunomodulatory effects in adults (McEwen

1997) and are essential for the transition from foetal to

neonatal life. Plasma levels of glucocorticoids rise mark-

edly in late gestation, to mature foetal tissues and organs

(Fowden et al. 1998) and this is mimicked clinically with

the routine administration of synthetic glucocorticoids

(betamethasone or dexamethasone) to pregnant women

in whom preterm delivery is anticipated, to improve

neonatal survival. Whilst there is no question that the

enhancement of foetal lung maturity is life-saving, animal

models and some studies on humans have raised concerns

about long-term effects of synthetic glucocorticoid admin-

istration, particularly on the cardiovascular system.

Although a number of studies have examined the

mechanisms that underlie the effects of excess glucocorti-

coid exposure on the heart and vasculature, few have
addressed the maturational pathways normally regulated

by glucocorticoids in the foetal heart and vasculature.

In this study, we present a non-systematic review of the

evidence for a critical role of glucocorticoids in late

gestational heart maturation and discuss the implications

of both inadequate and excess glucocorticoid action

within the late gestation foetal heart.
Glucocorticoid receptors

Glucocorticoids bind to cytoplasmic receptors belonging

to the nuclear receptor superfamily; the widely distributed

glucocorticoid receptor (GR, or the type II receptor) and

the more restricted mineralocorticoid receptor (MR, the

type I GR). Both exert effects predominantly through

binding to DNA, though rapid non-genomic signalling

has also been reported for both (reviewed Funder

(1997), Buckingham (2006), Dooley et al. (2012) and
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Figure 1

Glucocorticoids rise in the foetus in late gestation, coincident with the

growth and maturation of the foetal heart. The foetal heart is fully formed

in both mice (wE13.5–E14.5) and humans (w40 days; indicated by vertical

bars, top) before the glucocorticoid surge that occurs in the few days

before birth in most mammals (Michelsohn & Anderson 1992, Fowden et al.

1998, Henderson & Anderson 2009). In mice, the late gestational increase in

foetal plasma corticosterone (triangles in the schematic representation

above) is essential for maturation of the foetal heart (Rog-Zielinska et al.

2013). In humans, the exact role of the rise in plasma cortisol levels (squares

in the representation above) in maturation of the foetal heart remains

poorly understood. However, both insufficient or excessive/mis-timed

glucocorticoid exposure may have adverse effects on heart function over

the long term (see text for details).
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Samarasinghe et al. (2012)). GR is the major GR, whilst MR

is only a GR in a restricted range of tissues or under certain

pathological conditions (Funder 1997). Although MR has

high intrinsic affinity for the endogenous glucocorticoids

cortisol and corticosterone, it is normally specific for the

mineralocorticoid, aldosterone, by virtue of the activity

of an enzyme, 11b-hydroxysteroid dehydrogenase type 2

(11b-HSD2) which converts the physiological glucocorti-

coids cortisol and corticosterone to cortisone and

11-dehydrocorticosterone, respectively, preventing their

inappropriate activation of MR (Chapman et al. 2013).

MR expression is largely restricted to mineralocorticoid

target tissues, but it is also expressed in the heart without

11b-HSD2 co-expression. Thus, in heart, MR binds

endogenous cortisol/corticosterone avidly (Funder 2005).

Of note, MR is poorly activated by betamethasone and

dexamethasone, the potent synthetic glucocorticoids used

in antenatal therapy.

GR has approximately tenfold lower affinity for

physiological glucocorticoids than MR and does not bind

aldosterone. In mice (Cole et al. 1995, Tronche et al. 1998)

and most likely also humans (Charmandari et al. 2004),

glucocorticoid action mediated via GR is essential for

survival beyond birth. It is also important for survival in

late gestation in mice; around 50% of GRK/K foetuses

die by E17.5 with characteristics of hydrops foetalis

(Rog-Zielinska et al. 2013), a condition associated with

intra-uterine death in humans that frequently results from

heart failure (Bellini et al. 2009, Fritsch et al. 2012).

In contrast, mice which lack MR survive birth, but die

in the first 2 weeks of life of circulatory failure caused by

renal salt-wasting (Berger et al. 1996, Bleich et al. 1999).

Both GR and MR are expressed in the foetal heart (Brown

et al. 2005) and while MR appears to play a detrimental

role in adult cardiac remodelling (Messaoudi et al. 2012),

how both receptors influence cardiac development and

maturation remains poorly understood. GR is certainly

present in the human heart from 12 weeks of gestation

(Ballard & Ballard 1974) and in mouse heart from as

early as embryonic (E) day E10.5, though it is not

activated by endogenous glucocorticoids until E15.5

(Rog-Zielinska et al. 2013). A critical role for GR signalling

in foetal heart maturation has recently been demonstrated

(Rog-Zielinska et al. 2013). However, the relationship

between in utero glucocorticoid exposure and heart

maturation appears to follow an inverted U-shaped

pattern, typical of many glucocorticoid actions (Munck

et al. 1984), with both low and excessive glucocorticoids

having a detrimental impact on cardiovascular develop-

ment. Whether these effects share a common mechanism
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0204 Printed in Great Britain
remains unknown. Nonetheless, given the widespread use

