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Abstract

Maintaining genomic integrity is essential to preserve normal cellular physiology and to
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prevent the emergence of several human pathologies including cancer. The breast cancer  » BRrRcA2
susceptibility gene 2 (BRCA2, also known as the Fanconi anemia (FA) complementation » homologous

group D1 (FANCDT)) is a potent tumor suppressor that has been extensively studied in
DNA double-stranded break (DSB) repair by homologous recombination (HR). However,
BRCAZ2 participates in numerous other processes central to maintaining genome
stability, including DNA replication, telomere homeostasis and cell cycle progression.
Consequently, inherited mutations in BRCA2 are associated with an increased risk of
breast, ovarian and pancreatic cancers. Furthermore, bi-allelic mutations in BRCA2 are
linked to FA, a rare chromosome instability syndrome characterized by aplastic anemia
in children as well as susceptibility to leukemia and cancer. Here, we discuss the recent
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developments underlying the functions of BRCA2 in the maintenance of genomic
integrity. The current model places BRCA2 as a central regulator of genome stability by

repairing DSBs and limiting replication stress. These findings have direct implications for
the development of novel anticancer therapeutic approaches.
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Introduction

Our genome is continuously exposed to DNA-damaging
agents such as ionizing radiation, ultraviolet light or
DNA replication errors that can generate cytotoxic DNA
lesions. The range of DNA lesions include single- (SSBs)
and double-stranded DNA breaks (DSBs), inter- and
intrastrand DNA crosslinks, base depurination and
deamination as well as oxidative damage (reviewed in
Goldstein & Kastan (2015)). These lesions interfere with
basic cellular processes and can result in DNA replication
errors, stalled transcription complexes or missegregation
of chromosomes during mitosis. Ultimately, the
mutagenic potential of DNA lesions may lead to genomic
rearrangements, a hallmark of cancer cells. Persistent
DNA damage is also linked to several human pathologies,

including neurodegenerative  diseases, infertility,
developmental disorders, immunodeficiency syndromes
and accelerated aging.

To circumvent the threat posed by DNA-damaging
agents, cells have evolved highly complex and specific
DNA damage responses that detect, signal and ultimately
repair these lesions throughout the cell cycle (reviewed
in Helleday et al. (2014)). Although each type of DNA
lesion activates a different pathway, there is a certain
degree of overlap to maximize genome integrity. In that
regard, BRCA2 plays an essential role in several DNA
repair pathways, including DSB repair by homologous
recombination (HR) and DNA crosslink repair by the
FA pathway. The BRCAZ2 gene was identified in 1995
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(Wooster et al. 1995) and has been the subject of
intensive research over the past 20years. In this review,
we aim to summarize the most recent findings on the
role of BRCA2 in the maintenance of genome stability
and their implications for the development of new
therapeutic approaches. The first part of this review is
dedicated to the critical domains of the BRCA2 protein
while the subsequent sections detail the role of BRCA2
in HR and replication fork protection. We also address
the importance of BRCA2 in FA-dependent DNA repair as
this pathway is essential to resolve DNA crosslink during
replication.

BRCAZ2 structural and functional domains

The human BRCAZ2 gene is located on the long arm of
chromosome 13 (13q12.3) and is composed of 27 exons
that encode for a protein of 3418 amino acids. BRCA2 has
no apparent enzymatic activity despite initial conflicting
evidence concerning a role in histone acetylation (Fuks
et al. 1998, Siddique et al. 1998, Shin & Verma 2003,
Choi et al. 2012). Due to its large size, the structural and
functional characterization of BRCA2 has been particularly
challenging; however, the recent reconstruction of full-
length BRCA2, generated by electron microscopy, has

revealed that it exists predominantly as a homodimer
and has provided better mechanistic insights into the role
of BRCA2 in DNA repair (Shahid et al. 2014). Several key
structural elements have been identified in BRCA2 over
the past two decades (Fig. 1): the BRC repeats, which
consist of eight conserved motifs of about 35 amino
acids (Bork et al. 1996, Bignell et al. 1997, Wong et al.
1997); the DNA-binding domain (DBD) composed of a
long helical domain (HD) and three oligonucleotide/
oligosaccharide-binding (OB) folds (Yang et al. 2002);
and finally the C-terminal TR2 domain (Sharan et al.
1997). BRCA2 is a predominantly nuclear protein and
its subcellular localization is controlled by two distinct
nuclear localization signals (NLSs) (Yano et al. 2000) and
a masked nuclear export signal (NES) (Jeyasekharan et al.
2013). Finally, BRCA2 acts as a hub and recruits several
regulatory proteins including RADS1 (Mizuta et al.
1997, Sharan et al. 1997, Chen et al. 1998b), the partner
and localizer of BRCA2 (PALB2)/FANCN (Sy et al. 2009,
Zhang et al. 2009a,b) and FANCD2 (Hussain et al. 2004),
supporting the notion that BRCA2 is a multifunctional
protein involved in several biological pathways (Fig. 2).
In the following sections, we will detail the relevance
of these unique regions with regard to the functions of
BRCA2 in maintaining genomic stability.
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Figure 1

Structural domains and interaction partners of BRCA2. The N-terminal domain of BRCA2 is involved in several protein-protein interactions, including
PALB2 and EMSY. BRCA2 contains eight BRC repeats located in the central portion of the protein; they are primarily involved in binding to monomeric
RAD51, although they also are implicated in additional protein-protein interactions (PDS5B/APRIN and Poln). The BRCA2 DNA-binding domain (DBD) is
composed of a helical domain (HD), three oligonucleotide/oligosaccharide-binding (OB) folds and a Tower domain (T). They promote BRCA2 binding to
single-stranded DNA (ssDNA) and poly(ADP-Ribose). This domain also associates with DSS1. Adjacent to the DBD is a phenylalanine-proline-proline
(PhePP) motif involved in the interaction with DMC1. This region is also implicated in the binding of FANCD2. The C-terminus of BRCA2 contains the TR2
domain, which interacts with RAD51 nucleofilaments. It also contains two distinct nuclear localization signals (NLSs) that are critical for BRCA2 nuclear
localization. BRCA2 is posttranslationally modified by several cyclin-dependent (CDK, PLK1) and DNA damage-dependent (ATM/ATR, CHK1/2) kinases.
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BRCAZ2 functions in the maintenance of genome stability. Bound to
BRCA1 and PALB2, BRCA2 participates in multiple biological processes
that are critical to maintain genome stability. First, BRCA2 is a key player
in the repair of DNA lesions including DNA double-strand breaks (DSBs)
and intrastrand crosslinks (ICLs). Moreover, BRCA2 has a DNA repair-
independent function: it prevents nucleolytic degradation at stalled
replication forks. Both of these functions are directly or indirectly
involved in the maintenance of telomeres. BRCA2 is required for the
processing of R-loops in collaboration with the TREX-2 complex. More
recently, BRCA2 has been involved in mitophagy and the clearance of
damaged mitochondria, thereby indirectly preserving genome stability.

