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Abstract
In most species, endogenous circadian clocks regulate 24-h rhythms of behavior and

physiology. Clock disruption has been associated with decreased cognitive performance and

increased propensity to develop obesity, diabetes, and cancer. Many hormonal factors show

robust diurnal secretion rhythms, some of which are involved in mediating clock output from

the brain to peripheral tissues. In this review, we describe the mechanisms of clock–hormone

interaction in mammals, the contribution of different tissue oscillators to hormonal

regulation, and how changes in circadian timing impinge on endocrine signalling and

downstream processes. We further summarize recent findings suggesting that hormonal

signals may feed back on circadian regulation and how this crosstalk interferes with

physiological and metabolic homeostasis.
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Introduction
We live in an environment shaped by various geophysical

rhythms. Arguably, one of the most prominent of these

rhythms is the succession of day and night. The profound

environmental changes brought about by the rotation of

the Earth around its axis have promoted the development

of endogenous timekeepers that enable an organism to

reliably predict the time of day and adjust behavior and

physiology accordingly. Not surprisingly, large aspects

of our endocrine system are tightly connected to the

circadian (from Latin circa diem – about a day) clock. With

recent advances in molecular life sciences and medicine,

we now realize that this interaction is not only unilateral

but also includes endocrine feedback on circadian clock

function. This review recapitulates some of the research

leading to the picture we have today of the circadian clock

system in mammals and provides an overview about the

most prominent connection points between circadian and

endocrine regulation.
The master circadian pacemaker

In the 1970s, we witnessed a significant breakthrough in

the field of chronobiology – the identification of the

anatomical entity underlining the mammalian circadian

rhythm. It was discovered that information about the

external light–dark cycle was passed via the retino-

hypothalamic tract (RHT) to not only sensory input

integrating centers in the thalamus, but also to the

hypothalamic suprachiasmatic nucleus (SCN), hinting at

the existence of a novel photic input processing hub in the

brain (Sousa-Pinto & Castro-Correia 1970, Hendrickson

et al. 1972, Moore & Lenn 1972). The SCN is a bilaterally

paired structure with high cell body density located

adjacent to the third ventricle and directly atop the optic

chiasm. It comprises about 50 000 neurons in humans and

about 20 000 neurons in rodents. A series of electrical

lesion studies provided unequivocal evidence for the
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critical role of SCN in the generation of mammalian

circadian rhythms. Animals with ablated SCN become

behaviorally and physiologically arrhythmic (Moore &

Eichler 1972, Stephan & Zucker 1972). Critically, trans-

planting isolated SCN tissue into SCN-lesioned animals

restores circadian rhythmicity (Ralph et al. 1990), and the

restored behavioral rhythm of recipients is determined by

the donor’s intrinsic period, indicating that the SCN is

indeed the master pacemaker generating circadian timing

information in animals (Ralph et al. 1990). Brain slice

explants of the SCN, but not of other tested brain areas

including the cerebral cortex and arcuate nucleus, display

robust circadian oscillations in firing rate in vitro,

suggesting that the rhythmicity of the SCN is autonomous

and self-sustaining (Green & Gillette 1982, Groos &

Hendriks 1982, Shibata et al. 1982).
CLOCK/NPAS2
BMAL1

E-Box
CRY1/2
PER1-3

RORα
REV-ERBα/β

DBP
E4BP4

Core
TTL

Auxiliary
TTLs

Day Night

Figure 1

The molecular mammalian circadian clockwork. The transcription factors

Clock/Npas2 and Bmal1 activate E-box-controlled genes including PER1–3

and CRY1/2 during the day. PER and CRY proteins inhibit CLOCK/BMAL1

activity during the night. Auxiliary loops stabilize this 24-h rhythm of

transcriptional activation by modulating gene expression of Bmal1 and Per.

For details see text.
The molecular clockwork

The Period (or Per) gene was the first discovered clock gene

(Konopka & Benzer 1971), which is conserved from fruit

flies to humans. Mutations of Per in flies alters the

circadian patterns of pupae eclosion and locomotor

activity (Konopka & Benzer 1971). Since then, many

more clock genes have been identified in different

organisms (Zhang & Kay 2010). In the past decades, our

knowledge of the molecular clockwork has been signi-

ficantly expanded. The current model suggests that the

central mechanism of the mammalian molecular clock

is composed of a set of clock genes intertwined with a

delayed interlocking transcriptional–translational feed-

back loop (TTL), coupled to several auxiliary mechanisms

reinforcing robustness and stability (Zhang & Kay 2010).