of antenatal glucocorticoids in preterm infants to promote

lung maturation, it is important to understand the

potential impact of this treatment on maturation and

growth of the heart and vasculature.
Glucocorticoid signalling in the foetus

The timing and level of exposure to glucocorticoids

in utero are the key determinants of their lifelong

organisational effects upon tissues (Fowden et al. 1998,

Seckl & Holmes 2007). Inadequate glucocorticoid action

can have potentially fatal consequences, yet premature

activation of glucocorticoid-dependent pathways or

excessive glucocorticoid levels during pregnancy can

cause lifelong ‘programmed’ adverse cardiovascular

effects (Benediktsson et al. 1993, Louey & Thornburg

2005, Seckl & Holmes 2007; and see below). Endogenous

physiological foetal glucocorticoid production is tightly

regulated, and increases markedly over a narrow time

window shortly before birth (Fig. 1). The foetal adrenal

gland initiates de novo glucocorticoid synthesis during

the second half of gestation, at around the 28th week of

pregnancy in humans (Mastorakos & Ilias 2003) and
Published by Bioscientifica Ltd.
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E14.5 in mice (Michelsohn & Anderson 1992). In mice,

endogenous foetal plasma glucocorticoid levels increase

rapidly from E15 (Michelsohn & Anderson 1992) though

in humans this physiological increase happens in the

week before birth (Fowden et al. 1998). In addition, as

pregnancy progresses into the final stage, maternal plasma

glucocorticoid levels rise dramatically as a result of

increased maternal glucocorticoid production and pro-

longed plasma half-life (Donaldson et al. 1991, Mastorakos

& Ilias 2003), though placental 11b-HSD2 restricts the

access of maternal glucocorticoids to the foetus (Chapman

et al. 2013). Placental 11b-HSD2 activity declines in the

last week of gestation in humans (Murphy & Clifton

2003) and in mice (Brown et al. 1996, Thompson et al.

2002), allowing for transfer of maternal glucocorticoid to

the foetus as birth approaches (Cottrell et al. 2012). These

different effects combine to cause a surge in foetal

glucocorticoid levels in late gestation, which act through

GR to elicit the critical maturation of foetal lung (Cole

et al. 1995, Nemati et al. 2008), skin (Bayo et al. 2008), liver

(Opherk et al. 2004) and, importantly, heart (Rog-Zielinska

et al. 2013). In addition to administration of exogenous

glucocorticoids, foetal glucocorticoid exposure is poten-

tially affected by a number of mechanisms including

prematurity at birth, maternal stress, alterations in

placental metabolism and adrenal disease.
Late gestation cardiac maturation

By late gestation, although the heart has attained its adult

anatomical configuration, it continues to undergo exten-

sive growth, remodelling and maturation to support the

rapidly growing foetus and prepare for life after birth. Both

systolic and diastolic function improve in late gestation

(Harada et al. 1997, Corrigan et al. 2010), reflecting the

improved contractility and relaxation properties of the

cardiomyocytes. The ventricle walls progressively thicken

(Webb et al. 1996, Christoffels et al. 2000), driven

predominantly by cardiomyocyte hyperplasia (Oparil

et al. 1984). As hyperplastic growth gives way to

hypertrophic growth following birth, cardiomyocytes

become binucleated, less spherical in shape and more

rod-shaped allowing for more efficient mechanical and

electrical coupling (Burrell et al. 2003, Hirschy et al. 2006).

As these rod-shaped cardiomyocytes align with each other,

the muscle fibres in the outermost layer of the compact

myocardium form into spiraling bundles to create the

typical architecture of the mature mammalian heart. The

change in cardiomyocyte shape is underpinned by

ultrastructural changes. Contractile proteins accumulate
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0204 Printed in Great Britain
and switch from foetal to adult isoforms (myosin heavy

chain and titin, for example) as myofibrils grow and align

parallel to the long axis of the cardiomyocyte, acquiring

more sarcomeres and well-defined Z-discs (Ehler et al.

