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Abstract

Ovarian cancer has a distinct tendency for metastasising via shedding of cancerous 

cells into the peritoneal cavity and implanting onto the peritoneum that lines the 

pelvic organs. Once ovarian cancer cells adhere to the peritoneal cells, they migrate 

through the peritoneal layer and invade the local organs. Alterations in the extracellular 

environment are critical for tumour initiation, progression and intra-peritoneal 

dissemination. To increase our understanding of the molecular mechanisms involved in 

ovarian cancer metastasis and to identify novel therapeutic targets, we recently studied 

the interaction of ovarian cancer and peritoneal cells using a proteomic approach. We 

identified several extracellular matrix (ECM) proteins including, fibronectin, TGFBI, 

periostin, annexin A2 and PAI-1 that were processed as a result of the ovarian cancer–

peritoneal cell interaction. This review focuses on the functional role of these proteins 

in ovarian cancer metastasis. Our findings together with published literature support 

the notion that ECM processing via the plasminogen–plasmin pathway promotes the 

colonisation and attachment of ovarian cancer cells to the peritoneum and actively 

contributes to the early steps of ovarian cancer metastasis.

Introduction

Ovarian cancer is the most lethal gynaecological cancer 
and the sixth most common cause of cancer-related 
death among Western women (Torre et  al. 2015). 
Although ovarian cancers represent 30% of cancers of 
the female genital tract, they are responsible for half of 
the deaths (Torre et  al. 2015). The disproportionately 
high mortality rate is attributed to the late presentation 
of the disease. Despite advances in surgery and 
chemotherapies, no substantial improvement in 
ovarian cancer survival has been observed over the 

last two decades (Coleman et  al. 2013). A greater 
understanding of the mechanisms involved in the 
metastasis of ovarian cancer will aid in the discovery of 
novel molecular diagnostic or prognostic markers and 
the identification of novel therapeutic targets.

Ovarian cancer peritoneal microenvironment

Ovarian cancer research over the last 30 years has 
focused predominantly on the cancer cells themselves 
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and until more recently has largely ignored the tumour 
microenvironment. The tumour microenvironment 
composed of blood vessels, leukocytes, stem cells, 
fibroblasts and the extracellular matrix (ECM) is 
increasingly implicated as a key controlling factor in 
tumour progression. This is particularly the case for the 
growth and progression of solid tumours such as ovarian 
cancer. The primary microenvironment for ovarian cancer 
cells at the metastatic site is the peritoneum, a single layer 
of mesothelial cells covering the abdominal cavity and its 
organs (Fig. 1A). Implantation and invasion occurs within 
a tumour–host interface where cancer and peritoneal 
cells exchange proteins and peptides, which modify 
the local ECM and promote metastasis (Gardner et  al. 
1995, Strobel & Cannistra 1999, Freedman et  al. 2004, 
Ricciardelli & Rodgers 2006, Said et  al. 2007, Heyman 
et  al. 2008, Kenny et  al. 2008). Several ECM molecules 
have recently been identified to regulate the adhesion 
and invasion of ovarian cancer cells to peritoneal cells; 
however, an understanding of the cellular and molecular 
mechanisms involved are only just beginning to emerge 
(Gardner et al. 1996, Freedman et al. 2004, Heyman et al. 
2008, Kenny et al. 2008). A greater understanding of these 
processes would potentially lead to the discovery of novel 
molecular targets to block this critical step of ovarian 
cancer metastasis. To identify potential novel therapeutic 
targets for advanced ovarian cancer, our group has recently 
explored the ovarian cancer–peritoneal cell interaction, 
using an in vitro co-culture system (Ween et  al. 2011, 
Lokman et  al. 2013). When peritoneal mesothelial cells 
(LP-9) and ovarian cancer cells (OVCAR-5) were grown in 
direct contact co-culture, we observed the formation of 
cellular aggregates or spheroids after 48–96 h of culture 
(see asterisks, Fig.  1B). There was also clear differences 
in the protein profiles of the conditioned media (CM) or 
secretome collected from ovarian cancer cells (OVCAR-5, 
SKOV-3) and the peritoneal cells cultured alone compared 
with direct co-culture whereby cells can physically interact 
with each other (Fig.  1C). OVCAR-5 has characteristics 
of high-grade serous carcinoma (Anglesio et  al. 2013, 
Mitra et  al. 2015), and SKOV-3 cells are atypical non-
serous carcinoma cells with mesenchymal characteristics 
(Anglesio et al. 2013, Tan et al. 2013). Further studies are 
required to confirm whether the co-culture findings are 
generalisable to other ovarian cancer subtypes.

