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Abstract

The effectiveness of poly (ADP-ribose) polymerase inhibitors (PARPi) in treating cancers 

associated with BRCA1/2 mutations hinges upon the concept of synthetic lethality 

and exemplifies the principles of precision medicine. Currently, most clinical trials are 

recruiting patients based on pathological subtypes or have included BRCA mutation 

analysis (germ line and/or somatic) as part of the selection criteria. Mounting evidence, 

however, suggests that these drugs may also be efficacious in tumors with defects in 

other genes involved in the homologous recombination repair pathway. Advances in 

molecular profiling techniques together with increased research efforts have led to a 

better understanding of the molecular aberrations underlying this BRCA-like phenotype 

and helped broaden the concept of BRCAness. Hence, it is likely that the list of predictive 

biomarkers for PARPi therapy will increase in future. There is currently no gold standard 

method of testing for PARPi response and no universal guidelines are in place on how 

to incorporate biomarker testing into routine clinical diagnostics. In this review, we 

explore the concept of BRCAness and highlight the different methods that have been 

used to identify patients who may benefit from the use of these anticancer agents. 

The identification of predictive biomarkers is crucial in improving patient selection and 

expanding the clinical applications of PARPi therapy.
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Introduction

The development of novel therapies targeting specific 
biological pathways has led to a paradigm shift in the  
way we approach cancer therapeutics. The use of poly 
(ADP-ribose) polymerase inhibitors (PARPi), with 
their selective mechanisms of action involving the 
DNA damage repair pathways, illustrates this strategy. 
PARPi are being evaluated in clinical trials either as 
monotherapeutic agents or in combination with other 
anticancer therapy to improve therapeutic efficacy. 
The recruitment of patients for some of these trials 

has been based on molecular and phenotypic evidence 
of defects in DNA repair, in particular homologous 
recombination (HR) repair, such as those with germ 
line BRCA mutations, or included tumor types known 
to be associated with BRCA mutations, such as basal-
like or triple-negative breast cancers (TNBC) and high-
grade ovarian serous carcinomas (HGOSC). Few studies 
have included other biomarker analyses as part of their 
recruitment criteria (Table 1). However, there is increasing 
evidence to suggest that some patients with tumors less 
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commonly associated with BRCA mutations, such as 
melanoma, lung, pancreatic, and prostate cancers, may 
also respond to PARPi therapy (Fong et al. 2009, Paul 
et al. 2011, O’Sullivan et al. 2014, Kaufman et al. 2015). 
Furthermore, some tumors in patients without germ line 
BRCA mutations can share similar clinicopathological 
and molecular characteristics as those occurring in 
patients with germ line defects, and these could also 
potentially response to PARPi-based therapy. Some of 
these tumors have impaired HR repair pathways that 
may be attributable to a variety of reasons such as BRCA1 
promoter hypermethylation, somatic BRCA mutations, 
or defects in the other genes involved in HR. Therefore, 
the utility of PARPi in cancer therapeutics is potentially 
greater than what was initially envisioned.

In this review, we discuss the concept of ‘BRCAness’ 
using examples of emerging mechanisms of regulation 
of HR and evaluate the various methods that can be used 
to identify patients who may benefit from PARPi therapy.

DNA damage repair pathways and BRCA

A variety of endogenous and environmental genotoxic 
insults can affect the integrity of the human genome. 
Damaged DNA triggers an activation of the cell cycle 
checkpoint pathways leading to cell cycle arrest and 
allows for DNA repair to take place. Single-strand 
breaks (SSBs) are corrected via the base excision repair 
(BER), nucleotide excision repair (NER), or mismatch 
repair pathways (Kinsella 2009), whereas double-strand 
breaks (DSBs) are repaired by HR, which restores the 
original nucleotide sequence, or processes such as 
non-homologous end joining (NHEJ) or single-strand 
annealing (SSA), which lack fidelity to the germ line 
DNA sequence (Hoeijmakers 2001, Kinsella 2009) 
(Fig. 1A). These highly complex and intertwined repair 
mechanisms are orchestrated by a myriad of enzymes to 
ensure the integrity of DNA, which is imperative for cell 
survival. 

BRCA1 and BRCA2 are tumor suppressor genes 
involved in the repair of DSBs via HR (D’Andrea & 
Grompe 2003). BRCA1 promotes cell cycle arrest in 
conjunction with p53 and associates with DNA DSBs. 
HR repair begins with the degradation of one strand 
of the DNA at the site of damage, creating a stretch of 
single-stranded DNA. RAD51 molecules then bind to 
the single-stranded DNA to form filamentous structures. 
These RAD51 foci promote recognition of homologous 
sequences on the sister chromatid and catalyze pairing 
between the complementary bases in the intact 
chromosome, ultimately leading to template-dependent 
DNA synthesis (Wu 2008). BRCA1 and BRCA2 play a role 
in RAD51 loading, together with other components, such 
as ATM, H2AX, PALB2, RPA, RAD52, and proteins of the 
Fanconi anemia pathway (Polo & Jackson 2011). Without 
functional BRCA1/2, error-prone pathways such as NHEJ 
are preferentially activated. NHEJ repairs DSBs by ligating 
the two broken DNA ends without using a homologous 
DNA sequence to guide repair, often resulting in the 
introduction of errors at the ligated sites (Davis & 
Chen 2013) (Fig.  1B). Mutations that are generated can 
activate oncogenes or inactivate tumor suppressor genes, 
ultimately leading to carcinogenesis (Tutt & Ashworth 
2002, Venkitaraman 2002). In addition to DNA repair, 
BRCA1 also contributes to other cellular processes such 
as transcriptional regulation and chromatin remodeling 
(Deng 2006, Savage et al. 2014).

Given their integral roles in maintaining genomic 
integrity, patients with germ line mutations of BRCA1 
and BRCA2 are at an increased risk of developing various 
malignancies (Venkitaraman 2002). Approximately 
5–10% of breast cancers and 1–18% of ovarian cancers 
occur in patients with germ line BRCA mutations (Brody 
& Biesecker 1998, Pal et al. 2005, Walsh et al. 2011, 
Alsop et al. 2012). Other less commonly encountered 
tumors include gastric, pancreatic, prostate, and lung 
cancers as well as cutaneous melanoma (Brose et al. 2002, 
Leongamornlert et al. 2012).