BRCA2 is a central mediator of DSB
repair by HR

DSBs are considered the most cytotoxic DNA lesions as
one single unrepaired DSB can result in cell death (Bennett
etal. 1993, Sandell & Zakian 1993). Furthermore, DSBs can
lead to major genomic rearrangements including loss of
chromosome segments and chromosomal translocations.
Two main and mechanistically different pathways
have evolved to repair these challenging DSBs: classical
nonhomologous end joining (C-NHEJ) and HR (reviewed
in Betermier et al. (2014), Guirouilh-Barbat et al. (2014)).
Importantly, C-NHE] is active throughout the cell cycle,
unlike HR, which is restricted to the S/G2 phases. C-NHE]
requires little to no DNA end processing and functions
by rapidly ligating both DNA ends. On the other hand,
HR requires the formation of extended 3’ single-stranded
DNA (ssDNA) tracks for homology search and strand
invasion, a process called DNA end resection (Fig. 3). DNA
repair pathway choice is controlled in mammalian cells
by the tumor suppressors p53-binding protein 1 (53BP1)
and BRCA1, which have an antagonistic relationship
(Chapman etal. 2012, Escribano-Diaz et al. 2013, Tang et al.
2013). In G1 phase of the cell cycle, 53BP1 accumulates at
DSBs by binding to dimethylated histone H4 (H4K20me2)
(Huyen et al. 2004) and DSB-induced ubiquitylated Lys15
of histone H2A (H2AK15UDb) (Fradet-Turcotte et al. 2013).
It results in an increased mobility of the chromatin
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surrounding the DSBs (Krawczyk et al. 2012, Lottersberger
etal. 2015), although it remains unclear whether this is the
case for all DNA breaks in the nucleus (Kruhlak et al. 2006,
Soutoglou et al. 2007, Roukos et al. 2013). Additionally,
53BP1 promotes the recruitment of downstream effectors
including the replication timing regulatory factor 1 (RIF1)
(Chapman et al. 2013, Di Virgilio et al. 2013, Escribano-
Diazetal. 2013, Feng et al. 2013, Zimmermann et al. 2013),
pax transactivation domain-interacting protein (PTIP)
(Callen et al. 2013) and MAD2 mitotic arrest deficient-like
2 (MAD2L2) (Boersma et al. 2015, Xu et al. 2015), which
are thought to limit the accessibility of BRCA1 to DSBs,
thereby inhibiting DNA end resection. A recent report
suggests that the association of PTIP with the nuclease
Artemis (Wang et al. 2014) commits the cell into repairing
DSBs by C-NHE]. Altogether, these effector proteins
promote C-NHEJ-mediated DSB repair preferentially in
G1 phase of the cell cycle (reviewed in Zimmermann &
de Lange (2014)).

In S/G2 phases, BRCA1 is recruited to DSBs, along
with CtBP-interacting protein (CtIP) and the MRE11/
RADS0/NBS1 (MRN) complex, to facilitate the optimal
initiation of DNA end resection (reviewed in Lamarche
et al. (2010); Fig. 3); however, the contribution of BRCA1
in promoting DNA end resection is not completely
understood (Nakamura et al. 2010, Reczek et al. 2013,
Cruz-Garcia et al. 2014, Polato et al. 2014). Extensive
resection is subsequently carried out by the DNA
replication ATP-dependent helicase-like homolog (DNA2),
and the Exonuclease 1 (EXO1), with the help of the Bloom
syndrome helicase (BLM) (Gravel et al. 2008, Huertas et al.
2008, Mimitou & Symington 2008, Nimonkar et al. 2008,
2011, Zhu et al. 2008, Cejka et al. 2010, Niu et al. 2010,
Shim et al. 2010, Garcia et al. 2011). This two-step model
of DNA end resection is primarily based on findings
observed in yeast; therefore, it remains to be determined
whether it is fully transposable to human cells. Exposed
ssDNA stretches are rapidly coated by the Replication
Protein A (RPA) complex, which protects them against
nuclease cleavage and hairpin formation. In parallel
to facilitating DNA end resection, BRCA1 promotes the
recruitment of BRCA2 to DSBs (Chen et al. 1998a), a
pivotal step in HR-mediated DSB repair. Indeed, BRCA2
stimulates the displacement of RPA and the loading of
the RADS1 recombinase on ssDNA, thereby initiating
homology search, strand invasion and strand exchange.
Here, we discuss how BRCA2 promotes RADS1-mediated
HR via its functional and structural domains. Furthermore,
we review the different interactions involving BRCA2 and
their relevance for HR-mediated DSB repair.
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Role of BRCA2 during DSB repair, ICL repair and stabilization of stalled replication forks. (A) DSB is first detected by the MRE11-RAD50-NBS1 (MRN)
complex, which triggers a cascade of phosphorylation and ubiquitylation events (not shown) that promote the recruitment of BRCA1 and CtIP to the
break (reviewed in Dantuma & van Attikum 2016). In S/G2 phase of the cell cycle, CtIP, along with the exonucleases Exo1 and DNA2-BLM, promotes
extensive DNA end-resection, a step that commits cells to repair DSBs by homologous recombination (HR). Next, loading of RAD51 on the 3’-resected
end by the concerted action of BRCA1/PALB2 and BRCAZ2 initiates homology search and the formation of a D-loop, a structure that results from the
invasion of the homologous template by the RAD51-coated DNA strand. DNA synthesis and processing of the D-loop by synthesis-dependent strand
annealing, gene conversion or break-induced replication repair complete this error-free DNA repair process. (B) Recognition and repair of ICLs is
initiated when two replication forks converge at the lesion. The subsequent recruitment of the proteins of the Fanconi anemia (FA) core complex
(FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, FANCM) along with FANCT, FAAP100, MHF1, MHF2, FAAP20 FAAP24 and BRCA1 triggers
monoubiquitylation of the heterodimer FANCI/FANCD2. Once activated, the heterodimer promotes nucleolytic incision at the converged replication
forks and releases the ICL from one of the strands. The latter incision, also referred as the ‘'unhooking’, is performed by a complex composed of the
nuclease scaffold (SLX4) and the endonucleases ERCC4-ERCC1, MUS81-EME1 and FAN1. Depending on their structure, the parental DNA strands will be
replicated by translesion synthesis (TLS) polymerases (REV1 or POLY) or repaired by HR. (C) Following replication fork stalling, forks need to be protected
from excessive resection. Although the exact molecular events that lead to their stabilization are still unclear, evidence support a role of BRCA1, BRCA2
and FANCD2 in promoting the loading of RAD51 at the fork, an event that is essential to protect the degradation of nascent strands by the nucleases
MRE11 and DNA2. Whether RAD51 is loaded on ssDNA that arises on the parental strand or on the nascent strand is unknown (Models 1 and 2). The
forks can be reprimed or restarted, a step that is orchestrated by the TLS polymerases. When submitted to sustained replication stress or when
replication forks are unable to bypass roadblocks, forks collapse and the intervention of nucleases generates DSBs that are subsequently repaired by HR.
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How does BRCAZ2 facilitate RAD51 loading on ssDNA?

