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Abstract

The circadian system is responsible for the temporal organisation of physiological 

functions which, in part, involves daily cycles of hormonal activity. In this review, 

we analyse the interplay between the circadian and endocrine systems in fishes. 

We first describe the current model of fish circadian system organisation and the 

basis of the molecular clockwork that enables different tissues to act as internal 

pacemakers. This system consists of a net of central and peripherally located 

oscillators and can be synchronised by the light–darkness and feeding–fasting cycles. 

We then focus on two central neuroendocrine transducers (melatonin and orexin) 

and three peripheral hormones (leptin, ghrelin and cortisol), which are involved 

in the synchronisation of the circadian system in mammals and/or energy status 

signalling. We review the role of each of these as overt rhythms (i.e. outputs of the 

circadian system) and, for the first time, as key internal temporal messengers that 

act as inputs for other endogenous oscillators. Based on acute changes in clock gene 

expression, we describe the currently accepted model of endogenous oscillator 

entrainment by the light–darkness cycle and propose a new model for non-photic 

(endocrine) entrainment, highlighting the importance of the bidirectional  

cross-talking between the endocrine and circadian systems in fishes. The flexibility of 

the fish circadian system combined with the absence of a master clock makes these 

vertebrates a very attractive model for studying communication among oscillators to 

drive functionally coordinated outputs.

Introduction

The circadian system is responsible for the temporal 
organisation of several physiological, metabolic and 
behavioural activities, allowing the functioning of animals 
to be synchronised with predictable environmental changes 
(i.e. zeitgebers). The light–darkness (LD) cycle is the most 
important external zeitgeber for the vertebrate circadian 
system (Hastings et al. 2007, Albrecht 2012, Schibler et al. 
2015), but food availability (Stephan 2002, Albrecht 
2012, Patton & Mistlberger 2013) and temperature cycles 

(Buhr et al. 2010, Poletini et al. 2015, Schibler et al. 2015) are 
also important. These environmental factors are considered 
the ‘inputs’ of the circadian system, whereas the rhythms 
that are generated are called the ‘outputs’ or ‘overt rhythms’. 
The circadian system is composed of a third element, the 
core clock, which is synchronised by the inputs and drives 
the outputs (Hastings et al. 2007, Albrecht 2012).

Daily locomotor activity and hormonal rhythms are 
two of the most studied outputs of the circadian system 
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in vertebrates. The dependence of melatonin, pituitary 
hormone and glucocorticoid rhythms on the LD cycle 
has been studied for decades in mammals (Pevet & 
Challet 2011, Kalsbeek  et  al. 2012, Lin  et  al. 2015) and 
fishes (Falcón  et  al. 2007, 2010). However, it is known 
that many other hormones and neuropeptides (orexin, 
ghrelin, leptin and insulin) also exhibit daily oscillations 
(Patton & Mistlberger 2013, Tinoco  et  al. 2014, Challet 
2015, Sánchez-Bretaño et al. 2015a, Schibler et al. 2015). 
Circadian clocks were once thought to be located only in 
the central nervous system. However, increasing evidence 
suggests that the circadian system is formed by a network 
of central and peripheral oscillators (including endocrine 
organs; Fig.  1) that are coordinated to drive the overt 
rhythms (Albrecht 2012, Schibler et al. 2015). In this more 
complex model of circadian organisation, hormones can 
not only directly control the circadian outputs but also 
participate in the synchronisation of other timekeepers, 
as shown in Fig. 1. This concept has been well-developed 
in mammals (Albrecht 2012, Patton & Mistlberger 2013, 

Challet 2015, Schibler et al. 2015), but remains practically 
unexplored in fishes.

In this review, we analyse the interplay between the 
circadian and endocrine systems in fishes. We first describe 
the current model of fish circadian system organisation. 
We then focus on two central messengers (melatonin 
and orexin) and three hormones (ghrelin, leptin 
and  cortisol) due to their importance in synchronising 
the circadian system in mammals and/or their recognised 
roles as nutritional status signals (Pevet & Challet 2011, 
Albrecht 2012, Patton & Mistlberger 2013, Challet 2015, 
Schibler  et  al. 2015). We consider these hormones as 
outputs, reviewing what is known to date about the origin 
of their rhythmicity and also as putative inputs, whereby 
they act as temporal endogenous messengers that may 
entrain endogenous clocks.

We do not discuss other important endocrine  
rhythms in fishes, such as the reproductive hormones, 
because they have been reviewed previously 
(Bromage et al. 1990, Falcón et al. 2010, Migaud et al. 2010, 
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Figure 1
The fish circadian system: a net of circadian oscillators. The fish circadian system is composed of a net of oscillators that are widely distributed 
throughout the entire organism. These oscillators are entrained by external inputs, such as the light–darkness and feeding–fasting cycles and should be 
linked to generate outputs (such as locomotor activity and metabolic rhythms) in a coordinated manner. The retina, pineal gland and probably some 
deep brain photoreceptors are directly targeted by light, which then entrains the endogenous clocks in such structures (shown in blue). Other organs 
that contain circadian clocks, such as the gut and liver, are probably targeted by any feeding- or metabolic-related signals, which mainly synchronise 
these oscillators to the energetic status of the animal (shown in green). The head kidney is probably entrained by both external signals (shown in 
purple). These endocrine organs (pineal gland, pituitary gland, gut, liver and head kidney) release hormones (melatonin, pituitary hormones, ghrelin, 
leptin and cortisol) in a time-dependent pattern, which may provide a temporal message to specific-hormone receptors. This diagram only shows the 
most studied endocrine organs that are functionally related to the circadian system; however, other oscillators also probably exist. The continuous lines 
indicate the connections that are currently known to exist in fishes, whereas the dashed lines illustrate hypothetical connections that have not yet been 
reported. ENC, other encephalic nuclei; HT, hypothalamus; PIT, pituitary gland. For more information, see the text.
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Nakane  et  al.  2013, Nishiwaki-Ohkawa & Yoshimura 
2016) and because the role of gonadal hormones as 
internal inputs in fishes has been less explored than other 
hormones to date (Nakane et al. 2013, Martins et al. 2015, 
Takeuchi et al. 2015).