Table  1 summarises all the proteins that were 
identified to be differentially expressed in the co-culture 
secretome (OVCAR-5 and LP-9 cells) by both 1D and 
2D electrophoresis through both direct co-culture and 
indirect co-culture where cells cannot physically interact 

Figure 1
(A) H&E section of a serous ovarian carcinoma implant in the omentum. 
Black arrow indicates the layer of mesothelial cells. White asterisk 
indicates the metastatic ovarian cancer cells. (B) Direct co-culture of 
mesothelial peritoneal cells (LP-9) with OVCAR-5 cells induces cell 
aggregation (black arrow) most evident after 96 h. (C) A monolayer of 
LP-9 cells was exposed to a suspension of OVCAR-5 or SKOV-3 cells for 
48 h to mimic the in vivo situation of ovarian cancer metastasis and the 
CM collected, precipitated in acetone, and run on an SDS gel and stained 
with Coomassie blue. Selected bands present in either the single cell 
culture or the co-culture only were excisioned and analysed by mass 
spectrometry (Maldi TOF/TOF). Band 1 = fibronectin, Band 2 = fibronectin, 
Band 3 = periostin, Band 4 = TGFBI, Band 5 = PAI-1, Band 6 = CK-1, Band 
7 = fibronectin, Band 8 = fibronectin.
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but share the same culture media. This review will focus 
on ECM proteins that were processed by the ovarian 
cancer–peritoneal cell interaction including fibronectin, 
transforming growth factor-beta-induced protein (TGFBI), 
periostin, annexin A2 and plasminogen activator 
inhibitor (PAI-1) and their functional role in ovarian 
cancer metastasis.

Role of fibronectin in ovarian cancer

Fibronectin (encoded by the gene FN1) is a 440 kDa, 
2390 amino acid long prototypic ECM comprising three 
different homologous repeating units or modules arranged 
into protease-resistant domains, which are separated by 
protease susceptible regions (Romberger 1997). Although 
fibronectin has many biological activities, its role in 
cancer is well documented: promotion of cell adhesion 
and migration, key steps in the metastatic process 
(Nagai et  al. 1991, Kenny et  al. 2008). Fibronectin cell-
adhesive sites have been identified in protease-resistant 
fragments of 110–120, 75 and 37 kDa, which are derived 
from the internal section of the protein (Ruoslahti et al. 
1981, Hayashi & Yamada 1983, Zardi et  al. 1985, Nagai 
et al. 1991). The cell-adhesive activity attributed to these 
cleaved fragments is mediated via an Arg-Gly-Asp (RGD) 
motif that serves as a ligand recognition site for several 
integrins (Pierschbacher & Ruoslahti 1984, Yamada & 
Kennedy 1984).

High fibronectin levels have been observed in the 
ovarian tumour stroma surrounding the tumour nests 
and in ascites fluid from ovarian cancer patients (Wilhelm 
et  al. 1988, Demeter et  al. 2005). Increased fibronectin 
expression correlated significantly with high tumour 
stage and reduced overall ovarian cancer survival (Franke 
et  al. 2003, Demeter et  al. 2005). A more recent study 
has shown increased fibronectin levels in the tumour 
stroma of omental metastases compared with those in 
the omentum of patients with benign disease (Kenny 
et al. 2014). A pro-tumourigenic role for fibronectin was 
confirmed by the reduction in invasion and metastasis of 
SKOV3ip1 ovarian cancer cells in fibronectin knockout 
mice (Kenny et  al. 2014). Using the recently described 
CSIOVDB, a microarray gene expression database of 
epithelial ovarian cancer (Tan et al. 2015), we confirmed 
that FN1 expression was significantly increased in tumour 
stroma and peritoneal tumours compared with that 
in primary ovarian tumours. FN1 was higher in serous 
ovarian cancers than that in other subtypes and elevated 
in stage II-IV compared with stage I tumours. FN1 was also 
increased in grade 2 and grade 3 tumours compared with 

that in grade 1 tumours and elevated in tumours resistant 
to 1st-line chemotherapy compared with sensitive 
tumours. Furthermore, FN1 was significantly correlated 
with an epithelial mesenchymal transition (EMT) score 
(ρ = 0.37, P = 1.19 × 10−115), and FN1 levels higher than the 
median were significantly associated with both reduced 
overall survival (OS) (P < 0.0001) and reduced disease-free 
survival (DFS) (P < 0.0001). Multivariate analysis showed 
that FN1 expression was an independent predictor of 
DFS. The highest FN1 expression was observed in the 
mesenchymal (MES) subtype that is most metastatic and 
has the poorest prognosis. In the MES subtype, increased 
FN1 expression was associated with both reduced OS 
(P = 0.0137) and DFS (P = 0.0222).

In our ovarian cancer peritoneal co-culture study, we 
detected increased levels of fibronectin fragments (120 
and 70 kDa, bands 7 and 8, Fig. 1C) and decreased full-
length FN (bands 1 and 2, Fig.  1C). Full-length FN was 
very abundant in the LP-9 secretome but not detected 
in SKOV-3 or OVCAR-5 CM (Fig.  1C). The fibronectin 
fragments (120 and 70 kDa) are similar to those observed 
using a 3D culture model of peritoneal and ovarian cancer 
cells and omental metastases (Kenny et  al. 2008, 2014). 
Kenny et  al. showed that fibronectin cleavage could be 
mediated by MMP-2 and ovarian cancer cells (SKOV3ip1 
and Hey A8) preferentially bound to the fibronectin 
fragments via α5β1 integrin (Kenny et al. 2008). However, 
other proteases including MMP-3 (Wilhelm et al. 1993), 
MMP-19 (Stracke et  al. 2000), MT1-MMP (Ohuchi et  al. 
1997) and MMP-7 (Quantin et  al. 1989) can also cleave 
fibronectin, as well as kallikrein-7 which is upregulated 
in ovarian cancer cells (Dong et  al. 2010). Plasmin can 
also cleave fibronectin to similar-sized fragments as those 
observed in our study (Quigley et  al. 1987, Wachtfogel 
et  al. 1988, Horowitz et  al. 2008). As we have shown 
that plasmin levels are increased during ovarian cancer 
co-culture with LP-9 cells (Ween et al. 2011), fibronectin 
cleavage observed in the peritoneal ovarian cancer cell 
co-culture is likely to be mediated by plasmin which in 
turn can also activate MMPs including MMP-2. Together 
these findings suggest that fibronectin processing 
by proteases including plasmin and MMPs increases 
ovarian cancer cell adhesion to the mesothelial cells via 
integrin receptors. The confirmed critical involvement 
of fibronectin in adhesion and ovarian cancer metastasis 
strongly justifies the development of therapeutic strategies 
to inhibit fibronectin production and/or processing.

A humanised fibronectin antibody, L19, targeting the 
ED8 region of fibronectin has been used for cancer imaging 
in rodents and humans and has successfully inhibited 

http://dx.doi.org/10.1530/ERC-16-0320
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tumour growth in orthotopic rodent models when fused 
with various cytokines and chemokines including IL2, 
IL12, TNFα and INF-γ (reviewed in Kaspar et al. 2006). Both 
L19-IL2 (Darleukin) and L19-TNF (Fibromun) have shown 
promising results in phase I clinical trials in patients with 
advanced cancer and are currently being evaluated in 
further phase I/II trials (Danielli et al. 2015).

Integrin antagonists have also been used to target 
fibronectin interactions. These include monoclonal 
antibodies that target αvβ3 (Vitaxin) and α5β1 
(Volociximab) integrins as well as cyclic peptides to the 
RGD sequence (e.g., Cilengitide). Phase I and II trials 
with Vitaxin showed some efficacy in solid cancers 
and metastatic melanoma (reviewed in Desgrosellier 
& Cheresh 2010). Volociximab was well tolerated and 
showed promising results in phase I trials with various 
solid tumours (Ricart et al. 2008); however, it has shown 
insufficient clinical activity in ovarian cancer patients 
with platinum resistant disease (Bell-McGuinn et  al. 
2011). Although promising in phase I trials, Cilengitide, 
an inhibitor of both αvβ3 and αvβ5 integrins, has shown 
limited clinical efficacy in phase II/III trials in patients 
with glioblastoma (Eisele et al. 2014, Stupp et al. 2014) and 
metastatic castrate-resistant prostate cancer (Bradley et al. 
2011). Targeting either fibronectin or integrin interactions 
remain promising treatment options for many cancers 
including ovarian cancer and need further evaluation.

Role of TGFBI in ovarian cancer

TGFBI (also known as βigH3) is a transforming growth 
factor beta (TGFβ) inducible-secreted ECM protein. 
Two isoforms of TGFBI with molecular weights 78 and 
68 kDa have been reported to date (Gibson et al. 1989), 
which are encoded by a single gene, TGFBI (Schorderet 
et  al. 2000). TGFBI protein contains a signal peptide 
in the first 24 amino acid residues at the N-terminus, 
a cysteine-rich EMI domain, four highly conserved 
fasciclin (FAS) domains and several integrin-binding 
motifs including the RGD motif in the C–terminus, 
which serves as a ligand-recognition site for several 
integrins (LeBaron et  al. 1995, Ohno et  al. 1999, Bae 
et  al. 2002, Jeong & Kim 2004, Kim & Kim 2008). 
Other integrin-binding motifs include the NKDIL motif 
(amino acids 354–358) (Kim et  al. 2000), the EPDIM 
motif (amino acids 617–621) (Kim et  al. 2000) in the 
second and fourth FAS-1 domains, respectively, and the 
YH18 motif (amino acids 563–580) in the fourth FAS-1 
domain, which can support αvβ5 integrin-mediated 
adhesion of lung fibroblast MRC-5 cells (Kim et al. 2002),  

vascular smooth muscle cells (Lee et  al. 2006) and 
endothelial cells (Nam et al. 2003).

TGFBI plays a major role in the adhesion and 
migration of a wide range of cells including keratinocytes, 
fibroblasts, chondrocytes, osteoblasts, endothelial cells 
and cancer cells (reviewed by Thapa et al. 2005). Effects 
of TGFBI on adhesion are mediated through interactions 
with various integrins including α1β1, α3β1, αvβ3 and 
αvβ5 (LeBaron et al. 1995, Ohno et al. 1999, Bae et al. 2002, 
Jeong & Kim 2004, Kim & Kim 2008) via the different 
integrin-binding motifs. TGFBI also functions as a linker 
protein and connects many matrix proteins including 
collagens (type I, II and IV), fibronectin (Billings et  al. 
2002) and proteoglycans (biglycan and decorin) with each 
other (Gibson et  al. 1997, Billings et  al. 2002, Hanssen 
et al. 2003, Reinboth et al. 2006).