Upon its discovery, BRCA2 rapidly emerged as a critical
component of the HR-mediated DSB repair pathway.
BrcaZ2 deletion, similar to Brcal (Gowen et al. 1996, Hakem
et al. 1996, Liu et al. 1996, Ludwig et al. 1997, Shen et al.
1998, Hohenstein et al. 2001) and Rad51 null mutants
(Lim & Hasty 1996, Tsuzuki et al. 1996), results in mouse
embryonic lethality (Sharan et al. 1997, Suzuki et al.
1997). Interestingly, cells homozygous for a truncated
BreaZ2 allele are hypersensitive to genotoxic agents (Patel
et al. 1998), providing the first direct evidence of BRCA2
involvement in DNA repair. This was further corroborated
when a direct role for BRCA2 in HR was demonstrated
in human and mouse cell lines using GFP-based reporter
assays developed to measure HR (Moynahan et al. 2001).

In the context of HR, the main function of BRCA2
is to promote the formation of RADS1 filaments on
ssDNA. This in turn allows homology search and DNA
strand invasion (Yuan et al. 1999), which is central to
initiating DNA synthesis using the invading strand
as a primer, and ultimately, HR-mediated DSB repair
(Fig. 3). BRCA2 binds to monomeric RADS1 via its BRC
repeats (Wong et al. 1997, Chen et al. 1998b) and the
crystal structure of the BRC4 repeat in complex with
RADS1 revealed that two distinct clusters of residues
in the BRC repeats control RAD51 binding (Pellegrini
etal. 2002, Galkin et al. 2005, Rajendra & Venkitaraman
2010). Although the BRC repeats are highly conserved
between mammalian species (Bignell et al. 1997), the
individual repeats differ greatly from one another
within a species, suggesting a specific role for each
BRC in RADS1 binding. In fact, the BRC repeats have
been subdivided into two groups (BRC1-4 and BRCS5-8)
that, via distinct mechanisms, facilitate the loading of
RADS1 onto ssDNA (Carreira & Kowalczykowski 2011).
Consistent with the role of the BRC repeats in contacting
RADS1, several mutations, which affect the structure of
the BRC repeats and thereby weaken RADS51 binding,
have been associated with cancer predisposition (Chen
etal. 1999, Li et al. 1999).

Apart from the BRC repeats, BRCA2 interacts with
RADS1 through its C-terminal TR2 domain. Instead of
binding to monomeric RADS1, the TR2 domain stabilizes
RADS1 nucleofilaments (Davies & Pellegrini 2007, Esashi
etal. 2007). Several findings suggest that the C-terminal
region of BRCA2 is critical for HR-mediated DSB repair.
For instance, overexpression of the TR2 domain in
wild-type human cells results in a 50% reduction in
an HR-mediated DSB repair assay (Esashi et al. 2005).
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Furthermore, cells lacking the C-terminal region of
Brca2 are hypersensitive to irradiation (Morimatsu
et al. 1998, Donoho et al. 2003) and display reduced
HR activity in GFP-based reporter assays (Moynahan
et al. 2001, Tutt et al. 2001), providing direct evidence
of the importance of the TR2 domain in DSB repair.
This has been further corroborated in mice, where
Brca2 C-terminal deletion results in increased overall
tumor incidence and decreased survival (McAllister
et al. 2002, Donoho et al. 2003), as well as in human,
where the deletion of the C-terminal region of BRCA2
is associated with an early onset of breast and ovarian
cancers (Hakansson et al. 1997). Interestingly, minimal
constructs of BRCA2 encompassing the DBD and the
BRC repeats require the C-terminus of BRCA2 in order
to efficiently promote HR in Brca2 mutant hamster cells
(Siaud et al. 2011). Finally, CDK phosphorylation of the
TR2 domain has been shown to reduce BRCA2-RADS1
binding and promotes the disassembly of RADS1
complexes at the entry of mitosis (Esashi et al. 2005,
Davies & Pellegrini 2007, Esashi et al. 2007, Ayoub
et al. 2009), which could provide a way to turn off
HR-mediated DSB repair in mitosis. This step may be
critical to maintain genomic stability given that active
DSB repair jeopardizes proper chromosome segregation
in mitosis (Lee et al. 2014, Orthwein et al. 2014,
Benada et al. 2015). Phosphorylation of BRCA2
C-terminus by the checkpoint kinases CHK1/CHK2
may also be relevant for BRCA2 function in HR (Fig. 2)
(Bahassi et al. 2008). Altogether, these findings suggest
that the regulation of the function associated with
BRCA2 TR2 domain plays a central role in HR-mediated
DSB repair.