1999, Siedner et al. 2003). Towards the end of gestation,

the sarcoplasmic reticulum also swells and undergoes

structural changes (Canale et al. 1986) in order to facilitate

calcium-induced calcium release (Rapila et al. 2008). This

is accompanied by marked changes in ion channel

expression and activity, as electrical coupling in the

heart matures in the time period close to birth (Davies

et al. 1996). The late gestation heart also undergoes a

significant metabolic transformation as it prepares to

adjust to the high-oxygen extra-uterine environment

and increased haemodynamic work load after birth. The

number of mitochondria increase as cardiomyocytes

switch from utilising carbohydrates (mainly glucose) as

the predominant source of energy to fatty acids, a more

efficient source of ATP (Bartelds et al. 2000). All of these

morphological and functional changes enable the late

gestation foetal heart to increase cardiac output as the

foetus grows and prepare for the increase in cardiac work

load at birth.
Glucocorticoids, through GR, promote foetal
heart maturation

Mechanical and hormonal factors, including glucocorti-

coids, play important roles in cardiac maturation,

although understanding the contribution made by endo-

genous glucocorticoids, particularly in rodents, can be

difficult due to compensation between foetal and maternal

hypothalamic–pituitary–adrenal (HPA) systems (Montano

et al. 1993). Moreover, endogenous glucocorticoids,

cortisol and corticosterone may act through either GR

or MR. Recent work has shown that glucocorticoids

act via GR to promote foetal heart maturation through

both direct and indirect effects on cardiomyocytes

(Rog-Zielinska et al. 2013). In the absence of glucocorticoid

signalling, the late gestation foetal heart is immature

and functions poorly. In GRK/K mice or mice with tissue-

specific disruption of GR in cardiomyocytes and vascular

smooth muscle, the initial phase of contraction takes

longer and the normal macro- and micro-architecture of

the compact myocardium is disrupted (Rog-Zielinska et al.

2013). This is associated with immature cardiomyocyte

ultrastructure featuring short and disorganised myofibrils

(Rog-Zielinska et al. 2013). The normal maturational

change in the expression of genes involved in calcium

handling and energy metabolism that occurs between
Published by Bioscientifica Ltd.
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E14.5 and E17.5 (spanning the time of the glucocorticoid

surge) is absent in GRK/K mice (Rog-Zielinska et al. 2013).

Not all of these gene-expression changes are a direct

result of GR in cardiomyocytes and/or vascular smooth

muscle cells (Rog-Zielinska et al. 2013), suggesting that

extra-cardiac glucocorticoid actions mediated by GR

are also key to late gestation heart maturation, possibly

via haemodynamic changes. GRK/K foetuses exhibit

oedema, which must be due, at least in large part, to

GR actions in cardiomyocytes and/or vascular smooth

muscle, as specific knockout of GR in these cells also causes

foetal oedema, albeit to a lesser extent. In contrast to

prematurity, when birth occurs before the normal rise

in endogenous cortisol levels (see below), the hydrops

phenotype of late gestation GRK/K foetuses is mani-

fested following the onset of the glucocorticoid surge

(Rog-Zielinska et al. 2013), raising the possibility that, in

some cases, foetal glucocorticoid insufficiency or even

glucocorticoid resistance may be a cause of non-immune

hydrops foetalis in humans. Clinically, cardiogenic

hydrops typically presents with impaired diastolic ven-

tricular filling (Bellini et al. 2009), as seen in GRK/K

foetuses (though not in foetuses with cardiomyocyte-

specific GR knock-out). Glucocorticoids are an effective

treatment in hydrops foetalis associated with congenital

cystic adenomatoid malformations (CCAM; Tsao et al.

2003, Curran et al. 2010), although the therapeutic

mechanism remains to be ascertained (Leung et al. 2005)

and may relate to reduced mediastinal shift secondary

to glucocorticoid-induced maturation or involution of

the lung lesions, restoring cardiac venous return and

improving contractility (Knox et al. 2006).

Whether MR plays a role in the glucocorticoid-

induced maturation of cardiac structure and function is

important and remains to be determined. However,

cardiac MR mRNA levels are not affected by GR deficiency

in utero (Rog-Zielinska et al. 2013).
Insufficient glucocorticoid action: prematurity

Preterm birth increases the risk of cardiovascular disease

in later life (Crump et al. 2011). As preterm birth occurs

before the physiological late gestation rise in foetal

glucocorticoids and before foetal organs are mature

enough for extra-uterine life, it is possible that perinatal

glucocorticoid deficiency underlies this increased risk.

Endogenous glucocorticoid action occurs under the

control of the foetal HPA axis. Although the HPA axis

can respond to a variety of stressors in prenatal and

neonatal life, the magnitude and kinetics of the responses
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0204 Printed in Great Britain
are dependent on developmental age (Walker et al. 1991).

Thus, developmental immaturity in the preterm infant

may be associated with a limited adrenal reserve. Relative

adrenal insufficiency in preterm infants, with low serum

cortisol or an inability to mount an adequate cortisol stress

response, has been suggested as a contributory factor to

haemodynamic instability and increased mortality in

preterm infants (Ng et al. 2004, Nykänen et al. 2007,

Fernandez & Watterberg 2009).

Cardiovascular complications in premature infants

include persistence of the ductus arteriosus (the foetal

shunt that connects the pulmonary artery to the aorta,

bypassing the lungs) and the foramen ovale (that allows

blood to flow directly from the right to the left atrium,

bypassing the right ventricle and the lungs), a delay

in the normal decrease in pulmonary vascular resistance

(the foetal lungs have a high resistance) and a delay in

the necessary increase in cardiac output required to

manage the additional volume load after birth (Huhta

2005). Consequently, haemodynamic instability is a well-

recognised problem in premature infants (Ng et al. 2004,

Kluckow 2005, Sehgal 2011) with hypotension and low

systemic blood flow associated with increased mortality

(Ibrahim et al. 2011). Many of these markers of prematur-

ity are improved by exogenous glucocorticoid treatment.