The positive limb of this TTL comprises two basic helix–

loop–helix transcription factors, circadian locomotor

output cycles kaput (CLOCK), and brain and muscle aryl

hydrocarbon receptor nuclear translocator such as BMAL1

or ARNTL. Both form heterodimers via their PER-ARNT-

SIM (PAS) domains and activate E-box-element-containing

genes by recruiting transcriptional co-activators, chromatin-

modifying proteins, and RNA polymerase II. In certain

tissues such as the forebrain or the vasculature, CLOCK

is functionally replaced by its homolog neuronal PAS

domain protein 2 (NPAS2; McNamara et al. 2001, Reick

et al. 2001). Period (Per1–3) and Cryptochome (Cry1/2)

constitute the negative limb of the TTL. CLOCK–BMAL1

complexes activate the transcription of Per and Cry genes

during the subjective day. PERs and CRYs translocate into

the nucleus and form inhibitory complexes. With progress

of the circadian cycle, PER/CRY complexes accumulate
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0118 Printed in Great Britain
and so does their inhibitory effect on CLOCK–BMAL1

activity, shutting down Per and Cry transcription during

the night (Lee et al. 2001). The progressive degradation

of PER/CRY complexes throughout the night toward

the morning releases the inhibition on CLOCK–BMAL1

transcriptional activity and thereby, completes the

negative feedback loop of the circadian clock (Fig. 1).

Additional auxiliary TTLs enhance the stability of the

core clock TTL and translate time-of-day information into

physiological signals via transcriptional control of clock

target genes (Zhang & Kay 2010). Such loops include the

nuclear receptors REV–ERBa and REV–ERBb (NR1D1 and

NR1D2) and RORa (NR1F1) which regulate Bmal1

expression via a retinoid orphan receptor responsive

elements (Preitner et al. 2002, Ueda et al. 2002, Sato et al.

2004, Akashi & Takumi 2005, Liu et al. 2008), as well as the

PAR basic leucine zipper proteins D-box albumin-binding

protein and E4 promoter-binding protein (E4BP; NFIL3)

(Cowell 2002, Ripperger & Schibler 2006) which feed-back

on the expression of Per genes via D-box promoter

elements (Ripperger et al. 2000).
Extra-SCN oscillators

The functional molecular clockwork exists not only in

SCN neurons, but (almost) every single cell in the brain

and periphery is capable of oscillating in a circadian

manner. Molecular clock rhythms have been shown even

in cultured cells, such as immortalized fibroblast cells

which display robust oscillations of clock gene expression
Published by Bioscientifica Ltd.
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after a brief stimulation with high concentrations of serum

(Balsalobre et al. 1998). Using single cell imaging

techniques, Nagoshi et al. (2004) showed that each

fibroblast cell possesses a sustained circadian clock,

although at the population level the rhythm dampens

quickly as a consequence of a gradual desynchronization

between individual cells with different endogenous

periods. Application of synchronizing agents such as

serum, forskolin, glucocorticoids (GCs), or phorbol esters

re-synchronizes individual cells, yielding a transiently

phase-coherent population (Nagoshi et al. 2004). These

data suggest that the cellular clocks in extra-SCN tissues

are actually self-sustained and autonomous in nature, but

fail to maintain coherence at the population level, in

contrast to the SCN (see below). Similarly, tissue explants

from a wide array of peripheral organs including heart,

lung, kidney, liver, spleen, pancreas, stomach, cornea,

thyroid gland, and adrenal gland show clock gene

expression rhythms, but the overall rhythm dampens

quickly due to the gradual loss of coherence between

individual cells (Yamazaki et al. 2000, Yoo et al. 2004).

Similar results have been obtained from tissue explants

from various brain regions (Abe et al. 2002, Guilding &

Piggins 2007).
SCN communication

In order to achieve a biologically relevant circadian

rhythm, it is of utmost importance that individual cells

of a specific tissue are synchronized to the external

environment. The circadian oscillation of an SCN neuron

is coupled to its neighbouring cells in an action-potential-

dependent manner (Welsh et al. 1995). This intercellular

coupling property bestows the superior robustness and

resilience of the SCN circadian rhythm. For example, the

SCN explant cultures exhibit robust and persistent

circadian oscillations in electrophysiological activity and

clock gene expression for an extended period of time,

while rhythms in slices from most other brain regions and

peripheral tissues dampen after a couple of days (Guilding

& Piggins 2007, Guilding et al. 2009). SCN explant

rhythms are also more resistant to clock gene mutations

(Liu et al. 2007) and temperature fluctuations (Abraham

et al. 2010, Buhr et al. 2010). One major function of the

SCN is to synchronize internal biological processes to

external time cues. The SCN receives photic information

from both classical photoreceptors – cone and rod cells – as

well as melanopsin-containing retinal ganglion cells via

the RHT (Hankins et al. 2008). In turn, the SCN innovates

other regions of the brain, in particular the hypothalamus.
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0118 Printed in Great Britain
The paraventricular hypothalamic nucleus (PVN) is one of

the major loci relaying circadian information from the

SCN to the rest of the body (Saeb-Parsy et al. 2000). The

PVN is an important integrating center for energy

homeostasis, projecting parvocellular neurons to the

median eminence to control the release of hormones such

as adrenocorticotrophin (ACTH) and thyroid-stimulating

hormone in the anterior pituitary. The PVN also innerv-

ates the sympathetic limb of the autonomous nervous

system, thereby allowing the SCN to regulate the

sympathetic tone of the body over the course of the day

(Buijs et al. 2003). Further projections of the SCN to the

dorsomedial hypothalamic nucleus (Luiten et al. 1987),

the nucleus accumbens (Phillipson & Griffiths 1985) and

the paraventricular thalamic nucleus (Watts & Swanson

1987, Watts et al. 1987) have been described. These

connections enable the SCN to exert influence on a

plethora of physiological processes such as the reward

system, feeding-fasting cycles, cognitive function, loco-

motor activity, and body temperature (Dibner et al. 2010).

In addition to direct neural connections, the SCN secretes

diffusible factors, which can function as timing cues.

Membrane-encapsulated foetal SCN tissue grafts, which

allow only low-molecular-weight particles to diffuse, can

restore the rhythmicity of locomotor activity in SCN-

lesioned hamsters in the absence of axonal outgrowth

(Silver et al. 1996). Transforming growth factor-a (Kramer

et al. 2001, Li et al. 2002), prokineticin 2 (PK2; Cheng et al.

2002), and cardiotropin-like cytokine (Kraves & Weitz

2006) have been implicated as SCN-secreted peptides

capable of regulating behavioral rhythmicity. Given the

physical proximity of the SCN to the third ventricle, these

diffusible factors may help propagate the time-of-day

information to more remote brain regions via the

cerebrospinal ventricular system.
Endocrine rhythms: clock vs behavioral
regulation

It has been long been appreciated that the circulating levels

of a number of hormones vary over the 24-h cycle (Andrews

& Folk 1964). Such a diurnal rhythm of a hormone or

metabolite can either be a manifestation of circadian clock

control or a direct or indirect response to an environmental

rhythm such as the light–dark cycle. Two methodologies

have been developed to track down the relative contri-

bution of the endogenous circadian clock to diurnal

hormonal rhythms in humans, namely constant routine

(CR) and forced desynchrony (FD) protocols. The CR

protocol aims to minimize the effects of external time cues
Published by Bioscientifica Ltd.
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and behavioral variables by equally distributing such

variables across the circadian cycle. Depending on individ-

ual experimental goals, it routinely demands constant

wakefulness, limited physical activity, equally distributed

isocaloric snacks or constant glucose infusion and constant

dim light condition (Mills et al. 1978). The FD protocol

employs a strategy which schedules a behavioral cycle

beyond the entrainable range of the circadian clock

(i.e. significantly longer or shorter than 24 h) in a constant

dim light environment, resulting in the free running of the

endogenous circadian clock. This leads to an even distri-

bution of certain behavioral variables in question across

different phase of the circadian cycle (Kleitman 1970).

The clarification of the relative contribution of

endogenous and exogenous input to the diurnal rhythm

of a physiological system is of particular relevance for

understanding the influence of our modern 24/7 lifestyle

on the well-being of individuals. Owing to social

constraints many rhythmic behaviors such as sleep/wake

and food intake/fasting cycles often no longer align with

their endogenous pattern controlled by the circadian

clock (Scheer et al. 2009, Beccuti & Pannain 2011). Shift

workers are an obvious example. Several epidemiological

studies indicate that shift workers are predisposed for

metabolic disorders and even cancer (Ohayon et al. 2002,

Akerstedt 2003). Thus, better knowledge for the mechan-

istic link between circadian misalignment and hormonal

deregulation may help with the development of novel

medical regimes to prevent or intervene in the metabolic

consequences of shift work.

GCs and melatonin represent two well-studied hor-

monal systems that are subject to direct and dominant

regulation by the circadian clock. The circulating levels of

both display robust diurnal patterns (Migeon et al. 1956,

Ralph et al. 1971). Using the CR and FD experimental

protocols, the secretion rhythms of cortisol (el-Hajj

Fuleihan et al. 1997, Wehr et al. 2001, Aeschbach et al.

2003, Scheer et al. 2010) and melatonin (Dijk et al. 1999,

Wehr et al. 2001, Cain et al. 2010, Gooley et al. 2011) have

been shown to be under direct regulation by the circadian

clock. Not surprisingly, both hormones also act as major

hormonal output pathways that propagate the time signal

from the SCN to various other tissues. In the following

paragraphs, we will discuss the interaction between the

central clock and these two endocrine systems.
SCN–adrenal interaction

The adrenal gland is an endocrine organ composed of two

anatomically distinct structures – the cortex and medulla.
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0118 Printed in Great Britain
The cortical part produces multiple corticosteroid hor-

mones, while the medulla produces epinephrine and

norepinephrine. The adrenal cortex is further organized

into three functionally distinct subregions: the outermost

zona glomerulosa producing mineralocorticoids, the

middle zona fasciculata producing GCs (mainly cortisol

in humans, corticosterone in rodents) and the innermost

androgen-producing zona reticulata. A diurnal rhythm of

the excretion of urinary ketosteroids was reported in the

mid 20th century (Pincus et al. 1954). In the 1970s, along

with the identification of the SCN as the master circadian

pacemaker, the circadian secretion of corticosteroids was

established as a robust hormonal output of the SCN clock

(Moore & Eichler 1972, Liu et al. 2008). Only during the

last decade, however, has the anatomical and molecular

basis underlying the circadian production of corticoster-

oids been unveiled. Cholesterol is the precursor for the

biosynthesis of steroid hormones. LDL – bound

cholesterol – is imported into adrenocortical cells via

LDL receptors. Cholesterol is then transported into

mitochondria via steroidogenic acute regulatory protein

(STAR). This import constitutes the rate-limiting step of

steroidogenesis (Miller & Bose 2011). Inside the mito-

chondria, the side chain of cholesterol is first removed by

cytochrome P450scc to become pregnenolone, which is

then subjected to a series of enzyme-regulated reactions to

become GC (Miller & Bose 2011). GC secretion is highly

stress responsive. Together with epinephrine, GCs boost

energy production and prepare the body for foraging and

fight-or-flight situations. GCs exert effects on a wide array

of physiological systems. In times of high energy demand,

GCs help maintain blood glucose levels by promoting

gluconeogenesis in liver and lipolysis in adipose tissues

(Kwon & Hermayer 2013). GCs also play an important role

in modulating immune (Silverman & Sternberg 2012) and

cognitive functions (Sandi 2011). The majority of the

effects of GCs are mediated by its ubiquitously expressed

cognate nuclear receptors, glucocorticoid receptors (GRs)

(Silverman & Sternberg 2012). Interestingly, despite the

widespread expression pattern of GR within the brain, the

SCN is devoid of GR (Okamura 2007).

The secretion of GC is the end product of hypothala-

mic–pituitary–adrenal (HPA) axis activation. Pituitary-

released ACTH activates adrenocortical steroidogenesis

through the melanocortin 2 receptor (MC2R), via a

cAMP–PKA-dependent pathway which transcriptionally

stimulates steroidogenic genes such as STAR and CYP11A1

(Miller & Bose 2011).

Blood levels of GCs display a robust circadian rhythm,

overlaid by less regular ultradian pulses with a period of
Published by Bioscientifica Ltd.
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90–120 min. The circadian rise of GCs is phase-locked to

the time of awakening, peaking at few hours before the

onset of the active phase, i.e. the early morning for diurnal

animals such as humans and the evening for nocturnal

animals such as mice (Moore & Eichler 1972, Gomez-

Abellan et al. 2012). This GC rise promotes arousal and

boosts performance during the early active phase.

Importantly, GC rhythms persist under constant environ-

mental conditions, suggesting that they are driven by the

endogenous circadian clock. Surgical ablation of the SCN

completely abolishes the circadian rhythm of GC in blood,

indicating that the SCN is the origin of GC rhythmicity

(Moore & Eichler 1972, Stephan & Zucker 1972). HPA axis

activity upstream of the adrenal is also rhythmic (Watts

et al. 2004, Henley et al. 2009), which led to the hypothesis

that circadian regulation of GC release may be an

indirect response to SCN-induced corticotrophin-releasing

hormone (CRH) expression. However, this view has been

challenged by several observations. First, the timing of CRH

expression in the hypothalamus of pro-opiomelanocortin

(POMC; precursor peptide of ACTH) in the anterior

pituitary and the plasma GC surge are not organized in

the expected sequential manner (Watts et al. 2004, Girotti

et al. 2009). Also, implantation of ACTH pellets can restore

the rhythmicity of GC in hypophysectomized rats, while

denervation of the adrenal gland abolishes the daily GC

rhythm, suggesting that ACTH rhythmicity per se is

dispensable for the blood GC rhythm (Ottenweller et al.

1978, Ottenweller & Meier 1982). Conversely, stimulation

of adrenal sympathetic nerves results in potentiated GC

responses which can be abolished by hypophysectomy

(Edwards & Jones 1993), suggesting a permissive function

of pituitary-derived ACTH and a more direct role of

sympathetic innervation in the regulation of the circadian

GC rhythm. Indeed, it has been shown in viral tracing

experiments that the adrenal is connected to the SCN via

the spinal cord and the PVN (Buijs et al. 1999). In a more

recent study, it has been shown that light signals are

transmitted to the adrenal cortex via the SCN, inducing an

up-regulation of PER1 expression and secretion of GC

independent of ACTH (Ishida et al. 2005).

Well before the discovery of clock genes or peripheral

clocks, it was shown that adrenal glands when isolated and

cultured in vitro display a robust circadian rhythm of

metabolism and steroid secretion (Andrews & Folk 1964).

In line with this, we now know that about 5% of the whole

genome – including all canonical clock genes – show

rhythmic expression in the mouse adrenal gland (Oster

et al. 2006a). By transplanting adrenal glands from

arrhythmic PER2/CRY1 double mutant mice to WT
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0118 Printed in Great Britain
adrenalectomized mice, and vice versa, we have provided

evidence that a local adrenocortical clock imposes a

circadian gating mechanism altering ACTH sensitivity

during the course of the day (Oster et al. 2006b). This

observation was further supported in a study that used a

knock down of BMAL1 in the adrenal cortex (Son et al.

2008). Taken together, this illustrates that while the SCN

is indispensable for the circadian rhythm of GC secretion,

the adrenal clock provides an additional level of control to

modulate the proficiency of GC production across the

circadian cycle and further clocks along the HPA axis may

be involved (Fig. 2).
SCN–pineal interaction

Unlike mice and humans, many non-mammalian

vertebrates can perceive photic information by extra-

retinal photoreceptors (Menaker et al. 1997, Foster & Soni

1998), e.g. in the pineal. The pineal gland is an ancient

organ that exists in most vertebrates (Menaker et al. 1997).

In mammals, it is buried deep beneath the skull and lies

within the furrow of the two hemispheres. In conse-

quence, its photoreceptive function is lost. However, in

most cases its physiology is still strongly influenced by

light. A major function of the pineal is its secretion of the

hormone melatonin derived from the amino acid trypto-

phan (Barrett & Bolborea 2012). In mammals, melatonin

exerts its effects via binding to its two widely expressed

cognate receptors – MT1 and MT2. The melatonin

receptors belong to the Gai/qi-protein-coupled receptor

superfamily (Barrett & Bolborea 2012). Owing to the

widespread expression of melatonin receptors, melatonin

has been reported to modulate several physiological

systems such as immune function (Srinivasan et al.

2011), metabolism (Nduhirabandi et al. 2012), and higher

brain functions (Srinivasan et al. 2012). In birds and

reptiles, the pineal–melatonin system is an essential part

of the circadian clockwork (Gaston & Menaker 1968,

Tosini & Menaker 1998). In contrast, no overt circadian

disruption is observed in pinealectomized mammals

(Quay 1970, 1972), but melatonin may play an important

regulatory role in distributing the time signal of the SCN

(see below).

The daily pattern of melatonin secretion profile has

a robust profile – being low during the day; rising and

peaking during the night. In contrast to the GC rhythm

which is anti-phasic in nocturnal and diurnal animals,

high melatonin is always confined to the dark phase.

SCN lesions abolish melatonin rhythms (Klein & Moore

1979, Reppert et al. 1981). The SCN connects to the
Published by Bioscientifica Ltd.
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Figure 2

Interaction of central and peripheral clocks in the regulation of GC

secretion. The SCN innervates the PVN from where rhythmic CRH release

triggers secretion of ACTH from the pituitary (PIT). At the same time

autonomic innervation (ANS) of the adrenal resets adrenocortical

clocks regulating sensitivity of the steroidogenic machinery to ACTH.

Synchrony between HPA axis activity and adrenal ACTH gating results in

high amplitude and robust circadian GC rhythms. GC rhythms are phase-

shifted between nocturnal and diurnal species indicating differential

interpretation of SCN signals at downstream targets.
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pineal gland via a multi-synaptic autonomic pathway

which sequentially involves the PVN and then the pre-

ganglionic neurons of the intermediolateral cell column

of the spinal cord and finally the noradrenergic

sympathetic neurons of the superior cervical ganglion

(Drijfhout et al. 1996, Moore 1996, Larsen et al. 1998,

Teclemariam-Mesbah et al. 1999; Fig. 3). The SCN

releases GABA to inhibit the sympathetic input to the

pineal gland during the daytime while this inhibition

is released during the night (Kalsbeek et al. 2000). In

addition, the SCN sends a constant glutamatergic

stimulatory input to the pineal gland which is
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0118 Printed in Great Britain
overwhelmed by the inhibitory mechanism during the

night (Perreau-Lenz et al. 2004).

The role of clock genes in regulating pineal gland

rhythmicity has received little attention, mainly due to

the fact that many of the mouse genetic models used to

study the function of the molecular clock are maintained

on genetic backgrounds carrying mutations in two key

enzymes of melatonin synthesis, arylalkylamine N-acetyl-

transferase (AANAT) and hydroxyindole-O-methyl-

transferase (HIOMT), resulting in melatonin deficiency

(Goto et al. 1989, Roseboom et al. 1998, Vivien-Roels et al.

1998). Clock-D19 mutants (Vitaterna et al. 1994) were
Published by Bioscientifica Ltd.
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Figure 3

Melatonin release from the pineal is driven by the SCN pacemaker. The SCN

innervates the PVN from where autonomous fibres descend into the spinal

cord and out via the superior cervical ganglia (SCG) to reach the pineal

gland (PIN). Clock genes are expressed in the pineal, but a functional

contribution of a potential pineal clock to melatonin production has not

been demonstrated. Unlike GCs, melatonin secretion is always confined to

the dark phase, regardless of the activity profile of the animal.
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back-crossed into a melatonin-proficient strain, showing

that the Clock-D19 mutation leads to phase delays and

dampening of the melatonin rhythm in constant darkness

conditions while GC rhythms were completely abolished

(Kennaway et al. 2003, 2006). More recently, it has been

demonstrated that the melatonin biosynthesis pathway

can genetically suppress the circadian perturbations of

Clock-D19 mutation (Shimomura et al. 2010), suggesting

a role of melatonin in contributing to the robustness of

the SCN clock (see below). PER1 deficiency has been

shown to enhance Aanat transcription, enzymatic activity

and hence melatonin secretion (Chen & Baler 2000, Christ

et al. 2010). In CRY1/2 double-deficient mice on a

melatonin-proficient genetic background not only is the

melatonin rhythm blunted under light–dark conditions,

but also photic suppression of melatonin is abolished

(Yamanaka et al. 2010). Together, these data suggest

that clock genes impinge on pineal melatonin
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0118 Printed in Great Britain
rhythmicity. However, owing to the lack of suitable

genetic models to study the tissue-specific function of

clock genes in melatonin-proficient strains, the physio-

logical role of the molecular clock in the pineal itself

remains largely unclear.
Hormonal feedback to the circadian clock

The stabilizing role of melatonin in SCN regulation

mentioned above suggests that hormonal rhythms – we

have discussed circadian regulation of GC and melatonin

secretion – are not merely an output of the central clock.

They can also feedback to the various levels of the

circadian system and thereby intervene the circadian

rhythm of physiology and behavior of animals (Fig. 4).

In the following section, we will use these and some other

hormones as examples to illustrate the crosstalk within

the clock–hormones circuitry in mammals.
Published by Bioscientifica Ltd.
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Cortisol

Exposure to jetlag or sleep perturbations (such as sleep

restriction or shift work) results in a transient mismatch

between the internal circadian time and the external light–

dark cycle. Symptoms of jetlag include decreased alertness,

motor coordination and cognitive performance, sleep

disturbances, gastrointestinal disruption, and loss of

appetite (Waterhouse et al. 2005). Sleep restriction and

daytime sleep – hallmarks of a night shift work schedule –

are associated with increased BMI and risk of metabolic

syndrome, and alterations in circulating endocrine par-

ameters such as insulin, glucose, and GCs (Wu et al. 2008,

Rehman et al. 2010, Baron et al. 2011). Cortisol rhythms are

also affected by jet travel, even when only three or fewer

time zones are crossed (Doane et al. 2010), as well as by

relatively subtle advances in sleep timing (Dijk et al. 2012).

GC steroids secreted from the adrenal gland are

integral regulators of energy metabolism as well as the

response to immune challenge and stress. GC disruption is
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0118 Printed in Great Britain
associated with a variety of disorders. Cushing’s disease is

characterized by excess cortisol, with symptoms including

hypertension, hyperglycemia, sleep disorders, depression,

and weight gain (Carroll & Findling 2010). Addison’s

disease, characterized by a lack of cortisol, is accompanied

by symptoms of weight loss, elevated sensitivity to stress,

hypotension, mood disorders, and hypoglycemia

(Mitchell & Pearce 2012).

GCs have been shown to directly affect circadian clock

gene expression in a number of tissues, such as white

adipose tissue, liver, and kidney (Gomez-Abellan et al.

2012, Pezük et al. 2012). Adrenalectomy shortens re-

entrainment in the SCN, lung, and kidney following

phase shifts, suggesting that GCs may serve to stabilize the

phase of peripheral clocks against external noise (Pezük

et al. 2012). In the case of jetlag-induced circadian

desynchrony, it was shown that manipulation of the GC

rhythm could speed up or slow down activity adaptation

to the new light–dark schedule, depending on the

intervention time (Kiessling et al. 2010). This study
Published by Bioscientifica Ltd.
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highlights the exciting therapeutic potential of GCs in the

treatment of jetlag and other desynchrony disorders.
Melatonin

The best-studied physiological effect of melatonin is its

modulatory function on sleep/wake cycle regulation in

humans. Application of exogenous melatonin has been

shown to decrease the latency to sleep, increase total sleep

time, and promote sleep maintenance (Sack et al. 1997,

Sharkey et al. 2001). In contrast, blocking the nocturnal

release of melatonin by suppressing the sympathetic

innervation to the pineal results in increased total wake

time (Van Den Heuvel et al. 1997). Moreover, exogenous

melatonin can influence sleep macro architecture (Dijk

et al. 1995, 1997). Because of its sleep-promoting effect,

melatonin treatment is frequently used to ameliorate the

symptoms of jetlag or to improve sleep quality during the

daytime in night-shift workers (Aeschbach et al. 2009).

Beyond its effect on sleep, melatonin has been shown

to directly signal to the SCN. In contrast to GRs (see above),

high densities of MT1 and MT2 receptors in the SCN have

been demonstrated (Gillette & McArthur 1996). In rodents,

timed daily administration of high concentrations of

exogenous melatonin can entrain the free-running

endogenous rhythm under constant darkness conditions

(Armstrong et al. 1986, Redman & Armstrong 1988).

Similarly, timed application of melatonin can entrain

blind human subjects (Arendt & Broadway 1987, Sack

et al. 2000). In vitro, melatonin application to cultured SCN

explants affects amplitude and phase of the circadian

rhythm of neuronal firing (Liu et al. 1997, Shimomura et al.

2010). The acute inhibitory effect of melatonin on

neuronal activity seems to be mediated by MT1 receptor

(Liu et al. 1997), while the phase-resetting effect relies on

MT2 receptor signalling (Hunt et al. 2001). It is worthy of

mention that melatonin is also capable of modulating the

production of adrenal GCs. In humans and monkeys, acute

melatonin administration suppresses the production of

cortisol (Torres-Farfan et al. 2003, Campino et al. 2011).

More recently, it has been demonstrated using foetal rats

that timed melatonin application can entrain adrenal

gland rhythms (Torres-Farfan et al. 2011). Thus, together

melatonin and GC rhythms appear to stabilize circadian

phase and precision for different physiological systems.
Ghrelin and insulin

The timing of food intake is an important entrainment

signal for peripheral clocks, best characterized in, but not
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JME-13-0118 Printed in Great Britain
limited to, the liver and adipose clocks (Stephan 2002).

Anticipatory behavior just before scheduled feeding (food

anticipatory activity (FAA)) is seen in animals with

restricted access to food. This is characterized by increased

activity and changes to body temperature, GC rhythms

and hepatic P450 enzymatic function (Krieger et al. 1977,

Hirao et al. 2006), which function to prepare the body for

the anticipated food intake. When food access is confined

to the normal rest period, these processes can uncouple

peripheral oscillators from the central clock that stays

locked to the light regimen. Ghrelin is secreted in

anticipation of feeding, regardless of the light–dark cycle,

from gastric oxyntic gland cells which possess a functional

clock (LeSauter et al. 2009). Ghrelin stimulates appetite via

its actions on the hypothalamic orexigenic peptides,

neuropeptide Y and orexin, and on mesolimbic reward

centres (Abizaid et al. 2006, Toshinai et al. 2006). In shift

workers, the post-prandial ghrelin slump is attenuated,

perhaps contributing to overeating (Schiavo-Cardozo et al.

2012). Ghrelin administration increases FAA; however,

studies on rodents lacking functional ghrelin signalling

are contradictory. Mice lacking ghrelin receptors are

reported to have dampened FAA (LeSauter et al. 2009),

whilst mice lacking preproghrelin show intact FAA

responses during restricted feeding (RF; Szentirmai et al.

2010). Ghrelin can feed back onto the circadian clock by

directly affecting clock gene expression in the SCN

(Yannielli et al. 2007). In vivo studies show that ghrelin

treatment increases food intake, but only shifts behavioral

rhythms under fasted conditions (Yannielli et al. 2007).

Insulin represents another potential food-inducible

clock synchronizer. Insulin secretion from pancreatic beta

cells is clock-gated, and disruption of the positive arm of

the clock – CLOCK or BMAL1 – results in hypoinsulinemia

(Marcheva et al. 2010, Sadacca et al. 2011), while

disruption of the clock’s negative regulators – PERs and

CRYs – is associated with hyperinsulinemia (Zhao et al.

2012, Barclay et al. 2013). Insulin sensitivity is reduced

in shift workers, and accompanied by increased beta cell

activity, suggesting a pre-diabetic state (Esquirol et al.

2012). But insulin can also feed back to the clock. Tahara

et al. (2011) used daytime RF in mice to demonstrate

insulin-dependent alterations of clock gene rhythms in

the liver, and a similar response was seen in primarily

cultured rat hepatocytes (Yamajuku et al. 2012). It would

be remiss to discuss the effects of insulin on the clock

without discussing the effects of glucose as a direct

function of insulin signalling. Glucose can directly affect

circadian gene expression in fibroblasts and the SCN

(Hirota et al. 2002, Iwanaga et al. 2005). In the absence of
Published by Bioscientifica Ltd.
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insulin signalling, for example in diabetic rats, circadian

clock phase is shifted in the heart, suggesting that

high glucose levels can directly impinge on clock

regulation (Young et al. 2002). Under RF conditions,

sucrose (but not lipid) induces phase shifts and FAA

(Stephan & Davidson 1998).

The concept of food-inducible factors acting as power-

ful entertainers of the clock system is ratified by a number

of studies which employ RF to rescue clock gene rhythms

as well as physiological rhythms under desynchronous

conditions. In a rat model of night work, restricting food

intake to the normal activity phase restores glucose

rhythms and prevents weight gain (Salgado-Delgado

et al. 2010). In a study on a mouse model of shift work,

restoring normal food intake rhythms concurrently

restores clock gene rhythmicity in the liver, as well as

triglyceride, glycerol and GC rhythms, and gluconeogen-

esis (Barclay et al. 2012). While these data suggest a direct

link between peripheral clock regulation and energy

homeostasis, the phase relationship between clock gene

expression and the transcriptional activity of metabolism-

associated genes is variable, suggesting an interplay

between local and systemic factors (Reznick et al. 2013).
Leptin and adiponectin

It is widely established that clock disruption results in

metabolic perturbations, and ultimately obesity (reviewed

in Froy (2010)). Conversely, high fat diet (HFD) can

dampen clock gene rhythmicity in the liver and fat, and

well as affecting behavioral rhythms (Kohsaka et al. 2007).

HFD results in loss of diurnal feeding patterns in rodents,

and subsequent alteration to GC, insulin, and glucose

rhythms (Kohsaka et al. 2007). A study by Kaneko et al.

(2009) showed altered clock gene expression the brain-

stem of mice fed with a HFD, as well as in genetically obese

mice such as ob/ob (lacking the leptin gene) and KK-A(y)

mice (a spontaneous diabetic mouse model). However,

arguably the most dramatic effects of HFD and obesity are

the effects seen on circulating adipokines such as leptin

and adiponectin.

Leptin is secreted from white adipose tissue in

response to glucose stimulation, and signals via appetite

centres in the hypothalamus to promote satiety and

prevent excess energy consumption. Circulating leptin

shows a diurnal rhythm, peaking in the night in humans.

In the models of obesity, leptin resistance can occur and

in the absence of leptin’s anorexigenic effects, this is

accompanied by overeating (reviewed in Gautron &

Elmquist (2011)). In humans, acute HFD feeding results
http://jme.endocrinology-journals.org � 2014 Society for Endocrinology
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in lower 24-h leptin (Havel et al. 1999), whereas

hyperleptinemia and changes in leptin rhythmicity are

observed in obese subjects in accordance with increased

fat mass (Considine et al. 1996, Rosenbaum et al. 1996, van

Dielen et al. 2002). Despite having no direct effect on

locomotor activity, leptin can induce PER expression in

the SCN of female mice and potentiate the phase-shifting

effects of light in these animals (Mendoza et al. 2011).

Ex vivo, leptin stimulation can reset the phase of the SCN

clock (Prosser & Bergeron 2003).

Adiponectin possesses insulin-sensitizing and anti-

inflammatory properties (reviewed in Harwood (2012)).

Circulating adiponectin levels inversely correlate with

obesity and leptin levels, and weight loss results in

increased adiponectin (Hu et al. 1996, Yang et al. 2001,

Matsubara et al. 2002). Adiponectin secretion shows both

ultradian and circadian rhythms, with a nadir in the early

hours of the morning in healthy adults (Gavrila et al. 2003,

Scheer et al. 2010). In rodents, adiponectin peaks in the

end of the light phase (inactive phase) and its rhythm is

shifted under HFD (Rı́os-Lugo et al. 2010). Bullen and

colleagues showed decreased adiponectin levels relative to

fat mass following HFD in rodents (Barnea et al. 2006,

Bullen et al. 2007). To assess the effect of adiponectin on

the circadian clock, Hashinaga and colleagues used KK-Ta

mice, a polygenic model of metabolic syndrome with

hypoadiponectinemia. These mice have a shorter activity

period under constant conditions and dampened circa-

dian locomotor rhythms with increased light-phase

activity relative to controls. Clock gene rhythms are

phase-advanced in the liver and skeletal muscle in these

mice. The introduction of the human adiponectin

transgene into the liver of these mice restores locomotor

rhythmicity, as well as hepatic clock gene phase

(Hashinaga et al. 2013). These studies strongly indicate

that leptin, adiponectin, and maybe other adipokines may

have direct effects on molecular clock function.
Summary and outlook

In summary, many components of the endocrine system

show strong circadian rhythmicity in both rodents and

humans. Some of these hormones, such as melatonin and

cortisol, are involved in disseminating the SCN timing

signal to other parts of the body. Endocrine rhythms

respond to factors that compromise the clock function,

such as HFD, obesity, jetlag, and sleep disruption. In turn,

the endocrine system feeds back on central and peripheral

clocks to adapt circadian rhythms to altered physiological

state. Given the profound effects endocrine and circadian
Published by Bioscientifica Ltd.
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systems have on general well-being and the development

of various disorders, this mutual interaction might

provide new targets for pharmacological interventions at

the systemic level. Recent studies have shown that

resetting of GC signalling can affect clock resetting during

jetlag (Kiessling et al. 2010) and with the recent discovery

of drugs directly impinging on clock function (Hirota et al.

2010, Solt et al. 2012) it may be possible to rescue

endocrine regulation under desynchrony conditions

such as shift work.
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