Importance of BRCA2 DBD during DNA repair

A large portion of BRCA2 is dedicated to binding
ssDNA: this function is mediated by a HD and three OB
folds within the BRCA2 DBD (Yang et al. 2002). Several
proteins involved in genome stability are characterized
by the presence of one or more OB folds, including RPA
(reviewed in Flynn & Zou (2010)). Interestingly, a fusion
protein of BRCA2 BRC repeats and the large RPA subunit
is able to partially restore HR in Brca2 mutant cells,
suggesting that the major function of the BRCA2 OB
folds is to target BRCA2 to ssDNA and thereby promote
RADS1 loading (Saeki et al. 2006). Among the BRCA2 OB
folds, OB2 contains an insert of 130 amino acids named
the tower domain, which improves binding to ssDNA
and has been inferred to bind dsDNA (Yang et al. 2002).
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Several cancer-associated BRCA2 mutations in the DBD
have been linked to defects in HR-mediated DSB repair
(reviewed in Guidugli ef al. (2014)), further testifying to
the importance of the DBD for BRCA2 function in HR.

The BRCA2 DBD does not exclusively bind ssDNA.
Indeed, the BRCA2 DBD associates with the deleted
in split hand/split foot 1 (DSS1) protein (Marston
et al. 1999), an interaction that is critical not only for
HR-mediated DSB repair but also for BRCA2 ability
to limit the accumulation of R-loops, a nucleic acid
structure composed of an RNA:DNA hybrid and a
displaced ssDNA (Sollier & Cimprich 2015). Initial
studies showed that DSS1 depletion results in the
persistence of RADS1 foci at DSBs (Gudmundsdottir
et al. 2004) and reduces BRCA2 protein levels (Li et al.
2006), but failed to define a clear role for DSS1 in HR.
Subsequently, DSS1 has been found to be involved
in masking a NES in BRCA2 and thereby controlling
both BRCA2 and RADS1 localization
(Jeyasekharan et al. 2013). New insight suggests also
that DSS1 physically interacts with RPA to promote its
unloading and its replacement by RADS1 on ssDNA
(Zhao et al. 2015).

Besides ssDNA, the BRCA2 DBD binds to poly(ADP-
ribose) (PAR) (Zhang et al. 2015). Interestingly, PARylation
mediates the rapid recruitment of BRCA2 to DNA lesions
upon laser microirradiation, which in turn promotes
EXO1 mobilization and DNA end resection (Zhang et al.
2015), suggesting a BRCA1l- and RADSI-independent
function of BRCA2 in HR.

nuclear

BRCAZ2 acts as a scaffold for additional
DSB-related factors

A significant portion of BRCA2 is dedicated to binding
RADS1. Nevertheless, BRCA2 is involved in additional
protein-protein interactions. In particular, the N-terminal
region of BRCA2 associates with the PALB2/FANCN (Xia
et al. 2006), which physically links BRCA1 to BRCA2 in a
cell cycle-dependent manner (Sy et al. 2009, Zhang et al.
2009a,b, Orthwein et al. 2015). This interaction is critical
for the recruitment of BRCA2 to DSBs and for its role in
HR (Xia et al. 2006, Oliver et al. 2009, Sy et al. 2009, Zhang
et al. 2009a,b). Mutations in either BRCA2 or PALBZ2 that
disrupt this interaction result in a drastic reduction in
HR-mediated DSB repair. Importantly, these mutations
are associated with breast cancer predisposition and FA
syndrome (reviewed in Pauty et al. (2014) and Guidugli
etal. (2014)).
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Several additional interactions involving BRCA2 have
been identified and studied in HR-mediated DSB repair. In
particular, BRCAZ2 interacts with the nuclear protein EMSY
through its N-terminus. This interaction may play a role in
chromatin remodeling at DSBs (Hughes-Davies et al. 2003,
Cousineau & Belmaaza 2011), but its exact relevance to
DSB repair requires further investigation. The cohesin-
associated protein PDSSB/APRIN is another BRCA2-
interacting protein that is important for HR. Unlike PALB2
and EMSY, PDS5B interacts with BRCA2 through its first
BRC repeat in a cell cycle-dependent manner; abrogation
of this interaction or depletion of endogenous PDSSB
by RNA interference results in a significant reduction in
HR (Brough et al. 2012). The importance of the PDSSB-
BRCA2 interaction in DSB repair was further confirmed in
Drosophila, where it has recently been shown to be involved
in HR-dependent meiotic recombination at the nuclear
envelope (Kusch 2015). The role of BRCA2 in meiosis is
not restricted to its interaction with PDS5B. Indeed, loss
of Brca2 in plants (Siaud et al. 2004, Seeliger et al. 2012)
and mice (Sharan et al. 2004) led to impaired meiosis,
likely due to Brca2 binding with the meiosis-specific
recombinase DNA meiotic recombinase 1 (DMC1) via a
phenylalanine-proline-proline (PhePP) motif in BRCA2
(Dray etal. 2006, Thorslund et al. 2007, Seeliger et al. 2012).
Nevertheless, disruption of the PhePP motif in mice had
no impact on meiosis (Biswas et al. 2012), suggesting that
additional domains in BRCA2 mediate its function during
meiosis. Indeed, a recent report showed that the BRC
repeats of BRCA2 directly bind to DMC1 and stimulate
DMC1-mediated DNA strand exchange (Martinez et al.
2016). Altogether, BRCA2 coordinates both RADS1-
and DMCl-mediated recombination events, thereby
promoting DSB repair in both somatic and germinal cells.