Glucocorticoids facilitate the closure of the ductus

arteriosus by inhibition of prostaglandin E2 efficacy

(Clyman et al. 1981, Eronen et al. 1993). They are also an

effective treatment for refractory systemic hypotension

in preterm infants, either alone or in combination with

other volume expansion/ionotropic agents (Noori et al.

2006, Ibrahim et al. 2011). In foetal sheep, the normal

late gestation increase in arterial blood pressure is

abolished by adrenalectomy and restored by cortisol

replacement (Unno et al. 1999), supporting a crucial role

for endogenous cortisol secretion in achieving normal

circulatory function.

Systolic function of the left ventricle, measured by

cardiac output, fractional shortening, ejection fraction or

left ventricular mass and diameter, is typically impaired in

the preterm foetus compared with full-term neonates

(Harada et al. 1999, Kozák-Bárány et al. 2001, Ciccone et al.

2011). In additiona, impaired diastolic function is increas-

ingly recognised as an equally, if not more, important

determinant of postnatal outcome. In a series of clinical

studies, parameters of diastolic function such as the

E-wave velocity and early-to-atrial filling ratios were

significantly lower in preterm infants (Kozák-Bárány

et al. 2001, Schmitz et al. 2004, Ciccone et al. 2011).

Myocardial performance index, a measure of systolic and
Published by Bioscientifica Ltd.
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diastolic function that is independent of heart rate and

size, is higher in preterm infants and strongly correlates

with severity of pulmonary dysfunction and poor out-

comes (Yates et al. 2008). Given the importance of GR

signalling for the maturation of cardiac function in mice

shortly before birth, it is plausible that insufficient or mis-

timed glucocorticoid signalling may contribute to these

common cardiovascular complications. The short-term

effects of glucocorticoids on heart function itself have

been little investigated and are difficult to dissect from the

more general haemodynamic effects. However, in imma-

ture baboons in which adrenal insufficiency was associ-

ated with impaired heart function (measured by fractional

shortening and velocity of circumferential fibre short-

ening), a short course of neonatal cortisol led to a

sustained improvement in cardiac performance (Yoder

et al. 2002), consistent with a beneficial effect of

glucocorticoid therapy on heart maturation.

Whether adrenal insufficiency and its associated

haemodynamic instability results from prematurity

per se, or as a consequence of antenatal glucocorticoid

therapy, is an important question. A meta-analysis of

49 human studies assessed the impact of antenatal

treatment with synthetic glucocorticoids and concluded

that although basal HPA axis function recovered within

2 weeks of delivery, there was a sustained (O4–8 weeks)

suppression of the cortisol response to pain (Tegethoff

et al. 2009), suggesting that antenatal glucocorticoid

treatment itself may cause a persistent inability to

mount a cortisol stress response. Thus, both immaturity

and antenatal glucocorticoid therapy may result in a

similar limited adrenal reserve in premature birth.

Although in humans it is difficult to separate the

long-term effects of prematurity from the effects of

glucocorticoid treatment and possible over- or mis-timed

exposure, animal models are providing valuable infor-

mation to support a ‘programming’ effect of early or

excessive glucocorticoid exposure on the foetal cardiovas-

cular system (Seckl & Holmes 2007, Cottrell & Seckl 2009).
Precocious or excessive glucocorticoid action

For two decades it has been recognised in animal studies

that exposure to excessive glucocorticoid levels in utero,

by bypassing or overwhelming placental 11b-HSD2,

causes short-term effects such as foetal growth restriction

and long-term effects that include increased risk of

cardiovascular disease when the offspring reach adulthood

(Benediktsson et al. 1993, Nyirenda et al. 1998). Maternal

nutritional restriction, which prematurely activates the
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0204 Printed in Great Britain
foetal HPA axis (Cottrell et al. 2012), also increases foetal

glucocorticoid levels and ‘programmes’ greater risk of

cardiovascular disease once adult (Langley-Evans et al.

1998, Roseboom et al. 2001), as does maternal stress,

probably through increased maternal glucocorticoid

levels (Seckl & Holmes 2007, Bingham et al. 2013).

Glucocorticoid and/or nutritional programming of adult

disease has been extensively reviewed (for recent reviews

see Seckl & Holmes (2007), Langley-Evans (2013) and

Reynolds (2013)). In addition, the reader is referred to a

comprehensive recent review of the acute effects of

betamethasone and dexamethasone on human foetal

behaviour (movement/breathing) and haemodynamics

(heart rate, Doppler velocity measurements of blood flow

in the umbilical artery) (Mulder et al. 2009). In this study,

we restrict our discussion to the impact of elevated

glucocorticoid signalling on the maturation of the

prenatal heart and its possible long-term consequences.