Figure 1
(A) DNA repair pathways in a normal cell.  
(B) Cells with defects in BRCA or other 
components of the HR pathway rely on 
error-prone pathways such as NHEJ for DNA 
repair, resulting in genetic instability.
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PARP

The PARP proteins are a superfamily of enzymes 
engaged in a myriad of cellular functions including 
transcriptional regulation, DNA repair, cell cycle 
regulation, inflammation, hypoxic response, spindle 
pole function, oncogene-related signaling, and cell 
death (Schreiber et al. 2006, Weaver & Yang 2013). A 
change to the nomenclature has been recently proposed 
as some members of the group catalyze mono- rather 
than poly(ADP)ribosylation (Hottiger et al. 2010). PARP1 
is the most abundant and best characterized member of 
the family. It has been implicated in several DNA repair 
mechanisms such as the repair of SSBs via the BER 
pathway. It recognizes and binds to sites of SSB, after 
which it catalyzes the transfer of ADP-ribose molecules 
from NADC to itself and other acceptor proteins to 
generate long chains of poly(ADP)ribosylated polymers 
(Haince et  al. 2007). This allows for the recruitment  
of DNA repair proteins such as DNA polymerase β, 
DNA ligase III, and scaffolding proteins such as X-ray 
cross-complementing protein 1 (XRCC1) to sites of SSBs 
(El-Khamisy et al. 2003, Houtgraaf et al. 2006). PARP1 
may also facilitate HR via recruitment of factors such 
as ATM, Mre11, and Nbs1 to sites of DSBs (Haince et al. 
2008) and has been shown to interact with the DNA 
protein kinase complex involved in NHEJ (Wang et al. 
2006) (Fig. 2).

PARP inhibitors and the concept of  
synthetic lethality

PARPi are a class of drugs that function as catalytic 
inhibitors that compete with NADC for the substrate-
binding site of PARP (Rouleau et al. 2010). They are also 
postulated to act by ‘trapping’ PARP at sites of DNA 
damage, generating a cytotoxic PARP–DNA complex 
(Murai et al. 2012). Trapped PARP prevents its availability 
for repair function and secondarily causes replication and 
transcription fork blockade, resulting in DNA breakage 
(Helleday 2011). These findings suggest that PARPi have 
several different modes of action with multiple potential 
targets in the DNA repair pathway that can result in 
cancer cell death (Fig. 2).

The early clinical development of PARPi has been 
focused on targeting cancers associated with BRCA1/2 
mutations. This hinges upon the concept of synthetic 
lethality, whereby a cell harboring one of two gene 
or protein defects is viable, whereas those containing 
both defects are not. In this setting, PARP blockade 
causes replication-associated lesions that cannot be 
repaired by the defective HR pathway (resulting from 
BRCA mutations), thereby prompting the activation of 
compensatory, error-prone DNA repair pathways such as 
NHEJ that leads to genomic instability, non-viable genetic 
errors, and, eventually, cell death (Ashworth 2008). This 
notion was first highlighted in two preclinical studies that 

Figure 2
PARP1 binds to DNA single-strand break and 
catalyzes poly(ADP)ribosylation of itself and 
acceptor proteins, facilitating the recruitment of 
DNA repair proteins. In addition to its role in 
base excision repair, PARP1 plays a role in 
activating ATM necessary for homologous 
recombination and inactivating DNA-dependent 
protein kinase, an important component of 
non-homologous end-joining. PARP inhibitors 
have been shown to trap PARP1 on damaged 
DNA, leading to replication and transcription 
fork blockage and subsequent double-strand 
DNA breakage.
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established the sensitivity of BRCA1/2 mutant tumor cells 
to PARPi (Bryant et al. 2005, Farmer et al. 2005) and led 
to subsequent clinical studies in patients with familial 
BRCA1/2 mutant breast and ovarian tumors, which 
provided further clinical evidence for the adoption of this 
therapeutic approach.

The phase 1 trial evaluating single-agent olaparib 
(AZD2281) in a cohort of patients enriched for BRCA1/2 
mutation carriers demonstrated clinical benefit in 
12/19 (63%) patients with objective responses in 9 
(47%) patients (Fong et  al. 2009). These led to an 
expansion cohort comprising 50 BRCA mutation 
carriers with ovarian, peritoneal, and fallopian tube 
cancers, of which 13 were platinum refractory, 24 
were resistant to platinum, and 13 were sensitive to 
platinum. These patients exhibited a response rate 
(according to RECIST criteria or reduction in serum 
CA125) of 23%, 45%, and 69%, respectively, and the 
efficacy of olaparib correlated with BRCA mutation and 
platinum sensitivity (Fong et al. 2010). Two subsequent 
phase 2 trials then established the efficacy of olaparib 
in familial BRCA1/2 mutant breast and ovarian cancers, 
with an overall response rates (ORR) of 41% and 33% 
noted in the breast and ovarian cohorts respectively 
(Audeh et al. 2010, Tutt et al. 2010). In another phase 
2 study assessing olaparib as maintenance therapy used 
in unselected patients with familial or sporadic HGOSC 
that responded to platinum agents, it was reported that 
those with germ line or somatic BRCA1/2 mutations 
demonstrated the best progression-free survival (PFS). 
Although a statistically significant improvement in 
overall survival (OS) was not observed in this cohort, 
the OS data were insufficiently mature to allow for a 
properly powered comparison between the treatment 
groups (Ledermann et al. 2012).

In October 2014, the European Medicines Agency 
(EMA) approved the use of olaparib (Lynparza) as a 
monotherapy for the maintenance treatment of patients 
with relapsed, platinum-sensitive epithelial ovarian, 
fallopian tube, or primary peritoneal cancer with 
BRCA1/2 mutations. This was followed 2 months later 
by an approval by the US Food and Drug Administration 
(FDA) for the use of Lynparza as a monotherapy for  
the treatment of patients with deleterious germ line 
BRCA-mutated advanced ovarian cancer who have been 
treated with three or more prior lines of chemotherapy 
(Kim et al. 2015) based on the findings of a multicenter 
phase 2 study (Kaufman et  al. 2015). This approval was 
granted together with a companion in vitro diagnostic 
assay, BRACAnalysis CDX (Myriad Genetics, Inc, Salt Lake 

City, UT, USA), which is performed only at the Myriad 
Genetic Laboratories. The assay allows for the qualitative 
detection and classification of variants in the protein 
coding regions and intron/exon boundaries of BRCA1 and 
BRCA2 using genomic DNA derived from whole blood 
specimens. Single-nucleotide variants and small insertions 
and deletions (indels) are identified by PCR and Sanger 
sequencing, whereas large genomic rearrangements 
such as deletions and duplications are detected using a 
multiplex PCR assay. Detected variants are classified into 
one of the five categories: deleterious mutation, suspected 
deleterious mutation, variant of uncertain significance, 
favor polymorphism, and polymorphism. As the FDA did 
not review the hereditary implications of BRCA testing in 
this setting, BRACAnalysis CDx should not be regarded  
as a surrogate screening test for hereditary cancer 
(Gunderson & Moore 2015, Kim et al. 2015).

BRCAness

Although PARPi have been shown to be effective in 
patients with germ line BRCA1/2 mutations, evidence 
suggests that they may also be of benefit in the treatment 
of cancers with defects in other components of the DNA 
damage repair pathways. The concept of ‘BRCAness’ 
was introduced to describe the clinical and biological 
features that some sporadic tumors share with those 
harboring germ line BRCA1/2 mutations. This not only 
includes similar histomorphological features such as 
basal-like phenotype in breast cancers or high-grade 
serous morphology in ovarian cancers but also similar 
immunophenotypic profile (e.g., triple-negative breast 
cancers), drug sensitivity (e.g., to platinum agents and 
PARPi), as well as disease prognosis (Turner et al. 2004, 
Tan et al. 2008) (Fig. 3). This BRCAness phenotype may 
be attributed in part to defective HR secondary to several 
mechanisms, including hypermethylation of the BRCA1 
promoter (Baldwin et al. 2000, Esteller et al. 2000, Geisler 
et al. 2002, Teodoridis et al. 2005), somatic mutations of 
BRCA1/2 (Foster et al. 1996, Geisler et  al. 2002, Hilton 
et al. 2002, Hennessy et al. 2010, Ledermann et al. 2014), 
EMSY amplification (Hughes-Davies et al. 2003), or  
loss-of-function mutations involving other HR pathway 
genes, including ATM, ATR, BARD1, BRIP1, MRE11A, 
PALB2, RAD50, RAD51D, RAD54, NBS1, CHEK1, and 
CHEK2, as well as components of the Fanconi anemia 
repair pathway (Hughes-Davies et  al. 2003, Taniguchi 
et al. 2003, Venkitaraman 2003, Dedes et al. 2011, Loveday 
et al. 2011, Rigakos & Razis 2012, Strom & Helleday 2012, 
Lord & Ashworth 2016).
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Clinical evidence indicates that tumors with this 
phenotype can respond to PARP inhibition. In a phase 2 
trial of olaparib, which included both BRCA1/2-mutated 
and wild-type patients with breast cancer and HGOSC, 
non-BRCA mutant patients who had platinum-sensitive 
HGOSC showed an ORR of 50% (Gelmon et al. 2011). 
A 17% response rate was also observed in the platinum-
resistant cohort without BRCA1/2 mutation, suggesting 
an incomplete crossover of platinum sensitivity and 
PARPi response. Similarly, in a phase 1 study evaluating 
niraparib in advanced solid tumors enriched for sporadic 
cancers associated with non-BRCA HR repair defects, three 
patients with partial response and four with stable disease 
were identified (Schelman et al. 2011).

Resistance to PARP inhibition

Conversely, not all patients with mutations in BRCA1/2 or 
genes associated with BRCAness will response to PARPi, as 
different mutations may have differing effects on HR repair 
function and sensitivities to PARP inhibition. Mouse model 
studies have shown that a missense mutation in the RING 
domain of BRCA1, C61G, reduces the ability of BRCA1 
to interact with its heterodimerization partner, BRCA1-
associated RING domain protein 1 (BARD1), but does not 
result in PARPi or platinum salt sensitivity (Jaspers et al. 
2013). The Consortium of Investigators of Modifiers of 
BRCA1/2 (CIMBA) assessed cancer incidence in more than 
31,000 BRCA1/2 mutation carriers and reported that the 
risk of developing breast or ovarian cancer is determined 
by the position and type of mutation, with mutations in 
different regions of both genes associated with differing 
risk levels (Rebbeck et al. 2015). In comparison, there is 
very limited understanding of what factors may affect 

PARPi responses in the setting of other BRCAness genes. It 
is also likely that the therapeutic implications may differ in 
different cancer types, further reinforcing the importance 
of the context in which BRCA and other HR-related genes 
function in these malignancies.

Differences in treatment response could also result 
from the development of resistance, and it has been 
postulated that mechanisms of drug resistance may differ 
depending on which BRCAness gene is involved (Edwards 
et al. 2008, Sakai et al. 2008, Patch et al. 2015). Several 
mechanisms leading to both intrinsic and acquired 
resistance to PARP inhibitors have been identified. 
These include secondary mutations that restore the 
open reading frame and the original function of BRCA2, 
thereby reinstating HR competence (Edwards et  al. 
2008, Sakai et al. 2008). Preclinical and clinical evidence 
indicates that genomic instability promoted by PARPi in 
HR-deficient cells may result in secondary mutations in 
the mutated BRCA1/2 gene with restoration of functional 
protein expression and induction of PARPi resistance 
(Edwards et al. 2008, Sakai et al. 2009, Norquist et al. 2011, 
Barber et al. 2013).

Other mechanisms of resistance to PARPi include 
restoration of HR in BRCA1 mutant cells via either 
inactivation of mitotic arrest-deficient 2-like protein 2 
(MAD2L2) or P53-binding protein 1 (53BP1) (Bunting 
et al. 2010), both of which are involved in controlling DNA 
resection at DSBs (Patch et al. 2015, Xu et al. 2015). In vitro 
and in vivo experiments have shown that loss of 53BP1 
restores HR and renders BRCA1-deficient cells resistant 
to PARP inhibition (Bouwman et al. 2010, Bunting et al. 
2010). Decreased 53BP1 levels have also been detected 
in BRCA1 mutant ovarian carcinoma patients that 
developed secondary resistance to platinum agents and 

Figure 3
Clinicopathological features and molecular 
biomarkers associated with response to PARP 
inhibitor therapy.
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PARPi (Johnson et al. 2013, Patch et al. 2015). Thus, 53BP1 
expression may be of use in predicting response to PARPi.

Biomarker testing

Despite a greater understanding of the molecular 
aberrations associated with a BRCA-like phenotype, 
the identification of patients who will respond to 
therapy still presents considerable challenges. This is 
due to the lack of a unifying morphological phenotype, 
the varied components of the repair pathways, and 
numerous potential mechanisms of drug resistance. The 
development of predictive biomarkers and diagnostic 
assays that will allow for robust patient selection remains 
an important area of research. At present, there is no gold 
standard method to reliably identify such patients for 
PARPi therapy, although various biomarkers have been 
explored, including testing for BRCA mutations (both 
germ line and somatic) or genetic defects in the other 
genes involved in HR.

Germ line BRCA mutations

BRCA1/2 germ line variant screening has traditionally been 
performed using a combination of Sanger sequencing and 
multiplex ligation-dependent probe amplification (MLPA). 
Sanger sequencing is able to detect small variants such as 
the deletion or insertion of single bases, whereas MLPA 
identifies large gene rearrangements, such as the deletion 
or duplication of one or more exons. However, these 
methods are time consuming and costly (Ruiz et al. 2014) 
and they generally require a significant input of good-
quality DNA. The adoption of next-generation sequencing 
(NGS) has allowed for massive parallel sequencing of 
multiple genes, ranging from multi-gene panels to whole 
exomes and genomes (Feliubadalo et al. 2013, Hernan 
et al. 2012). In comparison to direct Sanger sequencing, 
NGS allows for faster, more efficient, high-throughput 
testing at a considerably lower cost (Harismendy et al. 
2009). With NGS, results can consistently be provided 
within a clinically useful time frame, allowing their 
incorporation into treatment decisions. However, these 
sequencing techniques have limited ability to detect 
structural gene rearrangements and may need to be 
supplemented by other methods such as MLPA to ensure 
that the full spectrum of genetic aberrations are accounted 
for (Patch et al. 2015). Furthermore, most NGS platforms 
require substantial bioinformatic input for the analysis 
and interpretation of sequencing data, and this has been a 
considerable hurdle for laboratories considering switching 

to NGS. Wider availability of more affordable testing may 
also result in a greater volume of tests performed, placing 
an increased need for better integration between oncology 
and clinical genetic services (George 2015).

BRCA inactivation in sporadic cancers

Another important mechanism of BRCAness is the 
presence of somatic mutations in BRCA1/2, which has 
been identified in some sporadic ovarian and breast 
cancers. Hennessy and colleagues performed BRCA1/2 
sequencing using snap-frozen tumor tissue from 235 
unselected ovarian cancers and identified mutations in 
19% (31 BRCA1 and 13 BRCA2 mutations) of tumors 
with the vast majority occurring in high-grade serous 
carcinomas. In 28 samples, where germ line DNA was also 
available, 42.9% of the BRCA1 mutations and 28.6% of 
the BRCA2 mutations were found to be purely somatic. 
BRCA1/2 mutations were associated with improved PFS 
after platinum-based chemotherapy in univariate and 
multivariate analyses. BRCA1/2 deficiency, defined as 
BRCA1/2 mutations or expression loss, was present in 
30% of tumors and was also significantly associated 
with PFS (Hennessy et  al. 2010). Using targeted 
capture and massively parallel genomic sequencing, 
Pennington et  al. identified germ line (24%) and 
somatic (9%) mutations in one or more of 13 HR genes, 
including BRCA1, BRCA2, ATM, BARD1, BRIP1, CHEK1, 
CHEK2, FAM175A, MRE11A, NBN, PALB2, RAD51C,  
and RAD51D, in patients with ovarian, fallopian tube, 
and peritoneal carcinomas. Interestingly, both serous and 
non-serous carcinomas were found to have comparable 
HR mutation rates. The presence of germ line and 
somatic HR mutations was highly predictive of primary 
platinum sensitivity (P = 0.0002) and improved overall 
survival (P = 0.0006), with a median overall survival of 
66 and 59 months in cases with germ line or somatic  
HR mutations, respectively, compared with 41 months 
for those with no HR mutations (Pennington et al. 
2014). Similarly, the Cancer Genome Atlas (TCGA) 
reported that up to 6.3% of HGOSC harbor somatic 
mutations in BRCA1/2 (Cancer Genome Atlas Research 
Network 2011).

Somatic BRCA1/2 mutations have also been identified 
in breast cancers albeit in smaller numbers. In the TCGA 
cohort, approximately 20% of TNBCs had either germ line 
(N = 12) or somatic (N = 8) BRCA1/2 mutations, whereas 
in another study, one of 77 TNBC was found to harbor 
a somatic BRCA mutation (Gonzalez-Angulo et al. 2011). 
These findings highlight the need to evaluate tumors 

http://dx.doi.org/10.1530/ERC-16-0116


R275Review D Lim and J Ngeow Evaluating BRCAness for  
PARP inhibitor use

En
d

o
cr

in
e-

R
el

at
ed

 C
an

ce
r

DOI: 10.1530/ERC-16-0116
http://erc.endocrinology-journals.org� © 2016 Society for Endocrinology

Printed in Great Britain
Published by Bioscientifica Ltd.

23:6

for somatic disruption of the BRCA pathway in patients 
lacking germ line BRCA mutations.

There are, however, several challenges to be 
met in trying to detect somatic BRCA mutations in 
tumor samples. First, some specimens may be small  
(e.g., biopsies), with limited DNA yield that may be of 
poor quality, thus constraining the analysis that can 
be undertaken. This poses a significant challenge with 
respect to accurate detection, characterization, and 
interpretation of sequence variants in BRCA1/2. Second, 
tumor samples are also histologically heterogeneous, and 
DNA derived from tumor tissue will invariably contain 
admixed DNA from normal cells. Consequently, methods 
for somatic mutation detection have to be able to detect 
DNA changes that may be present in a low proportion 
of the total DNA isolated from the sample. Traditional 
Sanger sequencing techniques for BRCA testing generally 
require good-quality, high-molecular-weight input DNA 
of high yield, usually extracted from blood, and may 
not be suitable for analysis of formalin-fixed paraffin-
embedded (FFPE) tumor tissue, where the extracted DNA 
is typically of poorer quality, more fragmented, and of 
low yield. In addition, Sanger sequencing may not be 
sensitive enough to detect low-level somatic changes 
present in tumor tissue. In comparison, NGS methods 
require less input DNA, as the reactions can be highly 
multiplexed and have the potential to detect variants at 
low allele frequency (Sims et al. 2014); thus, the use of 
NGS may offer a potential solution to this challenging 
type of analysis (Ellison et al. 2015). Lastly, formalin 
fixation can lead to deamination and cross-linkage of 
DNA, resulting in sequencing artifacts. This issue may be 
resolved by duplicate analysis starting from the original 
DNA, as artifacts will generally be randomly distributed 
and should not be present in both samples.

Epigenetic mechanisms of gene inactivation may 
occur as an alternative to genetic mutation in the 
silencing of BRCA (Jones & Baylin 2002). Aberrant 
methylation of cytosine residues in CpG dinucleotides in 
the promoter region results in transcriptional silencing 
of the gene. Aberrant methylation of the BRCA1 
promoter is identified in up to 14% of sporadic breast 
cancers (Catteau et al. 1999, Esteller et al. 2000, Rice et al. 
2000) and 31% of ovarian cancers (Catteau et al. 1999, 
Baldwin et  al. 2000, Esteller et  al. 2000, Geisler et  al. 
2002). BRCA1 methylation is associated with decreased 
BRCA1 transcript in breast cancer (Esteller et  al. 2000, 
Rice et  al. 2000) and with decreased/absent protein 
expression by immunohistochemical analysis in breast 
(Matros et al. 2005) and ovarian cancers (Baldwin et al. 

2000). Evidence to support the etiological importance of 
BRCA1 methylation is derived from the similarities in 
morphological, immunohistochemical, and molecular 
phenotypes between these tumors and familial BRCA1 
cancers. For example, BRCA1-methylated breast cancers 
have a higher histological grade, are more likely to be ER 
negative, lack ERBB2 amplification, and frequently show 
amplification of c-MYC, similar to familial BRCA1 cancers 
(Catteau et  al. 1999, Esteller et  al. 2000, Grushko et al. 
2004). Data from expression microarrays also suggest 
that the expression profile of sporadic tumors with 
BRCA1 methylation is similar to those with germ line 
BRCA1 mutation (Sorlie et al. 2003). Thus, patients with 
hypermethylated BRCA1 may benefit from PARPi therapy, 
although it is possible that they may not demonstrate 
the same degree of drug sensitivity as patients with germ 
line BRCA mutations (Cancer Genome Atlas Research 
Network 2011). This was alluded to in a study by Ruscito 
and colleagues, who showed that even though 14.8% of 
HGOSC had hypermethylation in a selected region of 
the BRCA1 promoter, this had no effect on the PFS or OS 
rate in patients treated with conventional chemotherapy 
(Ruscito et al. 2014). Methylation status of the BRCA 
genes may be investigated using a variety of methods 
including direct bisulfite sequencing, methylation-
specific PCR, methylation microarrays, pyrosequencing, 
and NGS, the choice of which would be dependent on 
factors such as the type of biological samples and tumor 
content present (Ibragimova & Cairns 2011).

In contrast to BRCA1, the BRCA2 promoter is 
rarely hypermethylated; however, transcriptional 
down-regulation of BRCA2 is frequently associated 
with amplification of the EMSY gene, which has been 
reported in up to 13% of sporadic breast cancers  
and 17% of high-grade sporadic ovarian cancers 
(Hughes-Davies et al. 2003).

BRCA immunohistochemistry

Absent immunohistochemical (IHC) expression of BRCA1 
can be attributed to a variety of mechanisms including germ 
line or somatic mutation and promoter hypermethylation 
and therefore may have utility as a surrogate marker 
for BRCA1 loss. A study evaluating IHC expression and 
mutational status of BRCA1 in HGOSC reported that 
IHC was an accurate and highly reproducible method for 
detecting germ line, somatic, or epigenetic mechanisms 
of BRCA1 loss. These findings were consistent with 
results from other studies examining the use of BRCA1 
IHC (Byrne et al. 2000, Vaz et al. 2007, Garg et al. 2013).  
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Lesnock et  al. also reported that decreased BRCA1 
expression was associated with a 36-month survival 
improvement in patients with ovarian carcinoma treated 
with cisplatin-based intraperitoneal chemotherapy and 
thus may be a useful biomarker for selecting patients for 
this form of therapy (Lesnock et al. 2013).

The other advantages of using IHC is that it is a 
relatively simple and cost-efficient technique that 
is performed in most pathology laboratories and can 
be easily repeated, thus allowing its use as a dynamic 
biomarker throughout the disease course as methylation 
status changes or secondary gain-of-function mutations 
accumulate. These findings support the incorporation 
of BRCA1 IHC testing for patient selection in clinical 
trials, particularly in the setting of recurrent disease 
(Meisel et al. 2014).

Detecting BRCAness

Relying solely on BRCA mutations to drive PARP-directed 
therapeutics will undoubtedly exclude a significant 
proportion of patients with defects in other HR genes who 
may also benefit from PARPi therapy. The major challenge 
lies in the development and validation of robust assays to 
identify or even quantify HR deficiencies in tumor samples 
so as to improve patient selection for PARPi therapy (Do 
& Chen 2013).

The development of new molecular profiling 
techniques has allowed for more rapid and in-depth 
characterization of the frequency of HR gene mutations 
in different cancer types (Cancer Genome Atlas 
Research Network 2011, Patch et  al. 2015). Data from 
the TCGA study that profiled 489 HGOSC using a 
combination of whole exome sequencing, mRNA, 
microRNA, methylome, and DNA copy number profiling 
identified alterations in at least one HR-modulating 
gene in about 50% of tumors. These included germ 
line BRCA1 (9%) or BRCA2 (8%) mutations, somatic 
mutations of BRCA1/2 (3%), amplification of EMSY 
(13%), PTEN mutations (7%), hypermethylation of 
the RAD51 homolog RAD51C (3%), mutations in 
ATM or ATR (2%), and FANC mutations (5%) (Cancer 
Genome Atlas Research Network 2011). In another 
study, whole-genome profiling of 114 tumor samples 
from 92 patients with HGOSC was performed and 
again, either germ line or somatic defects in BRCAness-
associated genes, were identified in approximately 
half of the samples analyzed, including mutations 
involving BRCA1 (promoter hypermethylation was also 
observed), BRCA2, PTEN, RAD51B, BRIP1 (also known 

as FANCJ), CHEK2, FANCI, and RAD51C (Patch et  al. 
2015). Using targeted capture and massively parallel 
genomic sequencing, Pennington et  al. assessed 390 
ovarian carcinomas for germ line and somatic loss-of-
function mutations in 30 genes, including BRCA1/2, 
and 11 other genes in the HR pathway (Pennington 
et al. 2014). Almost 1/3 of these tumors were found to 
have deleterious germ line (24%) and/or somatic (9%) 
mutations in at least one of the 13 HR genes (BRCA1, 
BRCA2, ATM, BARD1, BRIP1, CHEK1, CHEK2, FAM175A, 
MRE11A, NBN, PALB2, RAD51C, and RAD51), and the 
presence of these mutations was predictive of primary 
platinum sensitivity and improved OS (Pennington 
et al. 2014).

Other malignancies such as breast, prostate, 
and pancreatic cancers can also exhibit defects in 
HR-modulating genes. Data from the TCGA analysis 
of 507 breast cancer patients revealed the presence of 
germ line mutations in BRCA1, BRCA2, ATM, BRIP1, 
CHEK2, NBS1, PTEN, or RAD51C in 47 patients and 
20% of TNBC had either germ line or somatic BRCA1/2 
mutations (Cancer Genome Atlas Research Network 
2012). Using panel sequencing, Beltran et al. reported that 
12% and 8% castration-resistant prostate cancer (CRPC) 
harbor BRCA2 and ATM mutations (Beltran et al. 2013), 
respectively, whereas whole exome and transcriptome 
profiling of 150 metastatic CRPC revealed the presence 
of at least one mutation in a BRCAness-associated gene 
in more than 19% of tumors (Robinson et al. 2015). 
Data from a phase 2 clinical trial assessing the efficacy 
of olaparib in the treatment of metastatic CRPC showed 
that 88% of patients with homozygous deletions and/or  
deleterious mutations in a HR repair gene responded to 
olaparib (Mateo et al. 2015). Similarly, whole-genome 
and whole-exome sequencing of 100 pancreatic ductal 
adenocarcinoma samples demonstrated that 24% 
possessed either a germ line or a somatic mutation in 
BRCA1, BRCA2, or PALB2, whereas 8% had ATM mutations 
(Biankin et al. 2012).

Results from these studies support the use of 
massively parallel sequencing analysis in prospectively 
designed trials for the selection of patients likely to 
respond to PARP inhibition. The heterogeneous genetic 
profile of these tumors make them ideal candidates 
for panel testing, where comprehensive analysis of 
multiple genes are performed in parallel. This approach 
shows clear advantages over sequential testing of 
multiple genes, which is costly, requires a larger input 
of DNA, and cannot be realistically performed in a 
clinically relevant time frame. However, one of the 

http://dx.doi.org/10.1530/ERC-16-0116


R277Review D Lim and J Ngeow Evaluating BRCAness for  
PARP inhibitor use

En
d

o
cr

in
e-

R
el

at
ed

 C
an

ce
r

DOI: 10.1530/ERC-16-0116
http://erc.endocrinology-journals.org� © 2016 Society for Endocrinology

Printed in Great Britain
Published by Bioscientifica Ltd.

23:6

major difficulties encountered when using panel testing 
is the reporting of genetic mutations for which no clear 
evidence of a causal link exist (Pennington et al. 2014). 
Determining which of the mutations identified are 
actually pathogenic and how other variants should be 
reported will be issues that have to be considered when 
adopting these sequencing techniques.

It can be further argued that targeted genotyping 
assays, even when using custom panels, may prove to 
be inadequate, considering the extensive repertoire 
of genes involved in DNA repair response and the 
heterogeneous nature of their genetic/epigenetic 
inactivation. Therefore, array-based strategies, such as 
gene expression arrays, have been used to identify gene 
expression patterns characteristic of defects in the HR 
pathway, whereas comparative genomic hybridization 
(CGH) arrays have been utilized to identify patterns 
characteristic of the genomic instability inherent 
in BRCAness, as well as to identify specific genomic 
changes selected for in these tumors.

Gene expression signatures

Using previously published gene expression data from 
familial and sporadic ovarian cancers, a group of 
investigators identified a BRCA-like 60-gene signature 
profile, which was initially validated in ten tumor 
biopsies from six patients with germ line BRCA1/2 
mutations and then in 70 patients with sporadic 
ovarian cancers, where it was shown to correlate 
with responsiveness to platinum agents and PARPi. 
In addition, this ‘BRCAness’ profile correlated with 
the ability to form RAD51 foci in BRCA2-mutated 
pancreatic cancer cell line Capan-1 and was also able to 
predict for PARPi sensitivity, suggesting that the profile 
may be detecting a pattern of gene expression that 
more globally reflects the status of HR, independent of 
cell lineage (Konstantinopoulos et al. 2010).

The use of similar gene expression profiling 
approaches has also allowed for the classification of 
breast cancers. Familial BRCA1 mutant tumors were 
identified to segregate strongly with basal-type sporadic 
cancers (Sorlie et  al. 2003), indicating that basal-type 
sporadic tumors and familial BRCA1 mutant tumors 
could have similar etiologies. Larsen and colleagues 
analyzed 55 familial BRCA1/2 mutant and 128 sporadic 
breast tumors to derive a transcriptional signature 
that was able to predict BRCA mutant cancers in 
an independent data set (Larsen et al. 2013). Other 
investigators have also used transcriptional profiles 

derived from cell lines with either known HR gene 
defects (Daemen et al. 2012, Peng et al. 2014) or PARPi 
sensitivity to generate BRCAness signatures.

Mutational signatures

Impaired DNA repair results in genomic alterations in 
tumors and contributes to genomic scars that may allow 
tumors to be molecularly stratified. Evidence suggests that 
HR-deficient tumors have a unique mutation signature 
that results from the use of error-prone DSB repair 
mechanisms (Tutt et al. 2001, Xia et al. 2001). Stratton and 
colleagues performed a meta-analysis using sequence data 
from more than 7000 cancers and identified 20 distinct, 
conserved mutation signatures across a wide variety of 
tumor types. A signature, characterized by the presence 
of relatively small deletions (up to 50 bp), was strongly 
associated with BRCA1/2 mutations in breast, ovarian, 
and pancreatic cancers. Interestingly, a subset of tumors 
lacking BRCA1/2 mutations also exhibited this signature, 
suggesting the presence of other DNA repair defects in 
these neoplasms (Alexandrov et al. 2013). Indeed, many 
of these mutation signatures associated with BRCA 
mutant tumors, which are often defined by the frequency 
of specific types of structural rearrangement, can also be 
found in sporadic tumors. Importantly, these signatures 
may correlate with response to PARPi therapy (Watkins 
et al. 2014) and therefore could be used to identify tumors 
with a BRCAness phenotype. Various high-throughput 
genomic profiling techniques including array CGH and 
single-nucleotide polymorphism (SNP) profiling have 
been used to identify these structural rearrangements.

Array CGH is a technique that assesses DNA copy 
number changes, such as amplification and deletion, by 
hybridizing labeled tumor DNA with differently labeled 
normal control DNA to metaphase chromosomes. 
Genomic profiling of breast cancers by aCGH identified 
a BRCA profile that was 91% accurate in distinguishing 
BRCA-mutated cancers from sporadic, non-hereditary 
cancers (Joosse et al. 2009). In this study, two of 48 
hereditary but non-BRCA-mutated cancers were found 
to be BRCA-like based on 191 discriminatory features. 
One of these cases had methylation of BRCA1. These 
investigators then developed a BRCA2 classifier using the 
same technique, and this showed 89% sensitivity and 
84% specificity when applied to the validation cohort. 
A similar approach was used to stratify patients with 
breast cancer into four distinct subgroups: simple-profile, 
BRCA1-related, BRCA2-related, and genomic instability-
high group 3 (GII-high-III) (Stefansson et al. 2009).  
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The BRCA1/2-related cancers showed several large regions 
of genomic gains or deletions, which was also noted in 
sporadic cancers within the GII-high-III group, suggesting 
that these sporadic breast cancers may also harbor 
defects in HR that could render them sensitive to PARPi 
therapy. aCGH has also been used to reveal patterns of 
copy number changes in BRCA1/2 mutant breast tumors 
that was predictive of a favorable response to high-
dose carboplatin-based chemotherapy in sporadically 
occurring TNBC or ER+/HER2- tumors (Lips et al. 2011b, 
Vollebergh et al. 2011, 2014).

Lips et  al. further utilized their aCGH-based  
classifier of BRCA1-mutated breast cancers to establish 
a MLPA assay, capable of identifying patients with both 
BRCA1-mutated tumors and sporadic cancers with a 
BRCA1-like genomic profile, which had significantly 
better recurrence-free survival when treated with 
alkylating chemotherapy (Lips et al. 2011a). MLPA 
is a method based on amplification and relative 
quantification of the ligated adjacent probes, which 
can target up to 50 different genomic regions that show 
diagnostically or clinically significant copy number 
changes in patient samples. It is a rapid, cost-efficient 
method that requires only a small amount of input DNA 
that can easily be obtained from FFPE specimens and 
therefore may be more suitable than aCGH for routine 
clinical application. As the MLPA assay can identify 
BRCA1-deficient breast cancer patients, this method 
could be applied both for clinical genetic testing and as 
a predictor of sensitivity to agents such as PARPi. In the 
clinical genetic setting, the classifier could be used in 
addition to conventional BRCA1 mutation testing, as a 
tool to classify BRCA1 variants of unknown significance 
or to identify potential BRCA1 mutations other than 
the mutations that are currently screened for (Lips et al. 
2011a). However, compared with aCGH, the assay only 
interrogates a limited number of genomic loci, thus 
potentially limiting its use as a discovery platform.

SNP analysis has been used to develop allelic 
imbalance assays that are associated with a BRCAness 
profile (Abkevich et al. 2012, Birkbak et al. 2012, Wang 
et al. 2012, Timms et al. 2014, Marquard et al. 2015). 
Tutt et  al. profiled 126 TNBC using the genome-wide 
Affymetrix SNP 6.0 array and demonstrated that allelic 
imbalanced copy number aberrations (AiCNA) were 
more prevalent in tumors that responded to platinum 
agents (Watkins et al. 2015). Timms and colleagues from 
Myriad Genetics Inc. used SNP profiling to develop a HR 
deficiency (HRD) assay, which combines three different 
DNA-based metrics of genomic instability: loss of 

heterozygosity, telomeric allelic imbalance, and large-scale 
state transitions, from which a HRD score could then be 
calculated. The HRD score was reported to be predictive of 
response to platinum-based chemotherapy and/or PARPi 
in patients with TNBC or BRCA1/2 mutation-associated 
breast cancer and high-grade ovarian carcinomas, and 
also identified responders lacking a deleterious BRCA1/2 
mutation (Timms et al. 2014, Brown 2015, Wilcoxen KM 
2015, Telli et al. 2016). The assay can be performed using 
DNA extracted from FFPE tumor tissue and thus can be 
translated into a clinical setting.

The utility of these mutation signatures is also being 
evaluated in clinical trials. ARIEL2 (NCT# 01891344) is 
a phase 2 study evaluating the use of rucaparib for the 
treatment of women with relapsed, high-grade serous 
or endometrioid ovarian, fallopian tube, or primary 
peritoneal cancer. One of the aims of this study is to define 
a molecular signature of HR defect in these tumors that 
correlates with response to rucaparib, by quantifying the 
extent of loss of heterozygosity (LOH) across the tumor 
genome (McNeish 2015).

In addition to assessing for structural rearrangement 
signatures, the mutational burden (total number of 
exome mutations) of a tumor may also be predictive of 
a BRCAness phenotype. Two studies of ovarian cancers 
showed that tumors with high mutational burdens 
were more responsive to platinum-based chemotherapy, 
suggesting that this could have some utility as a BRCAness 
biomarker (Birkbak et al. 2013, Lord & Ashworth 2016).

The major drawbacks of most of these techniques 
used to derive mutational signatures, which will limit 
their role in routine clinical application, includes (1) the 
requirement for fresh/frozen tumor tissue for analysis, 
which may not always be available, (2) cost (hardware and 
manpower), and (3) a need for substantial bioinformatic 
support to analysis and interpret the data, which may not 
be available in most diagnostic laboratories.

Functional biomarkers

An alternative approach to identifying BRCAness would 
be to develop functional assays that can detect HR 
defects regardless of the type of genetic aberrations that 
are present.

One of the specific cellular hallmarks of HR is the 
localization of RAD51 to defined foci in the nucleus 
after DNA damage and this can be readily identified 
by immunofluorescent microscopy. Cells deficient in 
BRCA1/2 or other HR factors do not form RAD51 nuclear 
foci efficiently following DNA damage, suggesting 
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that this could be a functional biomarker of HR 
dysfunction (Michels et al. 2014, Oplustilova et al. 2012). 
Immunofluorescence-based detection of RAD51 foci, 
coupled with quantification of additional DNA repair-
related proteins, has been successfully applied to classify 
tumors as either HR-competent (RAD51 foci-positive) 
or HR-defective (RAD51 foci-negative), with a strong 
predictive value for chemotherapy response (Willers et al. 
2009, Graeser et al. 2010, Mukhopadhyay et al. 2010). 
Mukhopadhyay et al. investigated RAD51 foci formation 
in 25 primary ovarian cancer cultures (Mukhopadhyay 
et  al. 2010). Failure to form foci correlated with ex vivo 
sensitivity to rucaparib with a negative predictive value of 
100% and positive predictive value of 93%. The authors 
also reported a 50–60% incidence of HR deficiency in 
sporadic ovarian cancers, which further reinforces the 
need for biomarkers of HR dysfunction instead of relying 
only on BRCA mutation status. Studies of breast cancers 
and AML also demonstrated that DNA damage-induced 
RAD51 foci can be detected in different tumor types. 
This approach has been applied to FFPE samples of breast 
cancer biopsied after neoadjuvant anthracycline therapy, 
where it has been shown that a low RAD51 score correlated 
with high histological grade, high proliferative index, 
and a TNBC phenotype and was predictive of complete 
pathological response to chemotherapy (Graeser et  al. 
2010). There are, however, limitations in the use of RAD51 
foci as a biomarker for HR proficiency. First, RAD51 foci 
cannot be detected at baseline and must be induced by 
DNA damage such as that caused by ionizing radiation 
or PARPi. Second, the expression of RAD51 is restricted to 
the S and G2 phases of proliferating cells and cannot be 
detected in tumor cells that are dormant or arrested in the 
G1 phase (Graeser et al. 2010).

Another key protein involved in DNA repair is histone 
H2AX, which also assembles as foci at DNA DSBs in HR 
competent cells, where it becomes phosphorylated to form 
gH2AX and creates a focus for the accumulation of DNA 
repair and chromatin remodeling proteins. Detection of 
this phosphorylation event by immunofluorescence 
using an antibody to gH2AX has been explored as a 
marker to assess the extent of DNA damage in patients 
(Redon et al. 2010). The use of a combination of  
gH2AX/RAD51 immunofluorescence was investigated 
in primary ovarian cancer cell cultures (Mukhopadhyay 
et  al. 2010) and primary AML cultures (Gaymes et al. 
2009), where it has been demonstrated that raised 
gH2AX and decreased RAD51 foci expression predict for 
PARPi sensitivity. These techniques have been applied to 
both fresh and FFPE tissues and are also currently being 

validated in circulating tumor cells in the peripheral 
blood of patients as a marker to gauge response to PARPi 
therapy (Yap et al. 2011).

Preclinical studies of BRCA2-mutated cancer cell 
lines show that PARP hyperactivation is associated with 
sensitivity to PARPi (Gottipati et al. 2010). A surrogate for 
PARP activity is the detection of PAR polymers (Turner & 
Ashworth 2011). High PAR levels, as assessed by western 
blotting or immunohistochemistry, have been shown to 
predict sensitivity of human cancer cells to PARPi in vitro 
and in vivo and may be used to predict sensitivity to PARPi 
(Ji et al. 2011, Michels et al. 2013).

Other biomarkers

Other non-HR-related proteins whose function can 
impact HR may also contribute to ‘BRCAness’. The 
mitotic serine/threonine kinase Aurora A is frequently 
amplified in cancer. In preclinical models, overexpression 
of Aurora A impairs RAD51 recruitment, thus disabling 
DSB repair and sensitizing cells to PARP inhibition 
(Michels et al. 2014).

Aberrations in the PI3 kinase/AKT/mTOR pathways, 
such as PTEN loss or activating PI3KCA mutations, may 
also correlate with PARPi sensitivity. PI3K inhibition 
has been reported to decrease the expression of BRCA1 
and BRCA2, thereby disabling HR-mediated repair and 
sensitizing BRCA wild-type TNBC cells and xenografts to 
PARP inhibition (Ibrahim et al. 2012). PTEN is a tumor 
suppressor gene that inactivates the PI3K/AKT pathway. 
Loss of PTEN function through mutations, deletions, 
or promoter hypermethylation occurs in several cancer 
types. Loss of PTEN has been postulated to result in HR 
dysfunction (Mendes-Pereira et al. 2009). Shen et  al. 
reported that PTEN depletion impairs HR-driven repair 
by decreasing the expression of RAD51 (Shen et al. 2007). 
Increased PARPi sensitivity was demonstrated in cell 
line studies and xenograft models with PTEN mutation 
(Mendes-Pereira et al. 2009). There is also clinical evidence 
that PARPi may have a therapeutic utility in PTEN-deficient 
endometrial cancer (Dedes et al. 2010, Forster et al. 2011). 
However, results from a study on prostate cancers failed 
to show any significant correlation between PTEN status 
and sensitivity to PARPi or with the expression of genes 
associated with HR (Fraser et al. 2012).

ETS gene fusions are present in several cancer types, 
including Ewing’s sarcoma and prostate cancer. ETS is 
a transcription factor with a high number of BRCA1/2 
binding motifs and may repress the BRCA promoter 
upon its activation by the mitogen-activated protein 
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kinase pathway (Sharrocks 2001, Baker et al. 2003).  
Gene fusion between the ERG (a member of the ETS 
family) proto-oncogene and TMPRSS2 promoter is 
observed in approximately 50% of prostate cancers and 
results in aberrant androgen-dependent ERG expression  
(Tan et  al. 2014) and promotes carcinogenesis (Tomlins 
et al. 2005). Preclinical studies have shown that PARP1 
directly interacts with ERG to inhibit ETS gene fusion 
protein activity. In turn, inhibition of PARP1 reduces  
ETS-positive, but not ETS-negative, prostate cancer 
xenograft growth (Brenner et al. 2011). PARPi have also 
demonstrated anti-tumor activity in the treatment of 
Ewing’s sarcoma in xenograft and cell lines studies 
(Brenner et al. 2012). More studies will be needed to 
validate the clinical predictive value of ETS gene fusions.

Future directions

The advent of new molecular profiling techniques has 
led to a greater understanding of cancer biology. It is 
increasingly evident that aside from the traditional 
clinicopathological classification of tumors, their 
unique molecular characteristics do allow them to be 
further stratified according to their genetic profile. This 
has been illustrated by the various studies that have 
been performed to identify tumors, other than those 
with BRCA1/2 mutations, which may response to PARP 
inhibition. However, many questions remain to be 
addressed. First, it is still uncertain what constitutes the 
best predictor of response to this group of drugs. Most 
clinical trials are recruiting patients based on pathological 
subtypes, e.g., TNBC and HGOSC, or have included 
BRCA mutation analysis (germ line and/or somatic) as 
part of the selection criteria. Few have incorporated 
other biomarker testing such as other HR gene defects, 
as part of their enrolment requirements. However, there 
are clinical trials that have included biomarker analysis 
as part of their outcome measures and it is hopeful that 
results from these studies may help shed more light as 
to which additional biomarkers should be incorporated 
for future trials. Thus at present, although it appears that 
BRCA remains the top candidate biomarker that should be 
tested to assess for PARPi response, it is highly plausible 
that this list will be expanded in future. Second, there is 
also no clear evidence as to what drives PARPi response in 
tumors without a mutation in a canonical HR repair gene. 
As PARP proteins have mechanisms of action beyond 
DNA repair, the benefits of PARPi are likely not going to 
be just confined to BRCA or even BRCAness-associated 
tumors. Knowledge of other mechanistic properties of 

PARPi will also influence the choice of combination 
therapy in different cancer types. Lastly, a more in-depth 
understanding of the mechanisms of drug resistance is 
needed, as it is uncertain whether these mechanisms may 
differ depending on which BRCAness gene is involved or 
whether cross-resistance to other DNA damaging agents 
can occur. This again will affect the choice of combination 
therapy and the sequence in which these drugs should be 
administered.

PARPi have been yielding promising results in 
several clinical trials. They have been employed both as 
monotherapy and in combination therapy with radiation, 
chemotherapeutic agents, as well as other molecularly 
targeted agents, for several different cancer types, and 
have demonstrated a relatively good safety profile. The 
identification and validation of predictive biomarkers 
of response to PARPi is an important area of ongoing 
research, which will lead to wider clinical applications 
for these drugs. However, the incorporation of biomarker 
testing into routine clinical diagnostics also presents 
significant challenges. Undoubtedly, there will be more 
practical requirements for assays used in the clinical setting 
than those used for research purposes only. These tests 
should be readily reproducible, feasible using standard 
equipment, cost-effective, and can be completed in an 
appropriate time frame for them to be clinically relevant. 
It will also be an advantage if the test can be performed 
using FFPE tissue, as this is the material routinely 
available in pathology laboratories. Some centers have 
incorporated BRCA testing (germ line and/or somatic) as 
part of their clinical workflow, using methods discussed 
previously. However, as more biomarkers are added to the 
list, single gene testing will undoubtedly prove to be less 
attractive compared with multiplex assays such as panel 
testing that allows for multiple genes to be interrogated 
simultaneously in a clinically relevant time frame. We 
envision that future testing strategies will adopt the latter 
approach to allow for more efficient and cost-effective 
testing. Importantly, this approach will also allow for the 
incorporation of predictors of drug resistance, which will 
help refine the selection of patients likely to respond to 
these therapeutic agents.
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