BRCA2 is a guardian of genomic stability
upon replication stress

DNA replication fork stalling represents a constant threat
for the maintenance of genomic integrity (Zeman &
Cimprich 2014). To circumvent replication stress, cells
have evolved complex responses that prevent replication
forks from collapsing and that deal with roadblocks which
restrain their progression (Berti & Vindigni 2016). Here,
we discuss the role of BRCA2 in the protection and restart
of stalled forks as well as in the processing of transcription-
induced DNA:RNA hybrids (R-loops). Finally, we review
the novel therapeutic approaches that have emerged from
these findings.
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BRCA2 protects stalled replication forks from nucleolytic
degradation

During DNA replication, progression of the replication
forks can be hampered by many elements including DNA
lesions (base damages, SSBs, ICLs), secondary structures
(G-quadruplex and R-loops), repetitive elements and
nucleotide pool depletion (Zeman & Cimprich 2014).
This process triggers an ataxia telangiectasia mutated
(ATM)- and Rad3-related (ATR)-dependent signaling
pathway that activates a cell cycle checkpoint and
facilitates replication fork processing (reviewed in Flynn &
Zou (2011)) (Fig. 3). Depending on the nature and the
persistence of the stress, stabilized forks can either restart
or collapse (Berti & Vindigni 2016). To promote restarting
of forks, nascent strands need to undergo limited
resection. While the exact mechanism by which resection
contributes to the processing of stalled replication
forks is currently unknown, both its inhibition and its
overactivation are detrimental for replication fork restart
(Buis et al. 2008, Hashimoto et al. 2010, Schlacher et al.
2011). Two key nucleases, the meiotic recombination
11 (MRE11) and DNA2, are thought to drive this step
(Costanzo et al. 2001, Trenz et al. 2006, Hashimoto et al.
2010, Buisson et al. 2014, Thangavel et al. 2015); however,
the mechanism(s) by which these nucleases recognize
and process stalled forks remain unclear. Recent studies
suggest that poly (ADP-ribose) polymerase 1 (PARP1)
and the histone methyltransferase complex PTIP/mixed-
lineage leukemia protein 3 et 4 (MLL3/4) promote the
recruitment of MRE11 to stalled forks (Bryant et al. 2009,
Ying et al. 2012, Chaudhuri et al. 2016). On the other
hand, DNA2 acts together with the Werner syndrome
ATP-dependent helicase (WRN) at reversed replication
forks (Thangavel et al. 2015). The current model proposes
that DNA2 and MRE11 accumulate on different types
of stalled forks depending on their structures and the
moment at which they appear (Karanja et al. 2014, Higgs
etal. 2015, Thangavel et al. 2015). Nevertheless, the recent
finding that the Fanconi-associated nuclease 1 (FAN1) is
also implicated in replication fork recovery (Lachaud et al.
2016, Chaudhury et al. 2014) suggests that this model is
much more complex than initially anticipated.

Limited resection that occurs at stalled forks needs
to be tightly regulated as uncontrolled nucleolytic
degradation leads to genomic instability in Fanconi
anemia (FA)- and BRCA1/2-deficient cancer cells
(Schlacher et al. 2011, Schlacher et al. 2012, Ying et al.
2012, Berti & Vindigni 2016). BRCA2 is a key player
in the processing of replication forks. For instance,
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stalled replication forks, characterized by the formation
of Y-shaped DNA intermediates on two-dimensional gel
electrophoresis, disappear quickly after replication stress
is induced in BRCAZ2-deficient cells (Lomonosov et al.
2003). Although BRCA2 has never been detected at stalled
replication forks, its colocalization with PALB2, RADS1,
proliferating cell nuclear antigen and RPA at replication
stress-induced foci (Buisson et al. 2014) and its ability
to protect the nascent DNA strand from degradation by
MREI11 in DNA fiber assays (Schlacher et al. 2011, Ying
et al. 2012, Buisson et al. 2014) suggest that it plays a
direct role in stalled replication fork processing. The
current model places RADS1 nucleofilament stabilization
by BRCA2 as a key step for the protection of nascent
replication tracks: nascent DNA strand protection
requires that BRCA2 interacts with monomeric RADS1
through its BRC repeats and stabilizes RADS1 filaments
via its TR2 domain (Schlacher et al. 2011). Consequently,
cells under replication stress block the CDK-mediated
phosphorylation of the TR2 domain (S3291) (Fig. 1),
which is known to abolish the binding of BRCA2 to
nucleofilaments (Esashi et al. 2005). This inhibition is
driven by ATR signaling and the components of the
core Hippo pathway, large tumor suppressor kinase 1
(LATS1) and Ras association domain family 1 isoform A
(RASSF1A) (Pefani et al. 2015). Interestingly, the inability
of a BRCA2 S3291A mutant to rescue the stalled fork
stability in BRCA2-deficient cells suggests that a dynamic
phosphorylation of this residue is required to complete
replication fork recovery (Schlacher et al. 2011). BRCA2
also promotes the association of RADS1 with stressed
replication forks by facilitating its phosphorylation by
polo-like kinase 1 (PLK1) (Yata et al. 2014). This function
relies on a direct interaction between the CDK2-
phosphorylated N-terminal domain of BRCA2 (T77 site)
and the phospho-binding polo box domain of PLK1
(Fig. 1). Finally, stalled fork protection does not depend
on the ability of BRCAZ2 to interact with DNA, suggesting
that the main role of BRCA2 at stalled replication forks
is to load and stabilize polymerized RADS1 (Schlacher
etal. 2011).

BRCA2 partners contribute to replication
fork protection

As mentioned previously, BRCA1 and PALB2 promote the
recruitment of BRCA2 at DSBs, but recent findings suggest
that they may play a similar role at stalled replication
forks. Indeed, PALB2 colocalizes with BRCA2 at stalled and
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collapsed replication forks in HeLa cancer cells (Buisson
et al. 2014) and replication forks are destabilized in
Brcal-deficient mouse ES cells upon replication stress
(Schlacher et al. 2012).