In vivo studies have largely focused on the ability of

exogenous glucocorticoids to increase foetal heart size,

which occurs despite a general restriction of foetal growth

in humans and in animal models. However, whether this

involves glucocorticoid-induced alterations in cardio-

myocyte proliferation, binucleation and/or hypertrophy

remains controversial. Moreover, foetal blood pressure,

a well-known stimulus of myocardial maturation, is

increased by exogenous glucocorticoids, further con-

founding interpretation. In some studies in rats and

sheep, the glucocorticoid-induced increase in heart weight

and protein:DNA ratio has been interpreted as late

gestation cardiomyocyte hypertrophy, without prolifer-

ation (Slotkin et al. 1991, Rudolph et al. 1999, Jensen et al.

2002). Other studies report a higher proliferative index

in hearts following antenatal glucocorticoid adminis-

tration, suggesting hyperplasia rather than hypertrophy

as the mechanism of glucocorticoid-induced heart enlar-

gement (Torres et al. 1997, Giraud et al. 2006). Many

studies do not report foetal haemodynamic effects of

glucocorticoid administration. However, when cortisol

was infused into the coronary artery of foetal sheep,

hyperplasia was induced with only a modest increase in

intracardiac cortisol (threefold) and without blood

pressure changes (Torres et al. 1997, Giraud et al. 2006),

suggesting a pro-proliferative effect of cortisol on cardio-

myocytes. A recent study on mice has administered

dexamethasone from E12.5 to E15 (before the normal

glucocorticoid surge; O’Sullivan et al. 2013). Although this

caused a transient decrease in foetal weight and a

corresponding though non-significant decrease in foetal

heart weight at E14.5, this had recovered by E17.5,
Published by Bioscientifica Ltd.
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possibly as a result of increased cardiac expression of

insulin-like growth factor 1, and cardiomyocyte number

in adulthood was unchanged (O’Sullivan et al. 2013),

suggesting compensatory myocardial growth once dexa-

methasone treatment stopped (though glucocorticoid-

regulated mRNAs remained elevated at E17.5, indicating

a lasting effect of glucocorticoid action on foetal cardio-

myocytes). However, the possibility of foetal HPA axis

suppression by dexamethasone treatment was not

examined in that study, so it is unclear whether the

normal increase in glucocorticoid levels at E16.5–E18.5

occurred in the treated mice and it is likely that the late

gestation trajectory of heart maturation was altered in

response to dexamethasone. Differences in study out-

comes are likely to result from different steroid regimes:

dose, steroid used – cortisol (which binds to both GR and

MR), betamethasone or dexamethasone (GR-selective)

and/or timing. For example, experimental models using

rats commonly use dexamethasone in late gestation, after

the onset of the endogenous glucocorticoid surge, whereas

sheep models have typically treated either much earlier

(around 0.6 gestation) or in late gestation (shortly

before the normal increase in foetal glucocorticoid levels)

with dexamethasone, betamethasone or cortisol. Recent

data implicate MR in cortisol-induced cardiomyocyte

hyperplasia, with GR exerting anti-apoptotic effects

in late gestation in sheep (Feng et al. 2013). Moreover,

in mice with cardiomyocyte/vascular smooth muscle

knockout of GR (and normal plasma glucocorticoid

levels), heart size was similar to littermate controls at

E17.5 (Rog-Zielinska et al. 2013), suggesting that the

smaller hearts of GRK/K foetuses are an indirect result of

glucocorticoid signalling and not a direct effect of GR in

cardiomyocytes. Thus, increased heart size may result

from stimulation of myocyte proliferation mediated

by cortisol signalling through MR, or may reflect indirect

effects, most likely haemodynamic, mediated by GR

elsewhere. This has implications for antenatal therapy

if the synthetic glucocorticoids used cause hypertrophy

but do not cause the normal increase in myocyte pro-

liferation that normally occurs near term. It will be of

interest to test whether mice with cardiomyocyte-specific

knock-out of MR (Fraccarollo et al. 2011) have smaller

hearts in late-gestation.

The physiological rise in endogenous foetal gluco-

corticoids is important for the maturation of electrical

coupling in the foetal heart, and abnormalities in sodium

channel expression linked to dysregulated plasma

cortisol levels have been suggested as a cause of

sudden infant death syndrome in premature infants
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
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(Fahmi et al. 2004). In immature foetal sheep, cortisol

infusion (before the normal rise) precociously increased

expression/transcripts of the cardiac sodium channels,

SCN1b and SCN5a, altering the normal developmental

trajectory of expression (Fahmi et al. 2004), suggesting

potential consequences for cardiac function. Similarly,

prenatal dexamethasone treatment in rats can cause

lasting decreases in noradrenaline levels and turnover

that persist into adulthood (Bian et al. 1993), sugges-

ting that abnormal glucocorticoid exposure in early

life could have a long lasting impact on cardiac sym-

pathetic responses.

In late gestation, glucocorticoids accelerate the matu-

ration of energy metabolism in the foetal heart. In rats,

foetal dexamethasone exposure (at a time when endogen-

ous corticosterone levels have peaked) increased ATP

levels and delivery of ATP to myofibrils (Tsuzuki et al.

2009, Mizuno et al. 2010). It also increased levels of

pyruvate and lactate in foetal heart and blood respectively

(Jensen et al. 2002, Tsuzuki et al. 2009), suggesting

increased glycolysis. Increased capacity to generate ATP

in the late gestation foetal heart is likely to be critical to

cope with the increased energy demand at birth. On the

other hand, precocious maturation of oxidative energy

production in a very immature foetal heart could be

detrimental if energy substrates or oxygen levels sub-

sequently become limiting and could increase reactive

oxygen species.
Long-term consequences of prematurity
and/or antenatal glucocorticoid therapy:
alterations in the normal trajectory of
heart maturation?

Animal studies have clearly shown that prenatal gluco-

corticoid administration increases blood pressure in adult

offspring (reviewed Barker & Fall (1993), Benediktsson

et al. (1993) and Dodic et al. (2003)). However, these

models usually involve early and/or extended interven-

tion in otherwise healthy foetuses. In humans it is difficult

to disentangle the effects of glucocorticoid insufficiency

associated with immaturity from the effects of antenatal

glucocorticoid therapy, as these situations normally go

hand-in-hand. Moreover, glucocorticoid administration

preceding premature delivery has only become routine

in the last 30–40 years, so the longer term effects on

cardiovascular outcomes may yet unfold. Nonetheless,

most studies to date do not report any deleterious effects of

antenatal glucocorticoid therapy on blood pressure, heart

rate or overall cardiac performance (systolic or diastolic)
Published by Bioscientifica Ltd.
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in neonates, children, adolescents or in adults at 30 years

of age (Dalziel et al. 2004, 2005, de Vries et al. 2008). A few

follow-up studies report that children exposed to ante-

natal corticosteroids have moderately heightened systolic

and diastolic blood pressures at the age of 7 (Wilson et al.

2006) and 14 (Doyle et al. 2000), although none were in

the hypertensive range. However, prematurity and/or

antenatal glucocorticoid therapy may alter the normal

trajectory of postnatal heart development and function

(Bensley et al. 2010). Interestingly, the hearts of young

adults that were born premature have been reported to

have a unique three-dimensional left ventricular shape

with a displaced apex and shorter ventricular length and

increased left ventricular mass (Lewandowski et al. 2013).

This is associated with reduced systolic torsion/rotation of

the ventricle. Whether this functional change is prenatally

determined (including via antenatal glucocorticoid treat-

ment) or due to a premature adaptation to postnatal life is

currently unclear. Nevertheless, the lack of alignment of

the outermost circumferential muscle fibres in GRK/K

foetuses (Rog-Zielinska et al. 2013) suggests that matu-

ration of systolic twisting could be a glucocorticoid-

regulated process. These aspects of prematurity and/or

glucocorticoid action will be important to further inves-

tigate in animal models. Whether these structural and

functional changes result in abnormal responses to cardiac

insults or haemodynamic load in later life is clearly of

great interest and remains unproven at this stage. Other

aspects of cardiac development, including the electrical

conducting system of the heart, are known to be affected

by prematurity. For example, adults born premature show

a prolonged QT interval and increased QT dispersion,

making them more vulnerable to ventricular arrhythmias

(Bassareo et al. 2011), supporting the notion of increased

cardiovascular risk.

A further difficulty encountered clinically is dis-

tinguishing the effects of small foetal size due to

immaturity from other causes of intra-uterine growth

restriction (IUGR). Haemodynamic adaptions to gluco-

corticoids may differ in IUGR foetuses (Hodges & Wallace

2012) and indeed, foetal growth restriction can be

associated with glucocorticoid excess, for example as a

result of 11b-HSD2 deficiency (Holmes et al. 2006, Seckl &

Holmes 2007). Because IUGR foetuses are at increased risk

of premature birth, they are also likely to receive antenatal

glucocorticoid therapy. The wisdom of this has recently

been questioned (Hodges & Wallace 2012). IUGR is

associated with altered heart shape (more globular-shaped

ventricles) and function (reduced stroke volume and

subclinical systolic dysfunction) in children, the majority
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0204 Printed in Great Britain
of which also receive antenatal glucocorticoid treatment

(Crispi et al. 2010). Whilst there is no evidence that the

risks of antenatal glucocorticoid therapy outweigh the

benefits in this group, more follow-up studies focussed

on the cardiac consequences are clearly warranted.
Implications and concluding remarks

Medical advances have led to more widespread use of

antenatal glucocorticoid therapy, with intervention ear-

lier in gestation, and greater use of repeat courses of

glucocorticoids. Whilst it is clear that this therapy has

reduced perinatal mortality and morbidity, clinicians have

focused on early neonatal outcomes. Long-term effects of

the high doses in routine use, particularly on the

developing heart, remain unclear. Data from animal

models, including non-human primates, suggest dose-

dependent programming effects of antenatal dexametha-

sone on cardiovascular risk factors (Bian et al. 1990, de

Vries et al. 2007). The large-scale randomised clinical trials

that first demonstrated the benefits of antenatal gluco-

corticoid therapy included few below 30 weeks gestation,

yet the same therapy is now applied from 24 weeks, often

with repeat doses.

Most clinical trials suggest that sustained exposure or

repeated doses of corticosteroids are more effective in

improving foetal outcomes (Abbasi et al. 2000, Crowther

et al. 2006, Murphy et al. 2008, Asztalos et al. 2010).

However, there is also a considerable body of evidence to

suggest that multiple dosing does not carry any additional

respiratory or cardiovascular benefits for the infant and is

more detrimental for foetal growth and postnatal neuro-

development, as well as adrenal function, compared with

a single dose (Banks et al. 1999, Spinillo et al. 2004, Nair &

Omar 2009, Bontis et al. 2011, Murphy et al. 2012).

Clinically, betamethasone or dexamethasone is used,

yet actions of the endogenous hormone, cortisol via MR,

may be important for some of the normal maturational

effects of endogenous glucocorticoids (such consider-

ations do not apply to lung, where MR is co-expressed

with 11b-HSD2). Individual sensitivity to glucocorticoids

may influence responses to therapy; the exon 9b poly-

morphism in the NR3C1 gene encoding GR is associated

with relative glucocorticoid resistance and also with

higher blood pressure and left ventricular mass in children

(Geelhoed et al. 2011). Thus, there is an important need to

understand the normal actions of glucocorticoids on the

foetal heart to address how timing and dose of glucocorti-

coid treatment might impact upon its developmental

trajectory. Increasingly, therapy can be tailored to the
Published by Bioscientifica Ltd.
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individual and in future detailed foetal echocardiography

should allow better diagnosis of possible cardiac dysfunc-

tion and distinction between the growth-restricted foetus

and the immature foetus. This tailored therapy approach

might ensure that the most appropriate steroid regime

is used to minimise long-term adverse effects, particularly

on the heart.
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Berger SA, Cole TJ, Schmid W & Schütz G 1996 Molecular genetic analysis

of glucocorticoid and mineralocorticoid signaling in development

and physiological processes. Steroids 61 236–239. (doi:10.1016/

0039-128X(96)00029-3)

Bian XP, Seidler FJ, Bartolome J, Kavlock RJ, Bartolome M & Slotkin TA

1990 Dose-dependent effect of prenatal dexamethasone treatment on

b-adrenergic receptor coupling to ornithine decarboxylase and cyclic

AMP. Journal of Developmental Physiology 14 125–130.

Bian X, Seidler FJ & Slotkin TA 1993 Fetal dexamethasone exposure

interferes with establishment of cardiac noradrenergic innervation

and sympathetic activity. Teratology 47 109–117. (doi:10.1002/

tera.1420470203)

Bingham BC, Sheela Rani CS, Frazer A, Strong R & Morilak DA 2013

Exogenous prenatal corticosterone exposure mimics the effects

of prenatal stress on adult brain stress response systems and fear

extinction behavior. Psychoneuroendocrinology 38 2746–2757.

(doi:10.1016/j.psyneuen.2013.07.003)

Bleich M, WarthR, Schmidt-Hieber M, Schulz-Baldes A, HasselblattP, Fisch D,

Berger S, Kunzelmann K, Kriz W, Schütz G et al. 1999 Rescue of the
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Development of left ventricular systolic and diastolic function in

preterm infants during the first month of life: a prospective follow-up

study. Journal of Pediatrics 139 539–545. (doi:10.1067/mpd.2001.

118199)

Langley-Evans SC 2013 Fetal programming of CVD and renal disease:

animal models and mechanistic considerations. Proceedings of the

Nutrition Society 72 317–325. (doi:10.1017/S0029665112003035)

Langley-Evans SC, Gardner DS & Welham SJ 1998 Intrauterine program-

ming of cardiovascular disease by maternal nutritional status. Nutrition

14 39–47. (doi:10.1016/S0899-9007(97)00391-2)

Leung WC, Ngai C, Lam TP, Chan KL, Lao TT & Tang MH 2005 Unexpected

intrauterine death following resolution of hydrops fetalis after

betamethasone treatment in a fetus with a large cystic adenomatoid

malformation of the lung. Ultrasound in Obstetrics & Gynecology 25

610–612. (doi:10.1002/uog.1912)

Lewandowski AJ, Augustine D, Lamata P, Davis EF, Lazdam M, Francis J,

McCormick K, Wilkinson AR, Singhal A, Lucas A et al. 2013 Preterm

heart in adult life: cardiovascular magnetic resonance reveals distinct

differences in left ventricular mass, geometry, and function. Circulation

127 197–206. (doi:10.1161/CIRCULATIONAHA.112.126920)

Louey S & Thornburg KL 2005 The prenatal environment and later

cardiovascular disease. Early Human Development 81 745–751.

(doi:10.1016/j.earlhumdev.2005.07.001)

Mastorakos G & Ilias I 2003 Maternal and fetal hypothalamic–pituitary–

adrenal axes during pregnancy and postpartum. Annals of the New York

Academy of Sciences 997 136–149. (doi:10.1196/annals.1290.016)

McEwen BS 1997 The brain is an important target of adrenal steroid

actions. A comparison of synthetic and natural steroids. Annals of the

New York Academy of Sciences 823 201–213. (doi:10.1111/j.1749-6632.