There are conflicting data in the literature reporting 
that TGFBI may have a tumour suppressive as well as a 
tumour-promoting role in different types of cancer cells 
(reviewed in Ween et al. 2012). Loss of TGFBI expression 
has been described in several cancers including ovarian 
cancer, and promoter hypermethylation has been 
identified as an important mechanism for the silencing of 
the TGFBI gene (Kang et al. 2010, Wang et al. 2012). There 
are only a few studies that have investigated the effects 
of TGFBI on tumour cell function, and the knowledge 
about the role of TGFBI in ovarian cancer is still limited. 
Studies have shown that the level of TGFBI in ovarian 
cancer tissues is predictive of the disease response to the 
treatment with the aromatase inhibitor letrozole (Walker 
et  al. 2007) or the chemotherapeutic drug paclitaxel 
(Ahmed et  al. 2007). Our previous findings suggest that 
TGFBI is downregulated in ovarian cancer and that high 
concentration of TGFBI induced ovarian cancer cell 
death, which supports a tumour suppressor role (Ween 
et al. 2010).

However, there are also convincing data reporting a 
tumour-promoting role for TGFBI. Using CSIOVDB (Tan 
et al. 2015), TGFBI expression was significantly increased 
in tumour stroma and peritoneal tumours compared with 
that in primary ovarian tumours. TGFB1 expression was 
the highest in serous and endometrioid ovarian cancers 
compared with other subtypes and elevated in stage III 
and stage IV compared with stage I tumours. TGFB1 
expression was also increased in grade 3 compared with 
that in all other grades and elevated in tumours resistant 
or refractory to 1st-line chemotherapy compared with 
sensitive tumours. Furthermore, TGFB1 was significantly 
correlated with an EMT score (ρ = 0.178, P = 6.21 × 10−26) 
and levels higher than fourth quartile (Q4) were 
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significantly associated with both reduced OS (P = 0.0007) 
and DFS (P = 0.0016). The highest TGFB1 expression 
was observed in the MES subtype, and increased TGFBI 
expression in this subtype was associated with both 
reduced OS (P = 0.0038, HR = 1.40, 95% CI: 1.11–1.75) and 
DFS (P = 0.0003, HR = 1.50, 95% CI: 1.21–1.87). We have 
shown TGFBI to be abundantly expressed by peritoneal 
cells, and recombinant TGFBI increased the metastatic 
potential of ovarian cancer cells by promoting cell 
motility, invasion and adhesion to peritoneal cells (Ween 
et al. 2010). Together these findings support the tumour-
promoting role of TGFBI.

Full-length TGFBI was abundant in the LP-9 
secretome (band 4, Fig.  1C) and processed to smaller 
isoforms when co-cultured directly with OVCAR-5 and 
SKOV-3 cells (Ween et  al. 2010). TGFBI processing was 
observed when ovarian cancer cells and peritoneal 
cells were in direct physical contact in culture or when 
the cells shared the same growth media in the indirect 
co-culture system (Ween et  al. 2011). TGFBI processing 
did not occur when conditioned media from peritoneal 
cells was added to cultured ovarian cancer cell lines or 
when conditioned media from ovarian cancer cells was 
added to the cultured peritoneal cells. These findings 
suggest that TGFBI processing is regulated by a cross-talk 
mechanism between both ovarian cancer and peritoneal 
cells and is not mediated just by proteases expressed by 
ovarian cancer cells. We also showed that TGFBI cleavage 
in the ovarian cancer and peritoneal cell co-culture was 
mediated by plasmin (Ween et al. 2011). Plasmin activity 
was increased in the conditioned medium of co-cultured 
OVCAR-5 and LP-9 cells, whereas no plasmin activity 
could be detected in the conditioned medium collected 
from those cells cultured alone (Ween et  al. 2011). 
Furthermore, plasmin cleaved TGFBI in the same region as 
observed in the ovarian cancer–peritoneal cell co-culture, 
and this could be inhibited by a cocktail of protease 
inhibitors, including serine protease inhibitors. It is likely 
that TGFBI expression and function in cancer cells appear 
to be cell type specific and are affected not only by TGFBI 
concentration but also by processing events by protease 
enzymes, which can liberate integrin-binding sites. As 
truncated forms of TGFBI have been well documented 
to have differing functions (Zamilpa et al. 2009, Irigoyen 
et al. 2010), it is likely that alterations in TGFBI processing 
in different cell types is an important factor contributing 
to the disparate findings in literature. Whether TGFBI 
functions as a tumour suppressor or tumour promoter 
may also be dependent on interactions between other 
ECM proteins and specific integrin receptors present in 

the tumour microenvironment. Our findings suggest that 
increased plasmin production and TGFBI cleavage are 
early events in the process of ovarian cancer metastasis. 
Further studies are required to investigate the role of 
cleaved TGFBI in ovarian cancer metastasis and develop 
therapeutic strategies to target TGFBI. Like fibronectin, 
TGFBI may also be targeted by integrin antagonists 
(Desgrosellier & Cheresh 2010). Other potential therapies 
to target TGFBI include TGFBI-blocking peptides (Nam 
et  al. 2005), TGFBI siRNA as well as TGFBI-blocking 
antibodies (Ween et al. 2010, 2012). These strategies have 
not yet been tested in 3D or in vivo ovarian cancer models.

Role of periostin in ovarian cancer

Periostin (encoded by gene POSTN) is also a member 
of the FAS family and upregulated by TGFβ-like TGFBI 
(Horiuchi et al. 1999). Periostin is a unique ECM protein 
in collagen-rich connective tissues, such as periodontal 
ligament, periosteum, fascia of skeletal muscles and 
cardiac valve (Takeshita et al. 1993, Horiuchi et al. 1999, 
Kruzynska-Frejtag et  al. 2001, 2004, Norris et  al. 2007), 
and upregulated in a wide range of tumours including 
ovarian cancer (Gillan et al. 2002, Kudo et al. 2007, Morra 
& Moch 2011, Hong et  al. 2013). Periostin is detected 
in the ascites of ovarian cancer patients (Gillan et  al. 
2002) and associated with late-stage disease and ovarian 
cancer relapse (Zhu et al. 2010). Periostin can increase the 
motility of the ovarian cancer cells and their adhesion to 
the peritoneum via integrins αvβ3 and αvβ5 (Gillan et  al. 
2002). Recombinant periostin increased the adhesion 
and invasion of SK-OV-3 ovarian cancer and expression 
of MMP-2 (Choi et  al. 2011). TGFBI/POSTN correlated 
genes could identify a subgroup of high-grade serous 
ovarian cancer patients with reduced OS (Karlan et  al. 
2014). POSTN was identified as a gene in the ‘reactive 
stroma’ gene signature that is associated with primary 
chemotherapy resistance and predicted shorter DFS after 
1st-line chemotherapy (Ryner et al. 2015). Treatment with 
recombinant periostin promoted ES-2 cell resistance to 
both carboplatin and paclitaxel in vitro (Ryner et al. 2015). 
A recent study has shown stromal periostin and not 
tumour periostin is an independent predictor of OS and 
DFS in epithelial ovarian cancer (Sung et al. 2016). Using 
the CSIOVDB (Tan et  al. 2015), POSTN expression was 
significantly increased in tumour stroma and peritoneal 
tumours compared with that in primary ovarian tumours. 
POSTN was highest in serous ovarian tumours compared 
with that in other subtypes and elevated in stage II-IV 
compared with stage I tumours. POSTN was also increased 
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in grade 2 and grade 3 compared with grade 1 tumours 
and elevated in tumours resistant or refractory to 1st-line 
chemotherapy compared with sensitive tumours. 
Furthermore, POSTN was significantly correlated with 
an EMT score (ρ = 0.32, P = 3.62 × 10−84), and levels higher 
than the median were significantly associated with both 
OS (P < 0.0001) and DFS (P < 0.0001). Multivariate analysis 
showed that POSTN expression was an independent 
predictor of PFS and the highest POSTN expression was 
observed in the MES subtype.

Abundant periostin was produced by LP-9 mesothelial 
cells and no matching band appeared in the OVCAR-5 
or SKOV-3 ovarian cancer CM (band 3, Fig.  1C). These 
findings suggest that periostin is also cleaved like 
TGFBI in co-cultured ovarian cancer–LP-9 cells. Unlike 
fibronectin and TGFBI, periostin cleavage has not been 
described previously. The function of cleaved periostin is 
not known, and further studies are required to investigate 
its role in ovarian cancer metastasis. Potential therapies 
to target periostin include periostin siRNA and a periostin 
blocking antibody (MZ-1) which inhibited intra-peritoneal 
metastasis of A2780 tumour cells (Zhu et al. 2011). Further 
studies are required to investigate the ability of periostin-
blocking antibodies to inhibit the growth and invasion in 
additional in vivo ovarian cancer models.

Role of annexin A2 in ovarian cancer

Annexin A2 (encoded by gene ANXA2) is a phospholipid 
and calcium-binding protein, which is involved in actin 
and cytoskeleton regulation (Hayes et  al. 2006) and 
serves as a receptor for ECM proteins such as collagen I, 

cathepsin B, tissue plasminogen activator (t-PA) and 
plasminogen (Mai et  al. 2000). It is found in a range 
of cells such as endothelial cells, epithelial cells and 
tumour cells (Mai et  al. 2000) and exists as a 36 kDa 
monomer in the cytoplasm or a 94 kDa protein in cell 
membrane, which contains two annexin A2 monomers 
and two 11 kDa molecules known as p11 or s100A10 
(Gerke & Moss 2002).

Annexin A2 hetero-tetramer plays an important 
role in the plasminogen–plasmin pathway and annexin 
A2 acts as a t-PA receptor on the surface of endothelial 
and cancer cells, which activates the conversion of 
plasminogen into plasmin (Cesarman et  al. 1994, 
Kassam et  al. 1998a) and facilitates ECM degradation 
leading to enhanced cell migration (Balch & Dedman 
1997), invasion (Diaz et  al. 2004), angiogenesis (Ling 
et  al. 2004) and metastasis (Mai et  al. 2000) (Fig.  2). 
Plasminogen serves as a binding site for annexin A2 at 
lysine 307 in endothelial cells (Cesarman et  al. 1994) 
and S100A10 protein at lysine residues at the carboxyl 
terminal in epithelial cells (Kassam et al. 1998b), which 
results in plasmin production. Annexin A2-dependent 
plasmin generation has been demonstrated to be 
essential for the invasion and migration of invasive 
breast cancer cells (Sharma et  al. 2006). Annexin A2 
increases cancer cell proliferation and cell survival via 
the ERK1/2 and MAPK pathway (Shiozawa et al. 2008) 
and is a substrate for src kinase and regulates tyrosine 
23 phosphorylation of annexin A2 to enhance cancer 
cell invasion (Zheng et al. 2011). Annexin A2 also plays 
a role in actin cytoskeletal rearrangement and regulates 
cancer cell migration (Zhao et al. 2010).

Figure 2
Role of annexin A2 in the activation of the 
plasminogen–plasmin system. Annexin A2 with 
p11 protein (S100A10) forms an annexin A2 
heterotetramer complex on the plasma 
membrane which co-localise with CD44, 
tenascin-C, cathepsin B and tissue plasminogen 
activator (t-PA). Annexin A2-mediated t-PA-
dependent plasmin generation leads to the 
activation of growth factors, activation of 
proteases including MMPs, inactivation of 
proteases (PAI-1), degradation of extracellular 
matrix (ECM) proteins including fibronectin, 
TGFBI, periostin and annexin A2, which all act to 
increase cancer cell adhesion invasion, metastasis 
and tumour growth. Annexin A2 also increases 
cancer cell proliferation and cell survival via the 
ERK1/2 and MAPK pathway and plays a role in 
actin cytoskeletal rearrangement and regulates 
cancer cell migration.
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Overexpression of annexin A2 has been demonstrated 
in several cancer types such as breast, pancreas, colorectal 
and prostate cancer (reviewed in Lokman et  al. 2011). 
Annexin A2 mRNA is upregulated 3-fold in metastatic 
ovarian cancer tissues compared with that in normal 
ovarian tissue (Tchagang et al. 2008). A proteomic study 
reported that annexin A2 was upregulated in ovarian 
cancer cell lines with high invasive capacity compared 
with those with low invasive capacity (Sodek et  al. 
2008), and annexin A2 expression is increased in ovarian 
cancer tissues compared with that in the normal tissues 
(Tchagang et  al. 2008, Zhuang et  al. 2015). We have 
recently shown that annexin A2 is highly expressed in 
90% of serous ovarian cancers and actively involved in 
the process of ovarian cancer metastasis (Lokman et  al. 
2013). Furthermore, stromal annexin A2 but not tumour 
annexin A2 was found to be an independent predictor 
of OS in serous ovarian cancer patients (Lokman et  al. 
2016). Examining ANXA2 expression using Kaplan–
Meier plotter (Gyorffy et  al. 2012), we found that high 
ANXA2 mRNA levels in stage III serous ovarian cancers 
were associated with the MES subtype, reduced PFS 
(P = 0.023) and OS (P = 0.038) (Lokman et  al. 2016). 
Using the recently described CSIOVDB that does not 
distinguish ovarian cancer histological subtypes (Tan 
et  al. 2015), we confirmed that ANXA2 expression was 
significantly increased in tumour stroma and peritoneal 
tumours compared with that in primary ovarian tumours. 
However, ANXA2 expression was not associated with 
OS or DFS using median or 4th quartile as cut points in 
this database. These findings highlight the importance 
of looking at both protein and mRNA levels as well as 
ovarian cancer subtype and cellular localisation to assess 
the relationship of potential prognostic markers with 
patient outcome.

Peptide analysis of the annexin A2 protein spots 
identified in the co-culture CM samples failed to identify 
any annexin A2 peptides in the N-terminal domain (amino 
acid 1-35) (Ween et  al. 2010). These findings suggest 
that there is cleavage of annexin A2 in the N-terminal 
domain as a result of the co-culture interactions. The 
N-terminal domain of annexin A2 consists of multiple 
phosphorylation sites including a tyrosine at position 
23 (Bellagamba et al. 1997) and Ser25 (Gould et al. 1986). 
Cleavage of annexin A2 at the N-terminal domain by 
plasmin has been reported in monocytes (Laumonnier 
et  al. 2006) and endothelial cells (Kassam et  al. 1998b) 
resulting in loss of the first 27 amino acid residues 
and a band at approximately 33–34 kDa similar to that  
seen in our co-culture study (Ween et  al. 2010).  

Matrilysin (MMP-7) cleaves annexin A2 at Lys10 in the 
N-terminal, which results in a truncated 35 kDa form 
of annexin A2 (Tsunezumi et  al. 2008). Tsunezumi and 
coworkers reported that the first 9 amino acids of annexin 
A2 bound to the t-PA molecule more efficiently than 
intact annexin A2 and could assist in tumour invasion 
and metastasis of colorectal and breast cancer cell lines 
(Tsunezumi et  al. 2008). Binding sites of the S100A10 
proteins and t-PA have been identified in the N-terminal 
domain of annexin A2 at the amino acids residues 1–14 
and 8–13, respectively (Kube et al. 1992, Cesarman et al. 
1994). Recent data suggest that annexin A2 does not bind 
plasminogen directly but rather acts to transport S100A10 
to the cell surface (Madureira et  al. 2011, Bydoun & 
Waisman 2014). Our findings suggest that the extracellular 
form of annexin A2 found in the cancer-associated stroma 
in the ovarian cancer tissues may represent a cleaved and 
secreted form of annexin A2, which may assist in ovarian 
cancer progression and metastasis. As annexin A2 lacks 
a signal peptide and is not secreted via the endoplasmic 
reticulum pathway, the mechanism that regulates 
annexin A2 secretion remains unknown. Further studies 
are required to investigate the functional role of cleaved 
annexin A2 in ovarian cancer. Targeting the annexin 
A2 signalling pathway with annexin A2 neutralising 
antibodies is a promising strategy to inhibit ovarian 
cancer invasion and metastasis (Lokman et al. 2013).

Alternative strategies to target annexin A2 signalling 
are treatment with all-trans retinoic acid (ATRA) or 
plasmin inhibitors such as tranexamic acid. ATRA, 
an active metabolite of vitamin A, is currently used 
clinically for acute promyelocytic leukaemia (APL) to 
improve bleeding symptoms caused by excessive plasmin 
production seen in this condition (Olwill et  al. 2005). 
ATRA has been shown to inhibit annexin A2 and S100A10 
expression in leukaemic cells (Olwill et  al. 2005) and is 
a promising compound for the treatment of a variety of 
cancers because of its low toxicity.

Tranexamic acid, a synthetic derivative of the amino 
acid lysine, is an anti-fibrinolytic agent that blocks 
plasmin production and prevents the dissolution of 
fibrin clots (Mezzano et al. 1999). It is used clinically to 
reduce bleeding during surgery and is also an established 
treatment for gynaecological bleeding disorders such as 
heavy menstrual bleeding and postpartum haemorrhage 
(McCormack 2012). Tranexamic acid is generally well 
tolerated and has a favourable safety profile. Further 
studies are required to test the ability of annexin 
A2-blocking antibodies, ATRA and plasmin inhibitors 
including tranexamic acid to inhibit ovarian cancer 
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growth and invasion in both 3D and in vivo models of 
ovarian cancer.

Role of PAI-1 in ovarian cancer

PAI-1 (encoded by gene SERPINE1) belongs to the 
superfamily of the serine protease inhibitors (serpins) 
and functions as an inhibitor of both t-PA and urokinase 
plasminogen activator (u-PA), which converts plasminogen 
to its active form plasmin (van Mourik et al. 1984, Adams 
et al. 1991, Kwaan & McMahon 2009). Plasmin primarily 
functions to degrade not only fibrin clots but also ECM 
molecules either directly or indirectly by activating MMPs 
(Didiasova et al. 2014). Plasmin proteolysis contributes to 
both physiological processes such as tissue remodelling 
and pathological processes including cancer invasion and 
metastasis (Castellino & Ploplis 2005).

As PAI-1 inhibits plasmin generation, it would be 
expected to be reduced in cancers; however surprisingly, 
PAI-1 is increased in most cancers including ovarian 
cancer and increased levels of both PAI-1 and u-PA are 
associated with reduced ovarian cancer survival (Kuhn 
et  al. 1994, Konecny et  al. 2001, Mashiko et  al. 2015). 
To date, the molecular mechanism of this paradox has 
not been explained (Didiasova et  al. 2014) and may 
be due the incomplete understanding of the complex 
plasminogen–plasmin system and its interactions with 
other factors in tumours (Kwaan et  al. 2013). There is 
considerable controversy in the literature with some 
studies demonstrating PAI-1 is required for tumour 
growth (McMahon & Kwaan 2015) and tumour adhesion 
(Palmieri et  al. 2002), whereas others have found it to 
inhibit tumour cell binding to the ECM (Czekay et  al. 
2003). The effect of PAI-1 on tumour growth is likely to 
be dependent on its abundance (McMahon et al. 2001), 
but it appears that PAI-1 also has functions which are 
independent of the of plasminogen–plasmin system 
(Czekay & Loskutoff 2009). PAI-1 knockdown resulted 
in reduced growth and increased apoptosis of ovarian 
cancer cell lines, and a small molecule inhibitor of PAI-1 
(TM5275) blocked the proliferation of ovarian cancer cells 
with high PAI-1 expression (Mashiko et al. 2015).

Using CSIOVDB (Tan et  al. 2015), SERPINE1 
expression was significantly increased in tumour stroma 
and peritoneal tumours compared with that in primary 
ovarian tumours. SERPINE1 was the highest in mucinous-
LMP compared with other subtypes and elevated in stage 
II-IV compared with stage I tumours. SERPINE1 was also 
increased in grade 2 and grade 3 that that in grade  1 
tumours. Furthermore, SERPINE1 was significantly 

correlated with an EMT score (ρ = 0.317, P = 6.86 × 10−81), 
and levels higher than median were significantly 
associated with both OS (P = 0.001) and DFS (P = 0.0013). 
The highest SERPINE1 expression was observed in the 
MES subtype, and in this subtype, increased SERPINE1 
expression was associated with reduced DFS (P = 0.039).

We found that full-length PAI-1 was present in LP-9 
culture (band 5, Fig. 1C), but PAI-1 was cleaved at the Arg346-
Met347 position in both direct and indirect ovarian cancer–
peritoneal cell co-culture (Table 1). Cleavage at this site by 
the prostatic serine protease human kallikrein 2 has been 
shown to inactivate PAI-1 and prevent the inactivation of 
u-PA and t-PA (Mikolajczyk et al. 1999). A previous study 
found that HRA ovarian cancer conditioned media was 
able to stimulate PAI-1 production but did not affect u-PA 
levels in mesothelial cells (Hirashima et al. 2003). Ovarian 
cancer cells also produce a range of kallikreins, which 
are known to stimulate the plasminogen conversion 
to plasmin (Shih Ie et  al. 2007). It is possible that a 
kallikrein produced by ovarian cancer cells may influence 
ovarian cancer cell–mesothelial cell interactions and the 
extracellular proteolytic cascade by several mechanisms, 
which include (1) inhibition of PAI-1 and (2) activation of 
u-PA, which results in (3) increased plasmin production 
in the ovarian cancer–peritoneal cell co-culture and leads 
to (4) ECM processing and enhanced metastasis. Targeting 
PAI-1 in the peritoneal microenvironment is a promising 
approach to inhibit ovarian cancer metastasis but needs 
further evaluation. To date, the small molecule inhibitor 
of PAI-1 (TM5275) has only been tested on ovarian cancer 
cells in vitro (Mashiko et al. 2015).

Summary and Conclusions

Our study of the ovarian cancer peritoneal interaction has 
highlighted a key link between the annexin A2 signalling 
pathway and the activation of the plasminogen–plasmin 
system (Fig. 2). When we co-cultured peritoneal cells with 
ovarian cancer cells, whether in direct physical contact 
or indirect co-culture in which both cell types shared the 
same media, we observed that a proteolytic response was 
triggered by the interaction between ovarian cancer and 
peritoneal cells. A number of ECM proteins including 
fibronectin, TGFBI, periostin, annexin A2 and PAI-1 were 
processed by the ovarian cancer–peritoneal cell interaction 
(Fig. 2). Interestingly, mRNA levels of these proteins can 
predict ovarian cancer outcome and are all elevated in 
the MES ovarian cancer subtype, the most metastatic and 
subtype with the poorest prognosis. Furthermore, these 
proteins can all be cleaved either directly by plasmin or 
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indirectly via MMP activation. We have confirmed that 
TGFBI and annexin A2 can be processed by plasmin, 
which is also increased by the ovarian cancer–peritoneal 
cell interaction (Ween et  al. 2010, Lokman et  al. 2013). 
Although the function of processed forms of periostin and 
annexin A2 is not known, truncated forms of fibronectin, 
TGFBI and PAI-1 have been documented to have differing 
functions (Mikolajczyk et  al. 1999, Kenny et  al. 2008, 
Zamilpa et al. 2009, Irigoyen et al. 2010).

Emerging evidence indicate that annexin A2 and 
S100A10 play a significant role in the plasminogen–
plasmin system and the interaction among annexin  
A2, S100A10 and t-PA mediates the conversion of 
plasminogen to plasmin, which facilitates MMP 
activation, growth factor activation and ECM degradation 
all leading to enhanced cancer cell migration and  
invasion (Fig.  2). Together with published literature 
our recent findings add to our understanding of the 
interaction between ovarian cancer and peritoneal cells 
and suggest that increased plasmin production and ECM 
cleavage are early events in the process of ovarian cancer 
metastasis. It has been well recognised that proteolysis 
of ECM proteins can release ECM fragments called 
matrikines, which exert differing biological activities than 
native proteins (Ricard-Blum & Salza 2014). Matrikines 
have been shown to trigger pro-tumourigenic activity 
as well as anti-tumourigenic and anti-angiogenic effects 
and thus have been investigated as novel biomarkers 
and anti-cancer agents (Ricard-Blum & Salza 2014). 
A greater understanding of the interactions between 
ECM fragments and other interacting proteins in the 
plasminogen–plasmin system will help decipher the 
molecular mechanisms regulating peritoneal metastasis. 
Potential therapies to target the ECM molecules in this 
review are highlighted in Table 1. Targeting the annexin 
A2 signalling pathway with annexin A2-neutralising 
antibodies (Lokman et  al. 2013) or the plasminogen–
plasmin system with plasmin inhibitors to inhibit 
proteolytic responses triggered by the peritoneal–ovarian 
cancer cell interaction is a promising strategy to inhibit 
ovarian cancer metastasis.
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