Several factors, including FANCD2 and the newly
identified protein biorientation of chromosomes in cell
division 1 like (BODI1L), coimmunoprecipitate with
BRCA2 and promote stalled fork protection through the
stabilization of RADS1 filaments (Schlacher et al. 2012,
Higgs et al. 2015). BOD1L actively inhibits the processing
of nascent strands by DNA2, BLM and FBH1 proteins
(Higgs et al. 2015), but it remains unclear how the
interplay of BRCA2 and BOD1L is functionally relevant in
this context. Similarly, the BRCA2-FANCD2 interaction
has been observed in both two hybrids of yeast and
coimmunoprecipitation experiments (Hussain et al. 2004,
Wang et al. 2004, Higgs et al. 2015); however, its relevance
for stalled replication fork protection has yet to be
elucidated. FANCD?2 affects several important biological
pathways including DNA synthesis, replication fork restart
and alternative end-joining repair, all of which could
influence the recovery of stalled forks (Lossaint et al. 2013,
Kais et al. 2016, Lachaud et al. 2016, Michl et al. 2016).
As detailed in the following section, FANCDZ2 needs to be
monoubiquitylated to promote ICL repair; however, at
stalled replication forks, the role of this posttranslational
modification is largely debated (Schlacher et al. 2012,
Raghunandan et al. 2015). Furthermore, the involvement
of FANCD2 in resolving replication stress has mainly
been described in BRCA1/2-deficient tumors; thus, the
cooperation of FANCD2 with BRCA2 in the protection of
stalled replication fork is still debated in normal cells.

Recent findings involve additional factors in the
maintenance of genomic stability upon replication
stress. In particular, the nucleosome-remodeling factor
chromodomain helicase DNA-binding protein 4 (CHD4)
was recently shown to promote resistance to replicative
stress in BRCA 1/2-deficient cells (Guillemette et al. 2015,
Chaudhuri et al. 2016). Thus, the latter discovery provided
insight into the mechanism by which factors accumulate
at stalled replication forks impact its processing. Moreover,
it highlights the interesting possibility that new players in
the stabilization of replication remain to be identified.

Role of BRCA2 in replication forks processing

Cells must complete the replication of their genetic
material before division. To achieve this goal
while maintaining genomic stability, they have
evolved multiple alternative ways to deal with stalled
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replication forks. First, cells can counteract the presence
of DNA lesions by restarting stalled forks through fork
repriming or fork reversal (Berti & Vindigni 2016). While
fork repriming relies mainly on the activity of translesion
synthesis (TLS) polymerases (Berti & Vindigni 2016),
recent findings support a role of RAD51 and BRCA2 in
fork reversal and restart (Petermann et al. 2010, Yata
et al. 2014, Raghunandan et al. 2015, Zellweger et al.
2015). This observation remains debatable as replication
restart is not impacted in RAD51- and BRCA2-deficient
cells using a DNA fiber assay (Schlacher et al. 2011).

When replication forks prolonged
replication stress or when stalled forks failed to restart,
they collapse and their processing by nucleases such as
MUSS81 lead to the generation of one-ended DSBs (Berti
& Vindigni 2016) (Fig. 3). Repair of these breaks by HR
restores a proper template for DNA replication and limits
genomic instability. DSBs can also arise when replication
forks encounter roadblocks that are particularly hard to
bypass such as the covalent linkage between the Watson
and Crick strands of DNA that are formed in ICLs.
These DNA lesions are induced by compounds such as
platinum-based cisplatin or mitomycin C (MMC), and are
particularly toxic in patients that suffer from FA.

FA is a rare autosomal recessive disease caused by the
inactivation of one of the 19 FA genes and is characterized
by a spectrum of clinical disorders, including congenital
abnormalities, progressive bone marrow failure and
predisposition to cancer development (Ceccaldi et al.
2016). BRCA2 has been classified as an FA-like gene
following the discovery of a subgroup of patients
suffering from FA due to a mutation in BRCA2 (Howlett
et al. 2002). At the molecular level, the processing and
repair of ICLs is initiated by the coordinated action of the
FA core complex (composed of FANCA, FANCB, FANCC,
FANCE, FANCF, FANCG, FANCL, FANCM), as well as
FANCT, FAAP100, MHF1, MHF2, FAAP20, FAAP24 and
BRCA1, upon the convergence of two replication forks
to the lesion (reviewed in Ceccaldi et al. (2016); Fig. 3).
Following the accumulation of the FA core complex to
an ICL, monoubiquitylation of the FANCD2-FANCI
heterodimer by the E3 ubiquitin ligase FANCL promotes
its loading on chromatin. This ubiquitination event
is central to the recruitment of multiple downstream
effectors: the nuclease complexes that promote ICL
unhooking via DNA incision, the polymerases that
promote TLS and the HR proteins that promote DSB
repair (Zhang & Walter 2014). TLS polymerases enable
replication by bypassing a lesion on one DNA strand
while HR drives repair on the second parental strand
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where a one-ended DSB has been generated by the DNA
incision (Fig. 3). Interestingly, recombination-associated
DNA synthesis may also contribute to DNA repair at
stalled forks. In this condition, the interaction of BRCA2
and PALB2 with polymerase n (Poln) has been suggested
to promote the extension of D-loop substrates following
RADS51-mediated strand invasion (Buisson et al. 2014).
During these processes, BRCA2 has long been thought
to promote repair by its function in HR (discussed
previously). However, the importance of BRCA2 and
RADS1 in the protection of stalled forks raises the
possibility of their involvement in the stabilization/
processing of forks that encounter ICLs. Indeed, RADS1
localizes in the proximity of ICLs independently of
FANCD2 and before the detection of DSBs (Long et al.
2011, Wang et al. 2015). Further investigation will be
required to determine whether BRCA2 participates in the
loading of RADS1 at ICLs before the formation of DSBs.

BRCA2 safeguards the integrity of DNA against specific
secondary structures

Across the genomic landscape, the formation of
secondary structures challenges DNA replication
(Zeman & Cimprich 2014). In BRCA2-depleted cells, the
accumulation of R-loops as well as the inability of cells
to maintain telomere integrity (telomeres are G-rich
regions that can form G-quadruplexes) suggests that
BRCA2 facilitates DNA replication across challenging
DNA structures. Interestingly, the ability of BRCA2 to
process R-loops and maintain telomeres integrity may be
independent of its functions at stalled fork protection
and in DNA repair (discussed below).

BRCA2 limits R-loops accumulation R-loops are
highly stable structures that are formed when a nascent
RNA transcript interacts with a complementary DNA
sequence, a phenomenon that results in the formation of
an RNA:DNA hybrid and a displaced ssDNA. In normal
cells, R-loops often formed at gene promoters and
terminators, and their life time is regulated by RNAse
H1, which degrades RNA:DNA hybrids, and by putative
helicases (Aquarius Intron-Binding Spliceosomal Factor
(AQR) and senataxin (SETX)), which specifically unwind
R-loops (Sollier & Cimprich 2015). Although these loops
have an importantrole in the regulation of gene expression
and immunoglobulin class switching (reviewed in Sollier
& Cimprich (2015)), their uncontrolled accumulation
impedes the progression of replication forks and creates
genomic instability. R-loop-linked genomic instability is

23:10 T9

particularly exacerbated in BRCA1/2 tumors cells as well
as in cells isolated from FA patients (Kee & D’Andrea 2012,
Hatchi et al. 2015). Consistent with this observation,
depletion of BRCA2, BRCA1 or the FAgenes (FANCD?2,
FANCA, FANCM, FANCL) lead to the accumulation of
R-loop and to a concomitant increase in the number
of chromosomal aberrations in these cells (Bhatia et al.
2014, Garcia-Rubio et al. 2015, Hatchi et al. 2015, Schwab
et al. 2015). Nevertheless, it remains largely unclear how
R-loops promote genomic instability in this context.
Interestingly, R-loops do not accumulate in RADS1-
depleted cells, supporting a model where BRCA2 impacts
R-loop formation independently of its ability to recruit
and stabilize RADS51 on ssDNA (Bhatia et al. 2014). BRCA2
was proposed to limit the accumulation of R-loops by
cooperating with the TREX-2 complex, which is involved
in mRNP biogenesis and export (Bhatia et al. 2014). The
interaction of BRCA2 with TREX-2 complex may occur
via DSS1 (Fig. 1); however, further investigation will be
required to validate this hypothesis. The role of BRCA2
in preventing the formation of RNA:DNA hybrids differs
greatly from the role of BRCA1 in this process. Indeed,
the mutational signatures of specific transcription
termination sites are different in BRCA1- and BRCA2-null
tumors (Hatchi et al. 2015), supporting the hypothesis
that both BRCA proteins target R-loops in different regions
of the genome (Hatchi et al. 2015). Moreover, BRCA1
counteracts the accumulation of R-loops by recruiting
SETX to a subset of transcription termination regions
from highly transcribed genes (Hatchi et al. 2015). It is still
unclear how BRCA2 is involved in limiting R-loops, but as
mentioned above, other components of the FA pathway
contribute to their regulation. Thus, it is possible that
BRCAZ2 collaborates with FA genes to limit the appearance
of the RNA:DNA hybrids and its associated genomic
instability. In these conditions, resolution of R-loops is
dependent on the translocase activity of FANCM (Schwab
et al. 2015).

BRCA2 protects telomere integrity Telomeres are
another tedious DNA structure to replicate due to the
presence of a highly repetitive G-rich sequence (TTAGGG).
As the maintenance of telomeres is essential to prevent
genomic instability, two mechanisms safeguard their
integrity: (1) the maintenance of telomere length and
(2) the formation of a protective telomeric structure, the
T-loop or cap, which prevents their recognition by DNA
repair signaling (Doksani & de Lange 2014). Telomere
length is maintained by the concomitant actions of
the replication machinery and of a specialized reverse
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transcriptase (telomerase) (Blackburn & Collins 2011).
Alternatively, elongation is achieved by an HR-mediated
process, called the alternative lengthening of telomeres
(ALTs). Interestingly, HR factors such as RADS51 facilitate
the formation of T-loop structures (reviewed in Doksani &
de Lange (2014)).

The idea that BRCA2 is involved in telomere
maintenance originates from the observation that the
conditional knock-out (cKO) of Brca2 leads to telomere
shortening in mice (Badie et al. 2010, Min et al. 2012).
Although BRCA2 is required to load RADS1 on telomeres
(Badie et al. 2010), the exact mechanism by which it
safeguards telomere integrity is still not clearly defined.
The detection of telomere fusions in BRCA2 cKO cells
suggests that it facilitates telomere capping potentially by
modulating the formation of T-loops. Furthermore, the
presence of telomere abnormalities in these cells suggests
that BRCA2 is required to limit replication stress at
telomeres (Badie et al. 2010, Min et al. 2012). Consistent
with a role of BRCA2 in assisting the replication of G-rich
sequences at telomeres, a stabilizer of G-quadruplex
structures (pyrodostatin (PDS)) was shown to induce
lethality in BRCAZ2-deficient cells (Zimmer et al. 2016).
Thus, the current model proposes that BRCA2 safeguards
telomeric integrity by facilitating their replication
(Badie et al. 2010, Min et al. 2012, Zimmer et al. 2016).
Interestingly, BRCA1 participates in the protection of
stalled forks in G-quadruplex structures (Zimmer et al.
2016) but is dispensable for the maintenance of telomere
length (Badie et al. 2010). Altogether, these findings
suggest that the role of BRCA2 in the maintenance of
telomeres is independent of BRCA1.

Novel therapeutic approaches

Multiple chemotherapeutic agents induce replication
stress either by producing DNA damages that block
replication fork progression (such as alkylating agents
(temozolomide, MMC, etc.) and platinum compounds
(cisplatin, carboplatin, etc.)) or by slowing down their
progression via the depletion of nucleotide pools
(such as nucleoside and base analogs (gemcitabine,
5-fluorouracil, etc.)) (Dobbelstein & Sorensen 2015).
Tumors that are deficient in BRCA1/2 genes are
particularly susceptible to these replication poisons
as they are neither efficient at protecting cells from
replication stress nor capable of repairing DSBs by
HR (detailed within this special issue by Dhillon et al.
(2016)). Consequently, these tumor cells ultimately die
from high levels of genomic instability.
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Aside from these traditional chemotherapeutics,
compounds targeting the signaling cascade that
are triggered upon ssDNA damage can also induce
replication stress (Dobbelstein & Sorensen 2015). Among
those, small molecules that inhibit the function of
PARP1 (PARP inhibitors (PARPi)) are particularly potent
at inducing cell death in BRCAI/2-deficient tumors
(Bryant et al. 2005, Farmer et al. 2005). Unfortunately,
tumors acquire resistance to PARPi through the
restoration of HR-mediated DSB repair. For instance,
relapse is observed when cells acquire mutations in
genes that block DNA end resection (53BP1, MALD2L2)
in BRCAI-deficient cells while secondary mutations in
BRCAZ2 can rescue its functions in HR (Lord & Ashworth
2013). Resistance of the tumors to PARPi thus raise new
challenges for cancer treatment.

Interestingly, recent findings in BRCAI/2-deficient
cells revealed that resistance to PARPi can occur in an
HR-independent manner by acquiring mutations that
rescue replication fork stability (Chaudhuri et al. 2016,
Kais et al. 2016, Michl et al. 2016). Deletion of PARPI,
PTIP and CHD4 as well as FANCD2 overexpression
provide increased resistance to replication stress in
BRCA1/2-deficient cells (Schlacher et al. 2012, Guillemette
et al. 2015, Chaudhuri et al. 2016, Kais et al. 2016, Michl
et al. 2016). Although the exact mechanisms by which
these proteins participate in the stabilization of stalled
replication forks remain elusive, these observations
provide a rational to target these factors in the case of
relapse/resistance to current therapies. The lethality
induced by FANCD2 abrogation in BRCA2-deficient cells
(Michl et al. 2016) can be exploited therapeutically to
treat BRCA2-deficient tumors. Similarly, the mediator
of RAP8O interactions and targeting subunit of 40kDa
(MERIT40), a subunit of the receptor-associated protein
80 (RAP80) ubiquitin recognition complex involved in
the targeting of BRCA1 to DNA damage sites, has recently
been implicated in the processing of ICLs and could be
an interesting target for anticancer therapy (Jiang et al.
2015). Indeed, the increased chromosomal aberrations
observed in Merit40- and Brca2-deficient mouse embryonic
fibroblasts highlights the relevance of targeting MERIT40
in BRCA2-deficient tumor cells.

Although cell death is not an obligate immediate
consequence of replication stalling (Schlacher et al. 2011,
2012), cells that are unable to deal with replication stress
accumulate high levels of chromosomal aberrations. The
mechanisms by which replication poisons promote cell
death in tumors undergoing high levels of replication
stress are elusive. Nevertheless, excessive replication
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stress and concomitant synthetic lethality occurs in
BRCAZ2-deficient mice as well as in human cells treated
with pyridostatin (PSD), a small molecule that stabilizes G4
structures that assemble on G-rich DNA strands (Zimmer
etal. 2016). Consistent with the ability of this molecule to
stabilize replication roadblocks, PSD leads to replication
stress in cells depleted in BRCA1 or RADS1 (Zimmer et al.
2016). Thus, PSD could provide a therapeutic alternative
for treating BRCA1/2-deficient tumors. Importantly, it
may provide another ways to counteract the growth of
BRCA1-deficient tumors that have acquired resistance to
the PARP inhibitor Olaparib through the loss of 53BP1 or
MADZ2L2, as PSD efficacy is conserved in these conditions
(Zimmer et al. 2016).

Conclusion and future directions

BRCA2 is a key player in the maintenance of genomic
stability. In the past few years, we have witnessed
major contributions delineating the role of BRCA2 in
HR-mediated DSB repair. Moreover, we have come to
the understanding that BRCA2 is a central factor in
the protection of stalled replication forks. Aside from
these functions, this multifaceted protein is involved
in numerous other biological processes that impact
genome stability, including chromosome segregation
during mitosis and cell cycle progression (addressed in
Lee 2014). Indeed, aneuploidy is a common feature of
BRCAZ2-deficient cells and this phenomenon is linked
to BRCA2 functions in the regulation of centrosome
duplication (Schlacher et al. 2012, Guillemette et al. 2015,
Chaudhuri et al. 2016, Kais et al. 2016, Michl et al. 2016),
cytokinesis (Daniels et al. 2004, Mondal et al. 2012) and
spindle assembly checkpoint during M phase (Choi et al.
2012). Future investigation will be vital to understand how
the integration of all BRCA2 functions preserves genome
integrity. In particular, in vivo phosphorylation of BRCA2
by the ATM and ATR has been detected in response to DNA
damage (Matsuoka et al. 2007); however, its biological
relevance has yet to be determined. Furthermore, novel
functions of BRCA2 have been reported and could
influence our model of its role in genome stability.
Although BRCAZ2 functions have so far taken place in the
nucleus, a recent study raises the intriguing possibility
that BRCA2, along with BRCA1 and multiple proteins
of the FA pathway (FANCA, FANCE FANCL, FANCD2),
facilitates mitophagy, a cytoplasmic process that targets
damaged mitochondria to selective autophagy (Sumpter
et al. 2016). Mitophagy is critical to maintain low level
of mitochondrial reactive oxygen species (mtROS),
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and recent evidence suggests that the accumulation of
mtROS impacts transformation and tumors progression
(Chourasia et al. 2015). Therefore, understanding BRCA2
functions in the cytoplasm may shed new light on its role
as a tumor suppressor. Collectively, efforts in elucidating
the different roles of BRCA2 have already offered exciting
opportunities to treat patients affected by BRCA2-
related pathologies. We believe that continued efforts in
BRCA2 research will open new therapeutic options for
the prevention and the treatment of breast, ovarian and
pancreatic cancer.
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