1997.tb48392.x)

Messaoudi S, Azibani F, Delcayre C & Jaisser F 2012 Aldosterone,

mineralocorticoid receptor, and heart failure. Molecular and Cellular

Endocrinology 350 266–272. (doi:10.1016/j.mce.2011.06.038)

Michelsohn AM & Anderson DJ 1992 Changes in competence determine

the timing of 2 sequential glucocorticoid effects on sympathoadrenal

progenitors. Neuron 8 589–604. (doi:10.1016/0896-6273(92)90285-L)

Mizuno M, Takeba Y, Matsumoto N, Tsuzuki Y, Asoh K, Takagi M,

Kobayashi S & Yamamoto H 2010 Antenatal glucocorticoid therapy

accelerates ATP production with creatine kinase increase in the growth-

enhanced fetal rat heart. Circulation Journal 74 171–180. (doi:10.1253/

circj.CJ-09-0311)

Montano MM, Wang MH & vom Saal FS 1993 Sex differences in plasma

corticosterone in mouse fetuses are mediated by differential placental

transport from the mother and eliminated by maternal adrenalectomy
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0204 Printed in Great Britain
or stress. Journal of Reproduction and Fertility 99 283–290. (doi:10.1530/

jrf.0.0990283)

Mulder EJ, de Heus R & Visser GH 2009 Antenatal corticosteroid therapy:

short-term effects on fetal behaviour and haemodynamics. Seminars in

Fetal & Neonatal Medicine 14 151–156. (doi:10.1016/j.siny.2008.10.003)

Munck A, Guyre PM & Holbrook NJ 1984 Physiological functions of

glucocorticoids in stress and their relationship to pharmacological

actions. Endocrinology Reviews 5 25–44. (doi:10.1210/edrv-5-1-25)

Murphy VE & Clifton VL 2003 Alterations in human placental 11b-

hydroxysteroid dehydrogenase type 1 and 2 with gestational age and

labour. Placenta 24 739–744. (doi:10.1016/S0143-4004(03)00103-6)

Murphy KE, Hannah ME, Willan AR, Hewson SA, Ohlsson A, Kelly EN,

Matthews SG, Saigal S, Asztalos E, Ross S et al. 2008 Multiple courses

of antenatal corticosteroids for preterm birth (MACS): a randomised

controlled trial. Lancet 372 2143–2151. (doi:10.1016/S0140-

6736(08)61929-7)

Murphy KE, Willan AR, Hannah ME, Ohlsson A, Kelly EN, Matthews SG,

Saigal S, Asztalos E, Ross S, Delisle MF et al. 2012 Effect of antenatal

corticosteroids on fetal growth and gestational age at birth. Obstetrics

and Gynecology 119 917–923. (doi:10.1097/AOG.0b013e31825189dc)

Nair GV & Omar SA 2009 Blood pressure support in extremely premature

infants is affected by different courses of antenatal steroids. Acta

Paediatrica 98 1437–1443. (doi:10.1111/j.1651-2227.2009.01367.x)

Nemati B, Atmodjo W, Gagnon S, Humes D, McKerlie C, Kaplan F &

Sweezey NB 2008 Glucocorticoid receptor disruption delays structural

maturation in the lungs of newborn mice. Pediatric Pulmonology 43

125–133. (doi:10.1002/ppul.20746)

Ng PC, Lee CH, Lam CW, Ma KC, Fok TF, Chan IH & Wong E 2004

Transient adrenocortical insufficiency of prematurity and systemic

hypotension in very low birthweight infants. Archives of Disease in

Childhood. Fetal and Neonatal Edition 89 F119–F126. (doi:10.1136/

adc.2002.021972)

Noori S, Siassi B, Durand M, Acherman R, Sardesai S & Ramanathan R 2006

Cardiovascular effects of low-dose dexamethasone in very low birth

weight neonates with refractory hypotension. Biology of the Neonate 89

82–87. (doi:10.1159/000088289)

Nyirenda MJ, Lindsay RS, Kenyon CJ, Burchell A & Seckl JR 1998

Glucocorticoid exposure in late gestation permanently programs rat

hepatic phosphoenolpyruvate carboxykinase and glucocorticoid

receptor expression and causes glucose intolerance in adult offspring.

Journal of Clinical Investigation 101 2174–2181. (doi:10.1172/JCI1567)

Nykänen P, Anttila E, Heinonen K, Hallman M & Voutilainen R 2007 Early

hypoadrenalism in premature infants at risk for bronchopulmonary

dysplasia or death. Acta Paediatrica 96 1600–1605. (doi:10.1111/

j.1651-2227.2007.00500.x)

Oparil S, Bishop SP & Clubb FJ 1984 Myocardial cell hypertrophy or

hyperplasia. Hypertension 6 III38–III43. (doi:10.1161/01.HYP.

6.6_Pt_2.III38)

Opherk C, Tronche F, Kellendonk C, Kohlmüller D, Schulze A, Schmid W &
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