Organisation of the fish circadian system

The fish circadian system consists of a variety of 
oscillators that are located in numerous (if not all) 
tissues (Fig.  1). The molecular functioning of this set 

of oscillators is similar in peripheral and central clocks 
and is based on translational–transcriptional feedback 
loops of a set of genes called clock genes, whose mRNA 
levels and proteins oscillate on a c. 24-h basis (reviewed 
in Reppert & Weaver 2002, Hastings et al. 2007, Albrecht 
2012, Schibler  et  al. 2015). The functioning of the fish 
molecular clock has been deeply studied in zebrafish 
(Danio rerio; reviewed in Cahill 2002, Vatine et al. 2011, 
Idda  et  al. 2012 and schematised in the core of Fig.  2). 
The main loop is formed by the positive elements brain 
and muscle ARNT-like 1 (Bmal1) and circadian locomotor 
output cycles kaput (Clock), which form a heterodimer 
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Figure 2
Hypothetical model of entrainment of circadian oscillators by light and hormonal inputs in fishes: putative mechanisms for the synchronisation of 
endogenous clocks. The molecular core of the endogenous oscillators is thought to be synchronised by exogenous (light) or endogenous (hormones) 
temporal messengers through the induction or repression of specific clock genes (for more information, see the text). Events that occur in the cytoplasm 
and nuclei (gene transcription) have not been separated to simplify the figure. In each box, only putative response elements that are involved in each 
response (light, cortisol or ghrelin) are shown. The molecular core of the clock, i.e. the feedback loops that sustain the 24-h clock gene oscillations, 
is represented as the central circle in red, with some of the main elements inside. This molecular mechanism can be entrained by the light–darkness cycle 
via the light-evoked induction of cry1 and per2, which involves functional E- and D-boxes and the Tef transcription factor in zebrafish (Tamai et al. 2007, 
Vatine et al. 2009, 2011). We also propose alternative mechanisms whereby hormones such as cortisol and ghrelin can entrain the molecular clocks. 
Cortisol induces per1a and per1b, while repressing bmal1a and clock in the goldfish liver, with this repression possibly being mediated by the Rev-erb 
transcription factor (Sánchez-Bretaño 2016). Ghrelin induces a variety of clock genes in the goldfish liver (Sánchez-Bretaño A, Blanco AM, Alonso-Gómez 
AL, Delgado MJ, Kah O & Isorna E, unpublished observations), which is mainly mediated by the PLC-PKC pathway and, to a lesser extent, the AC-PKA 
pathway (Sánchez-Bretaño 2016). AC-PKA, adenylyl cyclase-protein kinase A; CARE, calcium response element; CCG, clock-controlled genes; CRE, CREB 
response element; CREB-P, CREB phosphorylated; GHR, ghrelin receptor; GR, glucocorticoid receptor; GRE, glucocorticoid response element; PLC-PKC, 
phospholipase C-protein kinase C; RORE, RAR-related orphan receptor response element; Tef, thyrotroph embryonic factor; TF, transcription factor;  
TFRE, transcription factor response element.
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that acts as a transcription activator. This then binds to 
the E-box regulatory site in the promoter of the negative 
elements period (per) and cryptochrome (cry) to increase 
their expression. The dimer Per-Cry in turn inhibits the 
dimer Clock-Bmal (Reppert & Weaver 2002, Hastings et al. 
2007, Vatine  et  al. 2011, Albrecht 2012). The Clock-
Bmal heterodimer also induces the expression of genes 
known as clock-controlled genes, which are considered 
the outputs of the clock, by binding to the E-boxes 
in their promoters (Hastings  et  al. 2007, Vatine  et  al. 
2011, Albrecht 2012). The main loop is stabilised by 
an auxiliary loop that includes the retinoic acid-related 
orphan receptor (Ror) and Rev-erb transcription factors, 
which act through a Ror response element (RORE) site to 
regulate bmal1 transcription (Guillaumond  et  al. 2005, 
Albrecht 2012, Schibler  et  al. 2015). The functioning of 
this molecular mechanism is comparable in mammals 
and teleosts, with the involvement of homologous genes, 
although several copies of these genes have been reported 
in fishes (Vatine et al. 2011, Sánchez-Bretaño et al. 2015b).

Daily rhythms in clock genes (an essential property of 
endogenous clocks) have now been reported in a variety 
of tissues across several fish species, including the retina, 
pineal gland, brain, pituitary gland, liver, gut, gonads 
and head kidney (Park  et  al. 2007, Davie  et  al. 2009, 
Velarde et al. 2009, Huang et al. 2010, López-Olmeda et al. 
2010, Cavallari et al. 2011, Patiño et al. 2011, Azpeleta et al. 
2012, Martín-Robles et al. 2012, Nisembaum et al. 2012, 
Vera et al. 2013, Sánchez-Bretaño et al. 2015b,c, Costa et al. 
2016; Fig.  1). In these tissues, the transcripts of the 
positive elements of the core clock (bmal1 and clock1) peak 
during the photophase, whereas the transcripts of the 
negative elements (per and cry) increase at the end of the 
scotophase, as seen in the zebrafish model (Cahill 2002, 
Vatine et al. 2011). One exception to this pattern is the 
per2 gene, which is directly induced by light in zebrafish 
(Vatine et al. 2009) and likely other teleosts (Velarde et al. 
2009, Patiño et al. 2011, Nisembaum et al. 2012).

Cell-autonomous and self-sustaining clock gene 
rhythms have also been described in several cell lines 
cultured in vitro in zebrafish (Tamai  et  al. 2005) and 
cavefish (Phreatichthys andruzzii; Cavallari  et  al. 2011), 
but the existence of such widespread oscillations in vivo 
remains unknown. Recently, high day–night variations in 
per1b mRNA levels were observed in some diencephalic 
nuclei of goldfish (Carassius auratus), but no changes were 
observed in the telencephalon (Sánchez-Bretaño  et  al. 
2015c). Similarly, some brain structures of zebrafish 
lack some of the core clock genes, even if such areas are 

photosensitive (Moore & Whitmore 2014). This suggests 
that not all brain regions are endogenous oscillators 
in  vivo, highlighting the unresolved organisation of the 
circadian system in fishes.

It is evident that the organisation of the circadian 
system in fishes is less hierarchical than that in mammals, 
where the suprachiasmatic nuclei (SCNs) function as the 
master clock that entrains other central and peripheral 
oscillators (Albrecht 2012, Schibler  et  al. 2015). Such a 
master clock has not yet been clearly identified in fishes 
although the pineal gland plays a key role in its circadian 
system (Cahill 2002, Noche et al. 2011, Idda et al. 2012, 
Moore & Whitmore 2014, Sánchez-Bretaño et al. 2015c). 
Furthermore, the peripheral and central oscillators in 
fishes appear to be in phase or even more advanced in 
the peripheral tissues (Cermakian  et  al. 2000, Sánchez-
Bretaño  et  al. 2015c), suggesting that these pacemakers 
may be independently synchronised. In some fish species, 
the locomotor activity patterns are also flexible and 
dependent on food availability (goldfish; Aranda  et  al. 
2001, Feliciano et al. 2011) or metamorphosis (Senegalese 
sole, Solea senegalensis; Blanco-Vives  et  al. 2012). These 
characteristics of the fish circadian system make the 
investigation of endocrine signalling in the interplay 
among endogenous oscillators particularly interesting.

A model of the fish circadian system in which 
the oscillators are synchronised to different inputs is 
presented in Fig. 1. The LD cycles would entrain the light 
entrainable oscillators (LEOs) and the feeding–fasting 
cycles would entrain the food entrainable oscillators 
(FEOs). This classification is presented in a functional 
way, without involving anatomical structures, as the same 
tissue could be acting as a clock that is entrained by the 
LD cycles, the feeding–fasting cycles and perhaps other 
zeitgebers. The dependence of clock gene expression 
rhythms in the central and peripheral tissues on LD 
cycles has been demonstrated in a number of teleost 
species, including zebrafish (López-Olmeda  et  al. 2010), 
Atlantic salmon (Salmo salar; Huang et al. 2010), rainbow 
trout (Oncorhynchus mykiss; Patiño  et  al. 2011), goldfish 
(Nisembaum  et  al. 2012, Sánchez-Bretaño  et  al. 2015b), 
sea bream (Sparus aurata; Vera et al. 2013) or Nile tilapia 
(Oreochromis niloticus; Costa et al. 2016).

LD synchronisation is mediated by acute light-
induced effects on clock gene expression in both 
mammals (Hastings et al. 2007) and fishes (Cahill 2002, 
Vatine et al. 2011). Light resets the clock, inducing per2 
and cry1a expression in photosensitive structures via the 
D-box and E-box elements (Fig. 2; for more information 
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see Tamai et al. 2007, Vatine et al. 2009, 2011, Idda et al. 
2012). In vitro studies in zebrafish showed that all cells 
lines are light responsive, including those derived from 
peripheral tissues such as the heart or liver (Tamai et al. 
2005). Furthermore, per2 and cry1a are induced by light 
in multiple brain regions both in vivo and in vitro (Moore 
& Whitmore 2014), and rhythmic bioluminescence in 
per3-luciferase transgenic animals is re-entrained to new 
LD cycles in explants of encephalic regions (Moore & 
Whitmore 2014). However, in the same study, the authors 
demonstrated that not all brain nuclei are photosensitive, 
raising the possibility that even in zebrafish, the different 
oscillators are not as independently entrained by light as 
initially thought (Moore & Whitmore 2014). A widespread 
photosensitive ability may not be a rule in other teleosts 
as, to date, the existence of photoreceptors has been 
demonstrated in the pineal gland, retina and deep brain 
photoreceptors (Menaker et al. 1997, Davies et al. 2015, 
Hang  et  al. 2016; blue in Fig.  1), but not in peripheral  
tissues, although their existence cannot be ruled out 
(Davies  et  al. 2015). Indeed, goldfish per2 is not light  
induced in the liver in vitro (E Isorna, AL Alonso-Gómez 
& MJ Delgado, personal observations), suggesting that the 
liver of this teleost is not light sensitive, matching previous 
findings for the gut (Nisembaum et al. 2012). Thus, some 
unknown neural or endocrine messengers that connect 
photosensitive oscillators to other clocks are likely to exist 
in fishes. This hypothetical functional organization would 
enable the entrainment of these clocks to the LD cycle, as 
occurs in mammals (Hastings et al. 2007, Albrecht 2012, 
Schibler et al. 2015).

The fish circadian system is also very sensitive to 
feeding–fasting cycles (Fig. 1). The most robust evidence 
that rhythms in food availability synchronise the 
circadian system is the food anticipatory activity (FAA), 
i.e. the increase of locomotor activity in anticipation of 
feeding time (Stephan 2002). FAA has been demonstrated 
in numerous species of fishes, including goldfish 
(Aranda  et  al. 2001, Feliciano  et  al. 2011), zebrafish 
(López-Olmeda et al. 2010) or sea bream (Vera et al. 2013). 
Furthermore, it also occurs in the cavefish, which is a blind 
fish that somehow maintains a molecular clockwork over 
a c. 47-h period despite lacking entrainment by LD cycles 
(Cavallari et al. 2011). Thus, the functional organisation 
of the circadian system is highly adaptive, even when 
it is synchronised by less canonical zeitgebers such as 
feeding inputs.

A daily feeding schedule (under constant light) 
synchronises clock gene rhythms in the optic tectum, 
hypothalamus, liver and gut in goldfish, at both 

scheduled meal times, 10:00 and 22:00 (Feliciano  et  al. 
2011, Nisembaum  et  al. 2012). However, when the LD 
cycle is present, the rhythms exhibit greater amplitudes, 
suggesting that both environmental signals work together 
in sustaining the molecular clockwork, at least in the liver 
(Nisembaum  et  al. 2012, Sánchez-Bretaño  et  al. 2015b). 
When both zeitgebers (LD and feeding–fasting cycles) 
are present, the brain oscillators appear to be driven by 
the LD cycle, whereas the clock gene oscillations in the 
liver are more dependent on feeding schedule (zebrafish: 
López-Olmeda  et  al. 2010; sea bream: Vera  et  al. 2013). 
In  goldfish, a unique meal may shift the clock gene 
rhythms in the liver (Feliciano et al. 2011), which matches 
the findings in mammals, where a high dependence of 
clock liver entrainment on feeding cues has been reported 
(Stokkan  et  al. 2001, Kornmann  et  al. 2007, Patton & 
Mistlberger 2013). Exactly how feeding–fasting cycles 
entrain endogenous clocks remains unknown, but it is 
expected that hormones, metabolites or other energy 
sensor molecules that cycle with feeding status induce 
acute changes in clock gene expression that shift the 
clocks (Figs 1 and 2).

Melatonin

Melatonin (N-acetyl-5-methoxytryptamine) is a major 
player in controlling biological rhythms in vertebrates. 
It works as a neuroendocrine signal, transducing 
environmental information into the circadian system. 
Plasma melatonin levels show a characteristic nocturnal 
peak in all studied species, which is an exceptional feature 
compared with other rhythmic hormones, whose daily 
profiles are more variable through the 24-h cycle depending 
on different factors, such as the active/rest phase and the 
feeding time, among others. Melatonin nocturnal rhythmic 
profiles are classified into three types: a discrete peak in the 
late dark phase, a discrete peak in the mid-dark phase and 
an expanded peak throughout the dark phase (reviewed in 
Falcón  et  al. 2010). It is currently unclear whether these 
different profiles have functional implications.

Initially, this indole was described as a unique pineal 
gland metabolite. However, it has now been demonstrated 
that many other tissues also synthesise melatonin, such as 
the gastrointestinal tract (Vakkuri et al. 1985, Bubenik & 
Pang 1997). Four enzymes are involved in its biosynthetic 
pathway, with arylalkylamine N-acetyltransferase 
(AANAT) representing the rate-limiting step (Klein et al. 
2002). In Actinopterygii, at least two Aanats exist: Aanat1 
(mainly in extrapineal tissues) and Aanat2 (the main 
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enzyme in the pineal gland; Cazaméa-Catalan  et  al. 
2014), which have distinctive enzymatic properties. This 
peculiarity in the fish melatonin biosynthetic pathway 
may indicate the differential regulation of the synthesis 
of this indole depending on the isoform that is expressed 
in each tissue.

The pineal gland acts as a sensitive photometer 
that transduces the LD cycle into a hormonal signal, 
melatonin. In some species, this activity may also be 
indirectly modulated by other photosensory structures, 
such as retinal and/or deep brain photoreceptors 
(Migaud et al. 2006, 2007, Choi et al. 2016). The pineal 
gland of teleosts (except salmonids) contains all the 
necessary elements to be considered a real circadian 
clock, with the complete core machinery (Cahill 
2002, McStay  et  al. 2014). Melatonin secretion may 
be considered the main output of the pineal clock, 
which is considered a LEO. Its circadian rhythmicity 
is maintained under both an LD cycle and constant 
darkness conditions in vivo and in vitro (Bolliet  et  al. 
1996, Martinez-Chavez  et  al. 2008). Salmonids are the 
exception to this, as rhythmic melatonin synthesis does 
not occur in the absence of an LD cycle (Bolliet  et  al. 
1996, McStay  et  al. 2014). A molecular connection 
between the pineal clockwork and melatonin synthesis 
has been demonstrated through the existence of an E-box 
in the aanat2 promoter that binds the Clock-Bmal dimer 
(Appelbaum  et  al. 2006, Falcón  et  al. 2009, 2010). The 
retina shares many chronobiological characteristics with 
the pineal gland and can be considered a melatonin-
synthesising molecular clock in some, but not all, fish 
species. In the cyprinids zebrafish and goldfish, retinal 
melatonin rhythms are light sensitive and parallel those 
of the pineal gland (Cahill 1996, Iigo  et  al. 1997a). 
However, in rainbow trout (Besseau  et  al. 2006) and 
European sea bass (Dicentrarchus labrax; Iigo et al. 1997b), 
retinal melatonin production peaks during the daytime. 
Pineal melatonin has free access to the blood, which 
explains the close correlation between pineal synthesis 
and plasma melatonin levels and the huge reduction in 
plasma melatonin that is experienced after pinealectomy 
(Kezuka et al. 1992, Bayarri et al. 2003), which has very 
little effect on gut melatonin (Muñoz-Pérez et al. 2016).

Gastrointestinal melatonin has a different cellular 
origin (enteroendocrine cells; Fernández-Durán  et  al. 
2007, Muñoz-Pérez  et  al. 2016), but exhibits the same 
daily rhythmicity in its synthesis as observed for pineal 
melatonin. However, these daily patterns are particular 
to each species. For example, in goldfish, gut melatonin 
synthesis shows a clear circadian rhythm that is in phase 

with that of the pineal gland (Choi et al. 2016), whereas in 
Indian carp (Catla catla) it is in antiphase with the pineal 
and circulating levels (Mukherjee  et  al. 2014). In fishes, 
gut melatonin is not synchronised by photic information 
(e.g. goldfish: Choi et al. 2016), but rather by feeding time, 
with the acrophase occurring 2–6 h after feeding, and the 
gut melatonin rhythm being maintained after 8 days of 
starvation in Indian carp (Mukherjee & Maitra 2015). 
Similarly, gut melatonin in goldfish also exhibits this 
dependence on scheduled feeding (Vera et al. 2007). The 
close correlation between the acrophases of biosynthetic 
enzymes (aanat2 and hiomt2; Velarde et al. 2010) and clock 
genes (per1a, per2a and cry3; Nisembaum et al. 2012) in 
the goldfish hindgut supports the idea that gut melatonin 
rhythmicity is coupled to a gut molecular clock that may 
work independently of the pineal clock.

Melatonin acts by binding to melatonin receptors 
belonging to the G-protein-coupled receptor superfamily 
(Reppert et al. 1996). These receptors are widely distributed 
in the fish central nervous system and peripheral tissues 
(Park  et  al. 2006, Ikegami  et  al. 2008, Sauzet  et  al. 
2008), allowing the melatonin circadian message to be 
broadcast throughout the organism (Fig. 1). In fish, pineal 
melatonin is acting on some diencephalic areas of the 
hypothalamus–pituitary neuroendocrine axis (Ekström 
& Vanecek 1992), particularly the rostral preoptic area, 
lateral tuberal nucleus, ventromedial thalamic nucleus 
and the anterior periventricular nucleus, the putative 
homologous to the mammalian SCN (reviewed in 
Falcón et al. 2010). Retinal melatonin mainly has a local 
role, where it governs some of the daily rhythms, such 
as retinomotor movements (Zaunreiter et al. 1998) or the 
modulation of neurotransmitter release (Ribelayga  et  al. 
2004). Melatonin also entrains daily locomotor activity 
rhythms in mammals (Cassone  et  al. 1993), but this 
function has not been clearly demonstrated in fishes.  
A clear effect on locomotor activity pattern has only been 
found in some teleosts (goldfish and tench, Tinca tinca: 
López-Olmeda et al. 2006; European sea bass: Herrero et al. 
2007). Moreover, melatonin influences sleep in zebrafish 
(Elbaz et al. 2013, Gandhi et al. 2015).

Melatonin is one of the few hormones that is involved 
in the regulation of circannual rhythms in animals. 
In mammals, it has been well established that the pars 
tuberalis is important in regulating seasonal reproduction 
and that melatonin plays a role in modifying clock gene 
expression in this tissue (Hanon et al. 2008, Yasuo et al. 
2009). However, fish do not possess such an anatomically 
distinct pars tuberalis in the pituitary gland, and the 
involvement of melatonin in the fish reproductive cycle 
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is only supported by a few studies. However, effects of 
melatonin have been described at the hypothalamic 
(Popek  et  al. 2005, Alvarado  et  al. 2015), pituitary 
(Khan & Thomas 1996, Sébert  et  al. 2008) and gonadal 
(Chattoraj et al. 2005) levels.

The candidate function of melatonin as an input 
to the central circadian oscillator is supported by the 
observed coexpression of melatonin receptors with clock 
and per1b genes in some encephalic areas in rainbow 
trout (Mazurais  et  al. 2000) and goldfish (Sánchez-
Bretaño et al. 2015c).

In summary, pineal melatonin is the best known 
direct hormonal output of an endogenous clock that is 
entrained by LD cycles. This melatonin acts as a temporal 
messenger throughout the organism. It is likely that gut 
melatonin is also linked to putative peripheral clocks, 
which appear to be synchronised by different cues, such 
as feeding schedule.

Orexin

Orexins (orexin-A and orexin-B), which are also known 
as hypocretins, are neuropeptides that are derived 
from a single precursor polypeptide, pre–pro-orexin 
(Wong et al. 2011). The architecture of the orexin system 
(gene sequence, cell bodies, fibres and receptors) in the 
brain of fishes exhibits a general pattern that is common 
to all studied groups of vertebrates (Wong  et  al. 2011, 
López  et  al. 2014, Volkoff 2015a). The orexin system 
regulates neural activities that are responsible for 
coordinating daily functions across a range of taxa from 
fish to mammals, such as feeding behaviour, energy 
balance, locomotor activity and the sleep–wake cycle 
(reviewed in Matsuda et al. 2012, Gao & Hermes 2015).

Studies in fish have indicated that there are interac
tions between orexin signalling and the circadian system, 
as previously reported in mammals (Gao & Hermes 2015). 
Orexin fibres project to the pineal gland, the SCN (or its 
homologous in fish) and brain regions that are related to 
the regulation of sleep and arousal, such as the aminergic 
nuclei, raphe, locus coeruleus and histaminergic neurons 
(Wong  et  al. 2011, Volkoff 2012, López  et  al. 2014). 
Sleep-related experiments in zebrafish have shown that 
orexin-overexpressing larvae are hyperaroused and have 
dramatically reduced abilities to initiate and maintain 
rest at night (Prober  et  al. 2006); and orexin receptor-
knockout zebrafish exhibit short and fragmented 
sleep patterns (Yokogawa  et  al. 2007, Panula 2010). 
Experiments using this fish mutant have also indicated 

that orexin can modulate pineal melatonin production 
and sleep consolidation (Appelbaum  et  al. 2009). 
Furthermore, the number of synapses in orexin axons 
projecting into the pineal gland follows a daily rhythm 
in zebrafish larvae, which appears to be primarily driven 
by the circadian clock (Appelbaum et al. 2010). Consistent 
with these wake-promoting effects of orexin, increased 
activity of hypothalamic orexin neurons in zebrafish 
are associated with periods of increased locomotor 
activity (Naumann et al. 2010); and hypothalamic orexin 
expression in orange-spotted grouper (Epinephelus coioides; 
Yan et al. 2011), goldfish (Hoskins & Volkoff 2012a) and 
Atlantic cod (Gadus morhua; Hoskins & Volkoff 2012b) 
exhibits daily fluctuations, with the highest values 
occurring during the active phase.

Short-term periprandial changes in the expression of 
orexin have been observed in fishes. For example, orexin 
expression in the brain increases 1 h before the scheduled 
mealtime in Mexican blind cavefish (Astyanax fasciatus 
mexicanus; Wall & Volkoff 2013); and hypothalamic 
pre–pro-orexin expression peaks around mealtime and 
decreases after feeding in Atlantic cod (Xu & Volkoff 
2007) and orange-spotted grouper (Yan et al. 2011). These 
data suggest that orexin may serve as a short-term hunger 
signal and may be linked to FAA. Supporting this, orexin 
treatment was found to re-establish daily locomotor 
activity rhythms in goldfish that had been maintained 
in the absence of zeitgebers (constant light and fasted 
conditions) suggesting the involvement of this peptide in 
the generation of FAA (Nisembaum et al. 2014a).

These daily variations in orexin expression may 
be related to the daily rhythms of clock genes; indeed, 
daily variations in the hypothalamic expression of 
orexin in goldfish have been related to clock genes 
oscillations (Hoskins & Volkoff 2012a), and cross-
talking between orexin signalling and the molecular 
clockwork has also been recently reported in this 
species (Nisembaum  et  al. 2014a). The finding that per 
genes in the hypothalamus and foregut are upregulated 
3 h after an intracerebroventricular orexin injection 
indicates that this peptide may act as an input to these 
oscillators and regulate their daily functioning in goldfish 
(Nisembaum et al. 2014a). Moreover, in situ hybridisation 
studies in this teleost have revealed that some of the 
brain regions that exhibit day/night differences in per1b 
expression (Sánchez-Bretaño  et  al. 2015c) also possess 
orexin receptors (Facciolo et al. 2012). In this sense, recent 
data in mammals have suggested that the REV-ERBs may be 
involved in the repression of orexinergic gene expression 
(Feillet et al. 2015, Amador et al. 2016). However, to date, 
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it is unknown in fish if orexinergic genes may also be a 
clock target (Rev-erb target).

Together, these findings indicate that orexin not only 
is under the control of the molecular clock but also plays 
an important role in meal anticipation, acting as an input 
of the circadian system in fishes.

Leptin

Leptin is an anorexigenic peptide that regulates energy 
homeostasis in mammals and several fish species 
(reviewed in Gorissen & Flik 2014, Londraville et al. 2014). 
Several different leptin isoforms have been found in 
fishes, the main one of which is leptin-a (Londraville et al. 
2014). Leptin is predominantly expressed in the fish 
liver, which is an important energy-storing tissue, rather 
than in adipose tissue as in mammals (Gorissen & Flik 
2014, Londraville  et  al. 2014). Given its general role as 
an anorexigenic hormone, leptin expression is expected 
to increase after feeding and decrease after fasting, 
as reported in mammals, where plasma levels of this 
adipokine oscillate in a diurnal fashion, with increased 
values after food ingestion (Challet 2015, Kumar  et  al. 
2015). In fishes, leptin expression also exhibits an acute 
and transient postprandial increase in the liver, with 
hepatic leptin-a expression generally increasing 6 h and 
9 h after feeding in teleosts such as common carp (Cyprinus 
carpio; Huising et al. 2006), goldfish (Tinoco et al. 2012), 
Atlantic salmon (Moen & Finn 2013), orange-spotted 
grouper (Zhang et al. 2013) and Mandarin fish (Siniperca 
chuatsi; Yuan et al. 2016).

Daily variations in the mRNA expression of leptin 
and the subsequent expected changes in hormone 
circulating levels in the blood will also be linked to the 
daily locomotor activity rhythm, as this is a well-known 
output of the circadian system. To our knowledge, the 
daily profile of leptin expression in fishes has only been 
studied in Atlantic salmon (Moen & Finn 2013), goldfish 
(Tinoco et al. 2014) and zebrafish (Paredes et al. 2015) to 
date, in which the highest levels of hepatic expression 
occur at the end of the day. Thus, these species would be 
expected to experience an increase in blood leptin during 
the night, as this coincides with low nocturnal activity 
in goldfish and zebrafish. In mammals, the daily peak in 
circulating leptin also occurs during the fasting/sleeping 
period, with levels then declining before waking (reviewed 
in Patton & Mistlberger 2013, Challet 2015, Kumar et al. 
2015). All findings to date indicate that leptin facilitates 

a decreased appetite state during the inactive phase in 
animals, inhibiting the appearance of FAA.

One point that is still being debated is whether such 
a daily rhythm in leptin expression could be driven by 
endogenous oscillators. Under constant light conditions, 
leptin-a expression was rhythmic in goldfish that were 
fed at 10:00, but was not rhythmic in those that were 
fed at 22:00 or randomly, suggesting that feeding time 
alone cannot induce daily leptin rhythms in this species 
(Tinoco et al. 2014). These hepatic leptin-a rhythms also 
did not shift according to the feeding time in zebrafish 
under an LD cycle, indicating that light is probably the 
dominant synchroniser (Paredes et al. 2015). In addition, 
these daily leptin rhythms may also be regulated by 
rhythmic endogenous factors (hormones and food-
derived metabolites), as described in mammals (Challet 
2015, Kumar et al. 2015). In particular, the leptin rhythm 
in the goldfish liver is related to plasma glucose levels 
(Tinoco  et  al. 2014), with a postprandial glucose peak 
preceding the leptin peak, supporting the notion that 
leptin is induced by glucose in the hepatocytes of grass 
carp (Ctenopharyngodon idella; Lu et al. 2015).

A bidirectional link between the circadian system 
and leptin signalling has previously been described in 
mammals (Kettner  et  al. 2015). In adipose tissue, the 
rhythmic binding of the BMAL1/CLOCK heterodimer 
to the leptin promoter potentiates C/EBPα-mediated 
leptin transcription during the early sleeping phase in 
mice (Mus musculus). However, there is currently no 
direct evidence that the peripheral clock regulates leptin 
transcription in fishes, although bmal1a and clock1a 
transcripts are rhythmic in the goldfish liver, exhibiting 
acrophases during the light phase (Sánchez-Bretaño 2016) 
that precede the peak in leptin expression (Tinoco et al. 
2014). In mice, such regulation by the adipose clockwork 
is sufficient to drive diurnal oscillations of serum leptin, 
and the SCN pacemaker rhythmically potentiates the 
leptin-responsive neurons (Kettner et al. 2015). Therefore, 
this may explain the time-dependent effects of leptin on 
food intake in goldfish (Vivas et al. 2011). On the other 
hand, other studies on rodents have suggested that leptin 
can modulate circadian clocks, with in vitro experiments 
revealing that leptin leads to phase shifts in the SCN 
clock in rats (Rattus spp.; Prosser & Bergeron 2003, 
Inyushkin  et  al. 2009). In vivo experiments show that 
leptin injection potentiates behavioural light-resetting 
in mice, which is accompanied by a higher induction of 
the clock genes Per1 and Per2 in the SCN (Mendoza et al. 
2011). Moreover, it has been shown that genetically obese 
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mice (ob/ob, leptin deficiency; db/db, lacking the leptin 
receptor) exhibit disturbances in their peripheral clocks 
(Ando  et  al. 2011, Grosbellet  et  al. 2016). However, the 
modulation of circadian clocks by leptin in fishes remains 
unexplored.

Therefore, it seems that environmental (light and 
feeding) and endogenous (hormonal and metabolic) 
signals are involved in the daily leptin rhythms in fishes, 
and the leptin postprandial peak may provide post-
feeding cues to the central and/or peripheral clocks.

Ghrelin

Ghrelin is a peptide that acts as a pleiotropic hormone 
in vertebrates. It has been implicated in the stimulation 
of growth hormone release from the pituitary, feeding 
and metabolism regulation and reproduction, among 
other functions, in both mammals (Al Massadi  et  al. 
2015, Müller  et  al. 2015) and fishes (Kang  et  al. 2011, 
Shahjahan  et  al. 2014). As in other vertebrates, ghrelin 
in fishes is mainly synthesised in the intestinal tract, as 
well as in the brain (Kaiya  et al. 2011, Eom  et al. 2013, 
Zhou et al. 2014, Ji et al. 2015, Volkoff 2015a,b).

Over the last few years, several pieces of evidence 
have indicated a putative crosstalk between ghrelin and 
the circadian system in mammals. Plasma ghrelin levels 
display a daily rhythm that is related to the feeding cycle 
in many species (Cummings et al. 2001, Bodosi et al. 2004, 
Miura  et  al. 2004, Sanchez  et  al. 2004, Laermans  et  al. 
2015), exhibiting a preprandial rise before each meal 
followed by a postprandial decrease in both diurnal and 
nocturnal mammals (Al Massadi  et  al. 2015, Jha  et  al. 
2015, Müller  et  al. 2015). In vitro experiments in mice 
have demonstrated that ghrelin appears to work as an 
output of a FEO that is located in the oxyntic cells of 
the stomach (LeSauter et al. 2009, Laermans et al. 2015). 
Furthermore, FAA is significantly reduced in rodents that 
lack ghrelin receptors (LeSauter et al. 2009), and systemic 
administration of ghrelin activates a subset of specific 
neurons in the medial hypothalamus during FAA (Van der 
Plasse et al. 2013). Ghrelin also induces phase advances in 
the electrical activity of neurons in mouse SCN explants 
and promotes a phase advance in the rhythm of per2 
expression, suggesting that it affects the SCN clockwork 
(Yannielli et al. 2007).

In goldfish, the ghrelin transcript exhibits a daily 
rhythm, with a nocturnal acrophase in the hypothalamus, 
pituitary gland and gastrointestinal tract (Sánchez-
Bretaño  et  al. 2015a), and plasma levels of acyl-ghrelin 

show periprandial variation (Blanco et al. 2016). Transient 
preprandial and postprandial changes in ghrelin mRNA 
levels have also been described in the brain of tilapia and 
zebrafish and in the telencephalon, intestinal bulb and 
hypothalamus of goldfish (Uniappan et al. 2004, Amole 
& Unniappan 2009, Peddu et al. 2009, Blanco et al. 2016). 
These findings suggest that ghrelin could be a feeding- 
or metabolic-related signal that synchronises FEOs and 
FAA in fishes (Fig.  1). This hypothesis is also supported 
by the fact that ghrelin modifies the locomotor activity 
(Matsuda et al. 2006, Yahashi et al. 2012), and a ghrelin 
antagonist prevents FAA (Nisembaum  et  al. 2014b) 
in goldfish.

The coexpression of ghrelin receptors and clock genes 
in both LEOs and FEOs supports the idea that ghrelin 
acts as an input signal of these clocks. In fishes, reverse 
transcription polymerase chain reaction (RT-PCR) has 
shown that ghrelin receptors are expressed in all brain 
regions (Chen et al. 2008, Small et al. 2009, Kaiya et al. 
2010, Upton & Riley 2013, Sánchez-Bretaño et al. 2015a, 
Zhang  et  al. 2016). Furthermore, in situ hybridisation 
has revealed that the transcripts of two ghrelin receptors 
(ghs-r1a and ghs-r2a) are expressed in several brain 
regions, including the hypothalamus and preoptic lobes 
in zebrafish (Cruz  et  al. 2010). ghs-r1a mRNA-positive 
cells occur in almost every area in goldfish, including 
the pallial and subpallial telencephalic regions, many 
hypothalamic nuclei (including the preoptic region and 
the anterior periventricular nucleus), the pineal gland, 
the habenular nuclei, the torus longitudinalis and the 
metencephalic valvula cerebelli (Sánchez-Bretaño  et  al. 
2015a). Interestingly, the expression of several clock 
genes has also been described within these areas: per1b 
in goldfish (Sánchez-Bretaño  et  al. 2015c); per1b, per2, 
per3, clock, cry and bmal1 in zebrafish (Weger  et  al. 
2013, Moore & Whitmore 2014) and clock in rainbow 
trout (Mazurais  et  al. 2000). Some of these brain areas, 
such as the anterior periventricular nucleus (putatively 
homologous to the mammalian SCN) and the pineal 
gland, are oscillators that allow the circadian rhythmicity 
to be entrained by the LD cycle (Idda et al. 2012, Moore 
& Whitmore 2014). These results support the putative 
role of ghrelin as a feeding- or metabolic-related signal 
that communicates to clocks that are synchronised by 
different cues (LD and feeding–fasting cycles).

The anatomical connection between ghrelin receptors 
and the circadian system may also be functional. In 
goldfish, an acute intraperitoneal injection of ghrelin 
induces the expression of orexin, per1a and per3 in  
the hypothalamus (Nisembaum  et  al. 2014b).  
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Furthermore, the actions of ghrelin are not restricted 
to central oscillators, but are also exerted on peripheral 
oscillators. In all studied fish species to date, ghrelin 
receptors are expressed in the oxyntic cells and/or the 
mucosal and submucosal intestinal cells and in the 
hepatocytes (Chen  et  al. 2008, Kaiya  et  al. 2009a,b, 
Eom  et  al. 2014, Cai  et  al. 2015, Sánchez-Bretaño  et  al. 
2015a; Sánchez-Bretaño A, Blanco AM, Alonso-Gómez AL, 
Delgado MJ, Kah O & Isorna E, unpublished observations), 
suggesting that ghrelin may also act as a local signal that 
entrains the stomach and/or gut oscillators. A direct effect 
of ghrelin on the gastrointestinal oscillator has not yet 
been demonstrated in vivo or in vitro in fishes. However, 
this has been suggested to occur in the liver of goldfish, 
in which an acute intraperitoneal injection of ghrelin 
upregulates the hepatic expression of the clock genes 
per1a, per2a and per3 1 h after injection (Nisembaum et al. 
2014b). Similarly, with in vitro hepatic cultures, ghrelin 
upregulates the expression of both the positive (bmal1a 
and clock1a) and negative (per1a, per1b, per2a and per3) 
elements of the main loop of clock genes, as well as the 
auxiliary loop gene rev-erb a (Sánchez-Bretaño A, Blanco AM,  
Alonso-Gómez AL, Delgado MJ, Kah O & Isorna E, 
unpublished observations; Fig.  2). This ghrelin-evoked 
gene induction is blocked by pretreatment with inhibitors 
of phospholipase C (PLC), protein kinase C (PKC) and, 
in some genes, protein kinase A (PKA), proving that 
ghrelin exerts its actions via the PLC-PKC and, to a lesser 
extent, adenylyl cyclase (AC)–PKA intracellular signalling 
pathways (Sánchez-Bretaño A, Blanco AM, Alonso-
Gómez AL, Delgado MJ, Kah O & Isorna E, unpublished 
observations; Fig. 2).

In summary, all of the evidence to date supports a 
bidirectional link between the circadian clock and ghrelin 
signalling in fishes, as has been found in mammals. Current 
data demonstrate that ghrelin rhythms in the intestine, 
and likely the hypothalamus and pituitary gland, could 
be caused by the outputs of local oscillators. Furthermore, 
ghrelin may also participate in the regulation of FAA by 
either stimulating appetite or entraining endogenous 
clocks through the modification of clock gene expression.

Glucocorticoids

The hypothalamus–pituitary–interrenal (HPI) axis 
in fishes retains the classic organisation of the main 
neuroendocrine systems, being activated by stressful 
agents that trigger the release of stress hormones, 

glucocorticoids and catecholamines (Wendelaar Bonga 
2011). Cortisol is the main glucocorticoid that is released 
into the teleost bloodstream from the interrenal (adrenal) 
cells, which are embedded in the head kidney region and 
are associated with catecholaminergic cells, lymphoid 
cells and the posterior cardinal veins (Barandica & Tort 
2008). During the onset of stress, cortisol induces several 
catabolic processes that provide energy to the different 
physiological actions that occur to restore homeostasis 
(Mommsen  et  al. 1999). A variety of biochemical, 
physiological and behavioural responses are also 
controlled by cortisol, such as energy metabolism, ion-
osmotic regulation, immunity and growth (reviewed in 
Mommsen et al. 1999, Ellis et al. 2012).

Cortisol, as melatonin, is considered one of the 
more robust hormonal outputs of the circadian system 
(Fig.  1). Under unstressed conditions, glucocorticoids 
exhibit a robust temporal secretion in mammals, with 
a circadian rhythmicity that overlaps an ultradian 
rhythmicity (Walker et al. 2010, Spiga et al. 2014). Cortisol 
(or corticosterone) secretion in mammals fluctuates with 
the LD cycle and is clearly related to the daily behavioural 
pattern, with a surge being seen at the onset of the activity 
phase each day. The sympathetic nervous system and the 
SCN control such daily variations via the hypothalamus–
pituitary–adrenal (HPA) axis (Haus  2007, Tonsfeldt  & 
Chappell 2012). However, increasing evidence has 
revealed that multiple components of the circadian 
system, and particularly the adrenal clock, are involved in 
the regulation of glucocorticoid rhythmicity in mammals 
(Son et al. 2011, Spiga et al. 2014).

Such a conserved pattern of circulating glucocorti
coids is not evident in fishes, where a wide variety of daily 
patterns of plasma cortisol have been reported depending 
on the species, photoperiod, season and feeding and 
activity patterns. In relation to the LD cycle, the acrophase 
of daily cortisol rhythms occurs at the early photophase 
in Gulf killifish (Fundulus grandis; Garcia & