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Abstract

The androgen receptor (AR) signaling axis drives all stages of prostate cancer, including
the lethal, drug-resistant form of the disease termed castration-resistant prostate cancer
(CRPQ), which arises after failure of androgen deprivation therapy (ADT). Persistent AR
activity in spite of ADT and the second-generation AR-targeting agents enzalutamide
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and abiraterone is achieved in many cases by direct alterations to the AR signaling axis. resistance
Herein, we provide a detailed description of how such alterations contribute to the > hormone structure/
function

development and progression of CRPC. Aspects of this broad and ever-evolving field

specifically addressed in this review include: the etiology and significance of increased
AR expression; the frequency and role of gain-of-function mutations in the AR gene;

the function of constitutively active, truncated forms of the AR termed AR variants and
the clinical relevance of alterations to the activity and expression of AR coregulators.
Additionally, we examine the novel therapeutic strategies to inhibit these classes of
therapy resistance mechanisms, with an emphasis on emerging agents that actin a
manner distinct from the current ligand-centric approaches. Throughout, we discuss how
the central role of AR in prostate cancer and the constant evolution of the AR signaling

axis during disease progression represent archetypes of two key concepts in oncology,
oncogene addiction and therapy-mediated selection pressure.

Endocrine-Related Cancer
(2016) 23, T179-T197

Introduction

Prostate cancer (PCa) is the second most commonly
diagnosed cancer and a leading cause of cancer-related
death in men worldwide (Ferlay et al. 2015). Indeed, in
the USA alone, 180,890 new PCa cases are expected to be
diagnosed in 2016 (Siegel et al. 2016). Given its critical
role in the normal prostate, it is perhaps not surprising
that the AR signaling axis is critical for PCa genesis and
all subsequent phases of disease progression. This biology
underpins the use of androgen deprivation therapy (ADT),
a term used to describe hormonal manipulations aimed at

reducing androgen levels and/or blocking AR activity, as
the mainstay treatment for locally advanced or metastatic
disease. Although ADT is initially successful in almost all
men, development of resistance is inevitable, normally
occurring within a period of 2-3 years. The resultant
form of the disease, termed as castration-resistant prostate
cancer (CRPC), is incurable and lethal (Scher et al. 2004,
Thoreson et al. 2014).

Given the efficacy of ADT in suppressing circulating
testosterone levels, it was believed that CRPC was
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an AR-independent pathology, leading to its early
designations as ‘hormone-refractory’ or ‘androgen-
independent’ PCa. However, a substantial body of
work over the past ~20 years has demonstrated that the
majority of CRPC cases remain dependent on the AR
signaling axis. One of the first clues to this concept was
the observation of AR gene amplification in over 30%
CRPC of patients after hormonal therapy (Visakorpi
et al. 1995). Another early indicator of the relevance
of AR in CRPC came from the detection of AR gain-of-
function point mutations that were associated with
rapid failure of endocrine therapy (Tilley et al. 1996).
Subsequently, an elegant study from the Sawyers group
showed that reactivation of AR signaling is sufficient
and necessary to trigger the CRPC phenotype (Chen
et al. 2004). These revelations led to the development
of new and more efficacious AR-targeting agents, the
AR antagonist enzalutamide and the androgen synthesis
inhibitor abiraterone, which provided survival benefits
for men with CRPC and definitively proved an ongoing
dependence on AR signaling in this disease setting
(de Bono et al. 2011, Scher et al. 2012, Ryan et al. 2013,
Beer et al. 2014).

Although this review is focused on oncogenic
functions of AR in the prostate, the requirement for
AR signaling in normal physiology bears consideration,
especially given the widespread use of ADT. AR is almost
ubiquitously expressed in the tissues of both males
and females, enabling it to mediate a plethora of vital
regulatory functions (Lee & Chang 2003, De Gendt &
Verhoeven 2012). For example, AR is important for
the acquisition and maintenance of bone mass by
suppressing and stimulating the apoptosis of osteoblasts
and osteoclasts, respectively (Mohamad et al. 2016). In
the muscle, the AR signaling axis is critical for muscle
growth, development and regeneration (Velders &
Diel 2013). AR also influences brain biology and
function, and its role in promoting neuron health
and growth possibly underlies the link between ADT
and dementia (Nead et al. 2016). In females, among
other functions, AR is required for normal fertility (De
Gendt & Verhoeven 2012) and plays an important anti-
proliferative role in the breast (Hickey et al. 2012). The
critical reproductive and non-reproductive functions of
AR outlined previously are manifested by the adverse
side effects associated with ADT, which include sexual
dysfunction, decreased lean body mass and strength,
osteoporosis, increased cardiovascular disease and
cognitive decline (for a detailed review, see Ahmadi &
Daneshmand 2013).
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Mechanisms of persistent AR signaling
activity in CRPC

As the major driver of CRPC, there is a critical need
to better understand how AR signaling persists in a
castration environment. The advent of the omics era,
and resultant integrative genomic analyses of metastatic
samples, has further highlighted the extent and frequency
of AR pathway alterations in CRPC that may contribute to
inappropriate activation or reactivation of this pathway
(Grasso et al. 2012, Beltran et al. 2013, Azad et al. 2015,
Robinson et al. 2015, Lallous et al. 2016). Although these
alterations have been the subject of other recent excellent
articles (for example Penning 2014, Joshi et al. 2015,
Wyatt & Gleave 2015), this review will specifically focus
on ADT-resistance mechanisms driven by direct structural
changes to the AR and altered interplay between the
AR and its coregulators. Finally, we will summarize the
recent progress into the development of novel therapeutic
strategies to target these specific resistance mechanisms.

ADT-resistance mechanisms driven by direct structural
changes to the AR

AR overexpression Increased expression of AR is one
of the most frequent alterations observed in CRPC (Grasso
et al. 2012, Beltran et al. 2013, Robinson et al. 2015) and
has been consistently associated with the development
of resistance to anti-androgens (Chen et al. 2004, Kawata
et al. 2010). Elevated AR hypersensitizes cancer cells to
castrate levels of androgens (Visakorpi et al. 1995, Koivisto
et al. 1997, Kawata et al. 2010), mediates antagonist—
agonist switching (Chen et al. 2004) and can promote
resistance to AR-targeting agents (Carreira et al. 2014).

Increased AR expression in CRPC is often mediated
by AR gene amplification. Pre-treated CRPC tumors
exhibit AR amplification rates of 17-57%, depending
on the therapy (Grasso et al. 2012, Beltran et al.
2013, Robinson et al. 2015, Kumar et al. 2016). This
is in contrast to treatment-naive tumors, in which
copy number gain is rarely detected (Visakorpi et al.
1995, Koivisto et al. 1997, Carreira et al. 2014, Cancer
Genome Atlas Research 2015, Kumar et al. 2016). AR
gene amplification has also been detected in circulating
tumor cells (CTCs) and cell-free circulating tumor DNA
(ctDNA) from patients with CRPC (Antonarakis et al.
2014, Carreira et al. 2014, Azad et al. 2015).

Although AR amplification is frequent in CRPC and
an important driver of therapy resistance, AR levels can
be increased irrespective of gene copy number status
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through transcriptional upregulation. Importantly, a
direct mechanism underlying ADT-driven upregulation of
the AR gene has been elucidated: liganded AR negatively
regulates its own expression by binding to a site in the
second intron of the AR gene, and this repression is
relieved by AR-targeted therapy (Cai et al. 2011) (Fig. 1).
More recently, Spratt and coworkers demonstrated that
radiotherapy can also induce AR gene transcription, a
response correlated with increased cancer cell survival
in vitro and decreased time to disease progression in vivo
(Spratt et al. 2015).

AR gene mutations In CRPC, AR mutations have
been reported to occur at a frequency of 5-30% in pre-
treated tumors (Taplin et al. 1999, Wallen et al. 1999,
Grasso et al. 2012, Beltran et al. 2013, Robinson et al.
2015, Kumar et al. 2016), CTCs (Jiang et al. 2010) and
ctDNA (Azad et al. 2015, Lallous et al. 2016, Wyatt
et al. 2016). Although infrequent, AR mutations have
also been detected in primary PCa prior to ADT or
arising during treatment, and there is evidence that
therapy-mediated selection of such mutations can
underlie resistance in some patients (Tilley et al. 1996,
Taplin et al. 1999, Thompson et al. 2003, Steinkamp
et al. 2009, Carreira et al. 2014, Cancer Genome Atlas
Research 2015, Chen et al. 2015). Most AR mutations
cluster in domains responsible for ligand-binding (the
AR ligand-binding domain, referred to as AR-LBD) or
transactivation activity (the AR N-terminal domain,
referred to as AR-NTD).

Androgen-replete environment
= weak intron 2 enhancer activity
= low AR gene transcription

Low androgen environment (i.e. ADT)
= strong intron 2 enhancer activity
= high AR gene transcription
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Figure 1

Model for negative feedback loop mediated by
AR (AR autoregulation). (A) Recruitment of
ligand-bound AR by FoxA1 to an enhancer in
intron 2 of the AR gene results in lysine-specific
histone demethylase 1 (LSD1)-mediated
demethylation of mono- and di-methylated lysine
4 (K4me1 and K4me2, respectively) on histone H3
(LSD1 also demethylates K9 at this loci). Formation
of this repressive chromatin environment at the
intron 2 enhancer, which also involves the
transcription factors GATA2 and Oct1, directly
suppresses AR gene transcription via chromatin
looping back to the promoter. Chromosome
coordinates correspond to hg38 assembly. (B) In a
low androgen environment, such as occurs during
androgen deprivation therapy (ADT), intron 2
enhancer activity is no longer suppressed by
ligand-bound AR and LSD1, resulting in increased
AR gene transcription. D, DHT; Me, methyl; Me2,
dimethyl; Pol I, RNA polymerase II; TBP,
TATA-binding protein. This model is based
primarily on data from Cai et al. (2011).

Mutations detected recurrently (>1 sample) in PCa
are listed in Table 1, whereas a comprehensive list of PCa-
associated AR mutations and their proposed functions
is presented in Supplementary Table 1, see section on
supplementary data given at the end of this article. Most
mutations identified in CRPC cluster in the AR-LBD. These
alterations have been reported to facilitate AR signaling
in CRPC by conferring: (i) ligand promiscuity, thereby
allowing AR to be activated even in the presence of low/
absent levels of androgens and (ii) agonist properties to
AR antagonists (Supplementary Table 1). Recurrently
occurring LBD missense mutations in CRPC are L702H,
W742C, H875Y and T878A (Grasso et al. 2012, Robinson
et al. 2015, Lallous et al. 2016). With the exception of
W742C, these AR mutants are represented in commonly
used PCa cell lines (T878A in LNCaP, C42B and MDA-
PCa-2B; L702H in MDA-MB-2B and H875Y in 22Rv1 and
CWR-R1), which has facilitated our understanding of
their function. The T878A mutant, first identified in the
LNCaP cell line (Veldscholte et al. 1990), is the archetypal
promiscuous receptor, being activated by proges-
terone, estrogen and glucocorticoids (Veldscholte et al.
1990, Berrevoets et al. 1993, Suzuki et al. 1996, Culig
et al. 1999, Zhao et al. 2000, Steketee et al. 2002, Chen
et al. 2015, Lallous et al. 2016). H875Y and L702H also
broaden ligand specificity by enabling AR activation by
glucocorticoids (Suzuki et al. 1993, Taplin et al. 1995, Zhao
et al. 2000, Steketee et al. 2002). Importantly, mutations
conferring ligand promiscuity not only can facilitate
persistent AR signaling in the castrate environment but
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Table 1 Recurrent prostate cancer-associated AR missense mutations.
Mutations per sample
Treatment Stage of disease Np Ns T878A H875Y L702H AQ86 W742C Q58L M896V E213E Q868* T8785 T229C
CRPC Metastatic 150 150 7 4 7 2 1 1
63 176 6 1 1
62 65 5 9 3
51 70 1 3 2
50 3 2 1
48 48 1 1
33 33 6 1
24 6
22 22 3
10 10 1 1 1
8 8 5 4 1 1 2
8 8 1
7 7
Localized 8 8 1
Hormone-naive Metastatic 38 38 1
3 3 2 1 1
Localized 499 1
26 26
23
Non-specified  Metastatic 37 2 1 1
1 1
Localized 67 67 1 2

AR, androgen receptor; CRPC, castration-resistant prostate cancer; Np, number of patients enrolled; Ns, number of samples.

also can result in qualitative changes to the receptor.
For example, it has been shown that non-canonical
ligands activate specific subsets of genes with relevance
to prostate cell proliferation (Brooke et al. 2008, Zaman
et al. 2014). Moreover, proteomic and targeted analysis
of AR-associated factors revealed that H875Y, T878A
and T878S recruit distinct coactivators in response to
different ligands (Brooke et al. 2008, Zaman et al. 2014).
The T878A mutation also facilitates the interaction with
the coactivator steroid receptor coactivator (SRC) 1 and
weakens the interaction with the co-repressor NCOR1
(Berrevoets et al. 2004).

The other major phenotypic output of common
LBD mutations is antagonist-agonist switching
(Supplementary Table 1), which likely explains the
withdrawal syndrome observed after cessation of first-
generation antagonists seen in 15-30% of patients (Small
et al. 2004). T878A confers agonist properties to flutamide
and nilutamide, H875Y to nilutamide and W742C/L to
bicalutamide (Veldscholte et al. 1990, Suzuki et al. 1996,
Tan et al. 1997, Hara et al. 2003, Azad et al. 2015, O’Neill
et al. 2015, Lallous et al. 2016). Interestingly, O’Neill and
coworkers recently demonstrated that T878A inhibited
bicalutamide-activated W742L (O'Neill et al. 2015) in what
may represent the first evidence of antagonism arising

from the heterodimerization of distinct AR mutants.
Another mutation that can confer antagonist-agonist
switching is F877L, which was found to be activated by
enzalutamide in cell lines (Balbas et al. 2013, Joseph et al.
2013, Korpal et al. 2013). Although this alteration was
identified in circulating DNA from a small proportion of
CRPC patients who were progressing on enzalutamide or
ARN-509 (Joseph et al. 2013, Azad et al. 2015), F877L was
not detected in a recent study of 150 CRPC metastases,
48% of which were pre-treated with enzalutamide,
suggesting that it may not be a key resistance mechanism
(Robinson et al. 2015).

Mutations in the AR-NTD, which account for about
a third of all mutations described in AR (Steinkamp et al.
2009) (Supplementary Table 1), usually cause alterations
that facilitate AR transactivation activity, such as altered
recruitment of coactivators and other components of the
transcriptional machinery, increased N/C interaction,
increased response to Sa-dihydrotestosterone (DHT)
activation and enhanced protein stability and nuclear
retention (Tilley et al. 1996, Buchanan et al. 2004, Chen
et al. 2005, Callewaert et al. 2006, Steinkamp et al. 2009).

Altogether, there is overwhelming evidence that
AR mutation represents a key mechanism underlying
persistent AR signaling in CRPC. Therefore, monitoring
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C620Y V716M V731M R787* S889G Study

Robinson et al. (2015)
Kumar et al. (2016)

2 Lallous et al. (2016)
Beltran et al. (2016)
Grasso et al. (2012)
Taplin et al. (2003)
Taplin et al. (1999)
Gaddipati et al. (1994)
Suzuki et al. (1996)
Taplin et al. (1995)
Steinkamp et al. (2009)
Suzuki et al. (1993)

1 Culig et al. (1993)
Suzuki et al. (1993)
1 Marcelli et al. (2000)
1 Steinkamp et al. (2009)

Cancer Genome Atlas
Research Network (2015)

1 Newmark et al. (1992)
Elo et al. (1995)
Taylor et al. (2010)

1 Nazareth et al. (1999)
1 Sanchez et al. (2006)

the emergence of AR mutations in real time could guide
therapy selection, especially in light of the observations
that individual mutations do not appear to confer
resistance to all AR antagonists (Lallous et al. 2016). In
this respect, the emerging capacity to rapidly characterize
ctDNA represents an exciting prospect (Carreira
et al. 2014, Azad et al. 2015). Additionally, a better
understanding of the molecular function of mutant
ARs is required to achieve maximal patient benefit. The
field has traditionally been limited by a scarcity of CRPC
models for studying AR mutant function, but new models
derived from patient metastases and CTCs, such as
patient-derived xenografts and organoids, are emerging
(Gao et al. 2014, Lin et al. 2014, Alsop et al. 2016). As
these models encompass the diversity of disease and AR
alterations, they are likely to have a profound impact on
our knowledge of aberrant AR signaling.

AR splice variants The addiction of prostate cancer
cells to AR, manifested by extreme pressure to maintain
AR expression and activity, is also associated with the
emergence of truncated forms of the receptor. Many of
these AR variants (AR-Vs) lack all or part of the transcript
encoding the AR-LBD and can be divided into two main
classes: those that incorporate a cryptic exon or those

arising from exon skipping. Rapid, reversible induction
of AR-V expression can be achieved by alternative
splicing (Watson et al. 2010, Hu et al. 2012, Gillis et al.
2013, Liu et al. 2013, Yu et al. 2014b), whereas genomic
rearrangements within the AR gene can mediate a fully
androgen-independent phenotype through a mechanism
of switching AR expression from full-length AR to
ARv567es (Nyquist et al. 2013).

AR-V. mRNAs have been identified in prostate
cancer cell lines, xenografts, mouse models and, most
importantly, patient specimens (Dehm et al. 2008, Guo
et al. 2009, Hu et al. 2009, Sun et al. 2010, Watson et al.
2010, Hornberg et al. 2011, McGrath et al. 2013, Robinson
etal. 2015) (Table 2). The most recent genomic data, based
on the detection of unique exon junctions in RNAseq data,
estimates that at least 12 distinct AR-V mRNA species are
detectable in primary PCa (Cancer Genome Atlas Research
2015) and 23 in mCRPC (Robinson et al. 2015) (for a
comprehensive summary of the AR splicing landscape,
Supplementary Table 2). The best characterized AR-Vs are
AR-V7 and ARv567es, which are discussed in more detail
below. The structural properties of AR-Vs, namely, the lack
of an intact LBD, theoretically confer ligand-independent
activity. However, this concept has only been proven for a
subset of AR-Vs (Supplementary Table 2).
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Table 2 The landscape of AR variants in clinical prostate cancer.
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Distinguishing Transcriptional

Name Exon structure exon junction activity Detected in disease stage
Inclusion of AR-V1 1/2/3/CE1 3/CE1 Depends on cell Benign, hormone-naive and CRPC; primary and
non-canonical context metastases (higher in CRPC and metastases)
exon
AR-V3 1/2/CE4 2/CE4 Constitutive Increased levels castrated vs non-treated
xenografts; peritumoral, benign, primary
tumor and mCRPC
AR-V5 1/2/3/CE2 3/CE2 Unknown Primary tumor and mCRPC
AR-V6 1/2/3/CE2’ 3/CE2’ Unknown Primary tumor and mCRPC
AR-V7 1/2/3/CE3 3/CE3 Constitutive Benign, hormone-naive and CRPC; primary and
metastases (higher in CRPC and metastases)
AR-V8 1/2/3/13 3/13 Unknown Primary tumor and mCRPC
AR-V9 1/2/3/CE5 3/CE5 Depends on cell Benign, hormone-naive and CRPC; primary and
context metastases (higher in CRPC and metastases)
ARS8 1/12/3 12/3 Increases Benign, malignant
phosphorylation
of AR-FL
AR23 1/2/12/3/4/5/6/718 2/12, 12/3 Ligand-stimulated Peritumoral, primary tumor and mCRPC
Exon skipping ARv567es  1/2/3/4/8 4/8 Constitutive Benign, hormone-naive and CRPC (higher in
CRPC xenografts and bone metastases over
hormone-naive)
AR-V13 1/2/3/4/5/6/9 6/9 Inactive Primary tumor and mCRPC (higher in mCRPC)
AR-V14 1/2/3/4/5/6/7/9  7/9 Inactive CRPC
ARv5es Unknown 4/6 Unknown Primary tumor and mCRPC (higher in mCRPC)
ARv56es Unknown 477 Unknown mCRPC
ARv7es Unknown 6/8 Unknown Primary tumor and mCRPC (higher in mCRPC)
ARv4es Unknown 3/5 Unknown Primary tumor and mCRPC (higher in mCRPC)
ARvbes Unknown 5/7 Unknown Primary tumor and mCRPC
Exon 1-CE4 Unknown 1/CE4 Unknown mCRPC
ARv2es Unknown 1/3 Unknown Peritumoral, primary tumor and mCRPC
ARv3es Unknown 2/4 Unknown Peritumoral, primary tumor and mCRPC
ARv34es Unknown 2/5 Unknown Primary tumor and mCRPC
Promoter AR-45 1b/2/3/4/5/6/7/8  1b/2 Depends on cell ~ Peritumoral, benign, primary tumor and
usage context mCRPC

AR-V, androgen receptor variant; CE, cryptic exon; CRPC, castration-resistant prostate cancer; I, intron; mCRPC, metastatic CRPC.

Expression of AR-Vs in clinical samples has provided
evidence for clinically relevant functions. For example,
AR-V7 is elevated in castrate-resistant vs hormone-
responsive tumor tissues (Guo et al. 2009, Hu et al.
2009), in CRPC vs benign or localized PCa (McGrath
et al. 2013) and in CRPC bone metastases compared to
benign tissues, primary tumors or hormone-naive bone
metastases (Hornberg et al. 2011). Although therapy-
driven increases in AR-V7 expression could be due to
ADT-mediated alterations to AR splicing factors, RNA-
binding proteins or miRNAs (Liu et al. 2014b, Shi
et al. 2015, Stockley et al. 2015), it must be noted that
ligand depletion can result in increased expression
of the AR gene due to transcriptional autoregulation
(described above) (Cai et al. 2011). As total AR gene
expression is highly correlated with alternative splicing
(Liu et al. 2014b, Hickey et al. 2015), the association
between AR-V mRNA and therapy does not necessarily

equate to a biologically relevant function in terms of
disease progression.

Although the associations between AR-Vs (mRNA and
protein) with clinical parameters and drug resistance are
compelling, the relevance of these findings has been called
into question by the observation that AR-V expression at
the mRNA level may only be approximately 0.03-7% of
the full-length transcript in CRPC metastases (Hornberg
etal. 2011, Robinson et al. 2015). However, we believe that
this is a poor reason to discount the biological relevance
of AR-Vs. First, as full-length AR (AR-FL) expression is
increased by approximately an order of magnitude in
CRPC compared to hormone-sensitive disease (Hu et al.
2009), the aformentioned ratio is misleading in terms
of absolute expression. Second, one study reported that
AR-Vs and AR-FL proteins could exist at comparable levels
in CRPC bone metastases even though much lower levels
of AR-V mRNA were detected, suggesting that AR-Vs could
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be more stable than AR-FL (Hornberg et al. 2011). More
broadly, direct comparison between the ligand-dependent
AR-FL and ligand-independent truncated AR-Vs are
problematic as the latter may require much lower protein
copies to achieve robust activity. Finally, a recent study
provided evidence for the concept that the low levels of
AR-V expression evident after ADT allowed tumor cells to
retain basal AR activity and thereby survive until more
potent AR-activating mechanisms emerged (Yu et al.
2014b).

Controversy surrounding the biological relevance of
AR-Vs, at least in part arising from their low expression
in clinical samples, has been compounded by the lack of
AR-V-specific antibodies, which means that the existence
of endogenous protein products for most AR-V transcripts
has not been verified in any biological system. AR-V7 is
the exception: using an antibody specific to this variant,
two groups have demonstrated that it is associated with
therapy resistance and poor outcome (Efstathiou et al.
2015, Welti et al. 2016). Indeed, the recent analytical
and clinical validation of an AR-V7 IHC method (Welti
et al. 2016) demonstrated that it is associated with overall
survival in men with CRPC, whereas AR N-terminal
domain staining is not. The recent development
of a specific and sensitive antibody for ARv567es
(Prof. Stephen Plymate, personal communication) is also
a significant step forward in the field.

Although the role of AR-Vs as a key driver of CRPC
remains equivocal, recent findings have suggested that
AR-V7 could have value as a predictive biomarker in CRPC.
In a seminal study, Antonarakis and coworkers showed
that men with detectable expression of AR-V7 mRNA in
CTCs had reduced response rates to enzalutamide and
abiraterone (Antonarakis et al. 2014). More recent work
has revealed that AR-V7 transcript is also detectable in
whole blood (Liu et al. 2016) and predicts poor response
to abiraterone (Todenhofer et al. 2016). The predictive
value of AR-V7 is not limited to transcript expression as
a recently developed CTC-based immunofluorescence
assay demonstrated that nuclear expression of AR-V7
predicts worse survival after treatment with AR-targeted
therapies (Scher et al. 2016). Importantly, as the efficacy
of chemotherapy appears to be independent of AR-V7
expression in CTCs and tissues, AR-V7 can potentially
be used to guide patient therapy (Antonarakis et al.
2015, Onstenk et al. 2015, Scher et al. 2016), an idea
that is now being tested in multiple clinical trials
(e.g., NCT02429193, NCT02269982, NCT02853097 and
NCT02491411). Although the outcomes of these trials are
eagerly awaited, it must be noted that exceptions have

Androgen receptor 23:12 T185
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already been reported: a recent study found that AR-V7
status in CTCs cannot entirely predict non-response to
abiraterone or enzalutamide (Bernemann et al. 2016).
Given that effective alternative treatment options are
still somewhat limited, this latter study raises a note of
caution for clinicians.

A key question in the field has been whether AR-Vs
regulate a classical AR-driven transcriptional program or
whether they have distinct gene targets, with evidence for
both concepts being reported (Guo et al. 2009, Hu et al.
2009, 2012, Sun et al. 2010, Chan et al. 2012, 2015, Tsai
etal. 2012, Cao et al. 2014, Lu et al. 2015). Recently, work
from Dehm'’s group has provided a possible explanation
for these discrepant findings by identifying proliferative
vs anti-proliferative AR gene signatures mediated by
differences in DHT dose or AR expression, with the former
mitotic gene signature resembling that driven by AR-Vs
(Li et al. 2013). Multiple other lines of evidence support
the idea that AR-Vs are likely to largely recapitulate AR-FL
function. First, a recent study from our group found that
AR-FL and ARvS567es cistromes were highly concordant,
with both exhibiting a preference for canonical inverted
repeat androgen response elements (Chan et al. 2015).
Second, dimerization of AR-Vs is required for their
transcriptional activity and utilizes the same interaction
surface as AR-FL (Chan et al. 2015, Xu et al. 2015). Finally,
transcriptional repression of AR-Vs by binding of the
transcription factor FOXO1 to transcription activation
unit 5 (TAUS) in the NTD revealed that, like AR-FL, they
require this domain for transcriptional activity.

Although we favor the idea that AR-Vs generally
regulate a classical androgen transcriptome for the reasons
described previously, we note that most studies to date
have assessed AR-V activity in isolation. The finding that
AR-Vs can heterodimerize with AR-FL or with other AR-Vs
(Sun et al. 2010, Cao et al. 2014, Xu et al. 2015) raises
the possibility that the nature and relative expression of
different AR-Vs and AR-FL in single cells could influence
distinct transcriptional outputs.

AR coregulator alterations in CRPC

In the non-pathological state, the interplay of AR with its
coregulators within the nucleus is tightly controlled and
is essential for the regulation of genomic, ligand-activated
functions (Mestayer et al. 2003, Xu et al. 2009a). In the
malignant and castration-resistant states, deregulation
of this interplay is common and frequently manifested
by increased expression and activity of AR coactivators
with a concomitant inhibition or loss of AR corepressors
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(Supplementary Table 3). One class of coregulators that
plays a key role in facilitating aberrant AR signaling in
CRPC is the steroid receptor coactivators (SRC-1, SRC-2
and SRC-3). The expression of all 3 SRCs is frequently
elevated in primary disease and associated with disease
progression and poor outcome (Fujimoto et al. 2001,
Gregory et al. 2001, Linja et al. 2004, Agoulnik et al. 2006,
Taylor et al. 2010). Moreover, aberrant upregulation of
the SRCs is even more pronounced in CRPC (Taylor et al.
2010, Grasso et al. 2012, Cancer Genome Atlas Research
2015, Robinson et al. 2015, Beltran et al. 2016, Kumar
et al. 2016). Mechanistically, increased SRC expression
enhances AR signaling in low androgen settings and also
potentiates alternative ligand usage (Agoulnik & Weigel
2009, Foley & Mitsiades 2016). The clinical relevance of
these factors is perhaps best emphasized by the finding
that constitutive overexpression of SRC-2 in the mouse
prostate epithelium was sufficient for the development
of prostate adenocarcinoma in mice, whereas SRC-2
depletion prevented CRPC development in PTEN-deficient
mice (Qin et al. 2014).

Another type of AR regulatory molecule is the ‘pioneer’
factor, with the archetypal example being Forkhead
Box Al (FOXA1). FOXA1 is not a classic transcriptional
coactivator but rather serves to open sites of condensed
chromatin to facilitate — or ‘pioneer’ — AR binding,
resulting in enhanced transcriptional activity (Wang et al.
2009). Amplification and overexpression of FOXA1 have
been detected in primary tumors but is more common in
metastatic CRPC, highlighting its role in persistent AR
signaling in the castrate state (Jain et al. 2011, Grasso et al.
2012, Cancer Genome Atlas Research 2015, Robinson
et al. 2015, Kumar et al. 2016). Overexpression of FOXA1
has been associated with poor outcome and AR expression
(Jain et al. 2011, Sahu et al. 2011, Gerhardt et al. 2012,
Robinson et al. 2014). Mechanistically, high levels of
FOXA1l in tumor cells may enhance AR:chromatin
interactions when androgen levels are low and also enable
binding of AR to non-canonical sites, both of which
can drive a CRPC gene expression program (Wang et al.
2009, Robinson et al. 2014). Interestingly, the converse
also appears to be true: a number of studies have found
that loss of FOXA1l can enable androgen-independent
AR chromatin binding at non-canonical sites throughout
the genome, and this cistromic reprogramming has
been associated with enhanced AR signaling in CRPC
(Sahu et al. 2011, Wang et al. 2011, Jin et al. 2014). Thus,
maintaining stable FOXA1 expression and activity appears
to be an important requirement for the healthy prostate,
with deregulation in either direction being potentially
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oncogenic (see Yang & Yu 2015 for a recent review on
this topic). This phenomenon is supported by clinical
observations: although FOXA1 amplification is relatively
common in CRPC, loss-of-function FOXA1 mutations
have also been found at a high incidence (Barbieri et al.
2012, Grasso et al. 2012, Gao et al. 2014, Robinson et al.
2015, Kumar et al. 2016).

GATA2isanother AR pioneer factor with a multifaceted
role in the AR signaling axis: it promotes AR (and AR-V)
expression, is required for AR transcriptional activity and
enhances AR:chromatin associations (Bohm et al. 2009,
Seo et al. 2013, He et al. 2014). Given this triumvirate of
oncogenic functions, it is not surprising that GATA2 is
overexpressed in CRPC and associated with poor outcome
(Chiang et al. 2014, He et al. 2014). GATA2 also has an
intimate, bidirectional relationship with FOXA1, with
important implications for development and progression
of CRPC (Zhao et al. 2016). Although targeting FOXA1 is
complicated by its putative dual role in PCa, strategies to
suppress GATA2 may have higher feasibility as evidence
to date indicates that it plays a positive role in driving
CRPC growth.

Alterations to AR corepressors also play a key role in
CRPC. For example, loss of activity of the key nuclear
receptor corepressors NCOR1 and NCOR2, by either
mutation and/or deletion, isrelatively common in primary
PCa and enriched in CRPC (Grasso et al. 2012, Cancer
Genome Atlas Research 2015, Robinson et al. 2015, Kumar
et al. 2016). NCORs compete with key AR coactivators,
such as p300 and SCR-1, for binding to the ligand-activated
receptor, thereby inhibiting its transcriptional activity
(Yoon & Wong 2006). Thus, loss of these factors facilitates
AR signaling in malignant tissues. Another negative
regulator of AR activity, SPOP, was the most commonly
mutated factor in an early study of localized PCa (Barbieri
et al. 2012), and more recent genomics programs of both
primary disease and CRPC have validated this finding
(Grasso et al. 2012, Cancer Genome Atlas Research 2015,
Robinson et al. 2015, Kumar et al. 2016). SPOP is an E3
ligase that promotes the ubiquitination and degradation
of AR and SRC-3, reducing the latter’s capacity to enhance
AR transcriptional activity (Geng et al. 2013, 2014). All
SPOP mutants identified to date lack the capacity to
interact with SRC-3 (Geng et al. 2013) or AR itself (An
etal. 2014, Geng et al. 2014), resulting in the stabilization
of these substrates. Importantly, the SPOP-binding motif
resides in AR’s hinge domain; therefore, AR-Vs lacking
this region (i.e. AR-V2, AR-V5, AR-V7 and AR-V4, but not
ARv567es) can escape SPOP-mediated destruction (An
et al. 2014).
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New drugs and emerging strategies to target
persistent AR signaling driving CRPC

Persistent AR signaling as a driver of CRPC has inspired
the hunt for new AR-directed drugs; a subset of agents
in clinical development are illustrated in Fig. 2,
whereas Supplementary Table 4 comprises a more
comprehensive list.

Novel androgen receptor antagonists

Given the recent success of enzalutamide, the search
for and development of novel AR-LBD antagonists
remains a key priority. One such antagonist is ARN-509,
a new-generation anti-androgen with similar structure
and mechanism of action to enzalutamide but with
potentially increased potency, better pharmacological
characteristics and improved patient tolerability (Clegg
et al. 2012). Although the development of ARN-509 is
ongoing, it must be noted that an AR mutation, F877L,
that can confer resistance to this agent has already been
reported (Joseph et al. 2013, Korpal et al. 2013). Another
promising AR antagonist in clinical development is
ODM-201, which is reported to be more potent that
enzalutamide in inhibiting AR nuclear translocation
(Moilanen et al. 2015). Moreover, ODM-201 potentially
has the added benefit of activity against AR mutants
commonly found in CRPC, namely, T878A, W742L and
F877L mutant (Fizazi et al. 2014, Moilanen et al. 2015).
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Phase III clinical trials to evaluate the safety and efficacy of
ODM-1 in non-metastatic CRPC patients (NCT02200614)
and the efficacy of ODM-1 in combination with ADT and
docetaxel in patients with metastatic hormone-naive PCa
(NCT02799602) are ongoing.

Targeting androgen receptor expression

Although AR antagonists remain a key focus of research
and industry, the realization that ligand-independent
forms of the AR, such as mutants and variants, arise in
CRPC has elicited novel strategies aimed at suppressing
all forms of the AR. In this respect, agents that degrade
or inhibit the expression of AR represent a rational
approach. One interesting candidate is galeterone,
which in addition to promoting the degradation of AR
and AR-Vs (Yu et al. 2014a, Kwegyir-Afful et al. 2015)
also has activity as an LBD antagonist and an inhibitor
of cytochrome P450 17alpha-hydroxylase/17,20-lyase
(CYP17), an enzyme essential for the biosynthesis of
androgens (Njar & Brodie 2015, Bastos & Antonarakis
2016). Although this proposed ‘triple method of action’
is exciting, it must be noted that the degrader activity
of galeterone is somewhat controversial; it may simply
be a by-product of abrogating ligand binding (Yu et al.
2014a). Notwithstanding these concerns, the putative
anti-AR-V activity of galeterone led to the development
of a phase III clinical trial (ARMOR3-SV; NCT02438007)
in which men with AR-V7-positive disease, as assessed
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Figure 2

Novel strategies to target persistent androgen receptor signaling in CRPC. Recently approved agents are shown in red; agents in clinical trials are shown

in blue; novel agents still in pre-clinical development are shown in green. CoReg, coregulator; HSP, heat shock protein.
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by the AdnaGen assay (Antonarakis et al. 2014), were
randomized to galeterone or enzalutamide treatment
arms. Unfortunately, this trial was discontinued in July
2016 due to lack of an improvement in radiographic
progression-free survival for galeterone vs enzalutamide;
the fate of this drug is now unclear.

Ligand-bound AR undergoes cycles of ubiquitination
and deubiquitination when engaging in its chromatin-
associated transcriptional activities, and turnover of
polyubiquitinated AR by the ubiquitin-proteasome system
(UPS) is important for the stimulation and regulation of
AR-driven transcription (Voutsadakis & Papandreou 2012).
In addition to SPOP, several other E3 ligases including
Siah2 (Qi et al. 2013), RNF6 (Xu et al. 2009b), MDM2
(Lin et al. 2002) and CHIP (Sarkar et al. 2014) have been
shown to mediate AR ubiquitylation, and these factors
collectively enable another level of complexity in terms
of AR regulation. Elucidating mechanisms underlying
AR degradation has facilitated the rational design of
proteolysis-targeting chimeras (PROTACs), which link an
AR-binding element to a degron tag, such as an E3 ligase-
recruiting moiety (Tang et al. 2009) or a hydrophobic tag
(Gustafson et al. 2015), resulting in targeting of the AR to
the UPS for degradation. Several AR-targeting PROTACs
are being intensively pre-clinically characterized but are
yet to reach clinical trials.

Niclosamide was identified in a screen for drugs that
inhibit AR-V7 transcriptional activity and specifically
causes AR-V7, but not AR-FL, degradation via a
proteasome-dependent mechanism (Liu et al. 2014a,
2015). Importantly, this drug potentiates the effects
of enzalutamide in vifro and in vivo and resensitizes
enzalutamide-resistant prostate cancer cells (Liu et al.
2014a, 2015), findings that have elicited a phase I trial
to assess the utility of niclosamide in combination
with enzalutamide for treating AR-V7-positive CRPC
(NCT02532114).

Inhibition of AR gene transcription, as opposed
to degradation of AR protein, is another promising
therapeutic strategy for the suppression of all forms of
the AR that are active CRPC. The recent finding that
retinoic acid-related orphan receptor y (ROR-y) is a key
regulator of AR gene transcription led to the pre-clinical
assessment of ROR-y antagonists (Wang et al. 2016). These
agents effectively reduced the expression and activity
of AR-FL and AR-V7, thereby inhibiting tumor growth
and metastasis, highlighting the potential of targeting
upstream regulators of AR gene transcription (Wang et al.
2016). Another means to more specifically target AR gene

Androgen receptor 23:12 T188

signaling in CRPC

expression is the use of antisense oligonucleotides (ASOs).
EZN-4176, an ASO that targets exon 4, demonstrated an
impressive activity in pre-clinical studies (Zhang et al.
2011). Unfortunately, EZN-4176 failed phase I trials in
CRPC due to poor AR knockdown in the clinical setting
and minimal antitumor activity (Bianchini et al. 2013).
More recently, an exon 1-targeting ASO with improved
tissue half-life and activity against enzalutamide-resistant
and CRPC patient-derived xenografts was
developed (Yamamoto et al. 2015). One advantage of this
latter ASO is that targeting exon 1 will theoretically yield
activity against all C-terminally truncated forms of the AR
and LBD mutants.

models

Targeting DNA binding and N-terminal functions of AR

Structural knowledge of the AR-LBD, the known
‘druggability’ of ligand-binding pockets and the relative
ease of screening for LBD-inhibiting agents are all reasons
for the past focus AR antagonists. By contrast, the
development of strategies to block other key functional
domains of the AR such as the DBD and NTD is more
complicated. Nevertheless, recent progress has yielded
promising candidates. For example, two agents designed
to block the binding of AR to chromatin, VPC-14228 and
VPC-14449, are in early clinical development, with both
exhibiting potent anti-transcriptional activity against
AR-FL and ARv567es as well as anti-growth activity in
enzalutamide-resistant models (Dalal et al. 2014, Li et al.
2014). Despite the intrinsically disordered nature of
the AR-NTD, which has greatly hindered its structural
characterization, agents targeting this domain have also
been developed. EPI-001 interacts with and covalently
binds to the TAUS domain in the AF-1region of the AR-NTD
(De Mol et al. 2016), thereby inhibiting AR:coactivator
interactions (e.g. CBP and RAP74) and attenuating AR
and AR-V transcriptional activity (Andersen et al. 2010,
Myung et al. 2013). Importantly, EPI-001 enhanced the
therapeutic response to docetaxel in CRPC cells harboring
both AR-FL and AR-V7, a finding that has implications
for combinatorial therapy (Martin et al. 2015). Although
EPI-001 was reported to selectively inhibit AR over other
nuclear receptor family members (Andersen et al. 2010),
a recent study found that it inhibits the growth of
AR-negative cells, at least partly due to off-target effects
against proliferator-activated receptor-y activity (Brand
et al. 2015). EPI-001 is a mixture of EPI-002, EPI-003, EPI-
004 and EPI-005 stereoisomers, and more recent work has
focused on elucidating the activities of each with a view
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toward improving target specificity. For example, EPI-
002 is reported to have improved anti-tumoral activity
compared to EPI-001, with activity in the context of
AR coactivator (SRC1-3 or p300) overexpression, gain-
of-function AR mutations (both AR-NTD and AR-LBD
mutants) and AR-V expression (Yang et al. 2016). The oral
prodrug form of EPI-002, referred to as EPI-506, displayed
strong binding to AR and low toxicity in mice (Myung et al.
2013). EPI-506 is currently under phase I/II clinical testing
in post-abiraterone and post-enzalutamide settings, with
initial results expected in 2017 (NCT02606123).

Targeting androgen receptor coregulators

Given the known dependence of persistent AR signaling
on key coregulators, the concept of directly targeting
these factors has long been mooted. Recent reviews have
described in detail the current state-of-play in terms of
targeting key members of the AR interactome (Biron
& Bedard 2015, Foley & Mitsiades 2016), including
chaperones (HSP90, HSP27 and others), pioneer factors
(e.g. FOXA1 and GATA2) and transcriptional coactivators.
In this section, we will highlight some key opportunities
in this field.

One coregulator-targeted strategy involves directly
blocking AR:coregulator interactions. This approach has
been achieved using peptides that mimic interaction
surfaces. For example, two SRC-1-derived peptides
(corresponding to amino acids 1050-1150 and 1050-1240
of SRC-1) effectively inhibited AR-FL and AR-V7 activity
by disrupting AR:SRC-1/SRC-2 as well as AR-NTD:AR-
LBD interactions (Nakka et al. 2013). Although peptides
have high specificity and are a cheap and effective
screening tool in vitro, poor stability in vivo limits their
clinical utility. Peptidomimetics combine the specificity
of peptides with the desirable pharmacological attributes
of small molecules, such as stability and bioavailability.
The peptidomimetic D2 was designed to mimic the
LXXLL motif, which is found in many nuclear receptor
coregulators (Ravindranathan et al. 2013). D2 effectively
disrupted the interaction between AR and the coactivator
PELP1, which contains 10 LXXLL motifs, thereby blocking
AR nuclear localization and transactivation and prostate
cancer growth (Ravindranathan et al. 2013). Although
other LXXLL-derived  peptidomimetic
inhibitors of AR:coactivator interactions are in pre-clinical
development (Biron & Bedard 2015), it must be noted that
targeting this motif may be an ineffective strategy in the
case of AR-V-driven disease (Ravindranathan et al. 2013).

numerous
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Thus, the elucidation of other protein:protein interaction
surfaces and motifs is required to develop novel, selective
inhibitors of AR:coregulator interactions.

Strategies to target coregulators that require no prior
knowledge of the AR:coregulator interface are also being
developed. An exciting example of such an approach
is provided by the recent demonstration of potent pre-
clinical efficacy of bromodomain and extra-terminal (BET)
inhibitors. BET family members bind to acetyl residues
on histones and other chromatin-associated factors and
thereby act as key transcriptional regulators. Recently, an
interaction between the AR-NTD and the BET factor BRD4
was identified (Asangani ef al. 2014). Disruption of this
interaction with a small-molecule inhibitor of BRD4, JQ1,
blocked AR chromatin association, transcriptional activity
and AR-mediated PCa growth (Asangani et al. 2014).
More recently, a pan-BET degrader (based on PROTAC
technology) was shown to have potent anti-CRPC activity
(Raina et al. 2016). Importantly, we and others have
shown that BET inhibition has a dual mechanism of
action, suppressing not only AR transcriptional activity
but also AR gene transcription (Chan et al. 2015, Raina
et al. 2016). This finding, combined with the mapping of
the BRD4 interaction surface to the AR-NTD, suggests that
BET inhibitors would have activity in CRPC driven by
AR-LBD mutants and/or AR-Vs, a prediction that has been
experimentally substantiated (Chan et al. 2015, Asangani
et al. 2016, Raina et al. 2016).

Targeting pioneer factors to suppress hormone
receptor activity is an emerging concept (Nakshatri &
Badve 2007). It must be noted that there is concern about
the potential utility of inhibiting FOXA1, given that it can
seemingly act to both promote and suppress AR-mediated
CRPC growth depending on context (see above). By
contrast, a number of factors have converged to make the
pioneer factor GATA2 an attractive target (He et al. 2014):
(i) GATA2 enhances both the expression and activity of
AR; (ii) GATA2 is also required for signaling by AR-Vs; (iii)
a small-molecule inhibitor of GATA2 (K7174) is available
and (iv) GATA2 is reported to have an AR-independent
role in driving chemoresistance in prostate cancer (Vidal
et al. 2015), meaning that its targeting could potentially
suppress multiple oncogenic pathways. However, GATA2
plays a key role in multiple aspects of normal physiology,
most notably hematopoiesis and angiogenesis, and
GATA2 deficiency can result in susceptibility to infections,
leukemia and other blood disorders (Hsu et al. 2015); any
future efforts to develop GATA2 inhibitors for CRPC will
need to take this into account.
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Why are prostate cancer cells addicted to
androgen receptor signaling?

In the face of a concerted attack in the way of sequential
first- and second-line AR-targeted therapies, prostate
cancer cells adapt in such a way that AR (in most cases)
remains the dominant driver of disease. This exquisite
dependence on an individual driver of malignancy is
an example of the phenomenon known as oncogene
addiction (Weinstein 2002, Pagliarini et al. 2015).
Although many mechanisms explaining the means
by which AR signaling is maintained and/or adapts to
circumvent all current forms of AR-targeted therapies in
PCa have been elucidated, some of which were described
previously, a key question that is rarely explored is simply:
what underlies the addiction of PCa to AR?

Answering this question is not straightforward, but
an understanding of the role of AR in normal physiology
provides clues. Indeed, although this review has focused
on the role of AR in prostate cancer, it is important to
remember that the androgen/AR signaling axis regulates
the development and maintenance of primary and
secondary male sexual characteristics, plays a key role
in female fertility and also has a plethora of functions
in various non-reproductive tissues of both genders (De
Gendt & Verhoeven 2012). Given that loss of AR would
have dire repercussions for organismal viability, it is logical
to expect that cells have developed fail-safe mechanisms
to ensure the maintenance of functional AR signaling. It
is also worth noting that such mechanisms are likely to
be more active in men who have a single X chromosome
and hence a single copy of the AR gene. In response to
AR-targeted therapies, prostate cancer cells could readily
‘hijack’ this intrinsic capacity to sustain AR activity. One
pertinent example of this concept is the capacity of AR
to auto-regulate its own expression, which constitutes
an important homeostatic mechanism in normal cells
but is exploited in CRPC to upregulate AR expression
(Cai et al. 2011). Further investigation of normal prostate
physiology will likely provide key insights into the
intrinsic mechanisms underlying persistent AR signaling.

The concept of a ‘one-step’ remedy for cancers
addicted to a specific oncogene (Weinstein 2002) has
clearly not been attainable in the case of AR. However,
the path to curative therapy can be guided by lessons
learnt from both CRPC and other cancers that exhibit
unequivocal dependence on a particular oncogene. These
lessons have taught us that outcomes can be improved
by simply making better inhibitors (e.g. enzalutamide)
but that more sophisticated strategies such as ‘vertical’
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and/or ‘parallel’ combination therapies (Pagliarini et al.
2015) will likely be required to achieve substantial gains.
Another observation of relevance to this discussion
was obtained by Zhang and coworkers who noted that
combining two distinct modes of pharmacological
inhibition of a single driver oncogene, Bcr-Abl, in
chronic myeloid leukemia reduced the occurrence of
resistance mechanisms associated with either mode alone
(Zhang et al. 2010). We favor the idea that combining
current ligand-centric strategies with agents that block
other aspects of AR function, such as DNA binding or
N-terminal transcriptional activity, will be an effective
strategy in the future to curtail therapy resistance and
thereby reduce the rates of CRPC.

Although this review has focused on persistence of AR
signaling in CRPC, we note that trans-differentiation of
tumors to an AR-independent, neuroendocrine-like state
is an emerging clinical issue, albeit relatively uncommon
(Tilki & Evans 2014, Beltran et al. 2016). However, as the
potency and selectivity of AR inhibitors increase, this
disease state may occur more frequently (Beltran 2016).
Interestingly, this phenomenon may be generalizable as
similar phenotypic transformations have been observed
in other tumor types in response to targeted therapies
(Sequist et al. 2011). Within this context, therapeutic
strategies aimed at modulating the activity of AR, as
opposed to a dogmatic focus on inhibition, may have
benefit: one example is bipolar androgen therapy
(Schweizer et al. 2015), which could potentially block
tumor cell trans-differentiation by sequential stimulation
of both AR activation (supraphysiologic testosterone) and
inhibition (ADT).

Concluding remarks and future directions

Notwithstanding the recent identification and
characterization of AR-independent forms of CRPC
(Tilki & Evans 2014, Beltran et al. 2016), the majority of
CRPC tumors remain driven by persistent AR signaling.
Mechanisms underlying this persistence, and potential
strategies to target it, were outlined previously. To finish,
we list some key outstanding questions and comments
that we believe represent key avenues of future research:

e AR signaling-driven castration resistance can be
acquired via multiple and convergent events in
different metastases, a phenomenon explained by the
selective pressure of ADT (Gundem et al. 2015). What
are the therapeutic consequences of the co-existence of
multiple forms of persistent, aberrant AR signaling in
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the same patient? How do we best identify and target
the drug-resistant, lethal clones?

e Many different structurally androgen
receptors, such as specific point mutants and
truncated variants, have been identified. How do we
(comprehensively and rapidly) elucidate the molecular
functions of each? Moreover, given the potential for
heterodimerization of distinct forms of the AR, how
do we optimally model the consequences of interplay
between them?

e AR coregulators are essential for the activity of AR in
normal cells (Mestayer et al. 2003, Xu et al. 2009a).
Can we push AR towards its ‘normal’ function by
shaping, both qualitatively and quantitatively, the AR
interactome?

aberrant

e There is a growing realization that no single
AR-targeting drug per se will eliminate CRPC due to
the constant adaptive evolution of the disease in the
face of therapy. Combinatorial therapies have high
potential to overcome this issue. However, we urgently
require better predictive tools/biomarkers to guide the
application of such therapies and identify the patients
most likely to receive benefit.
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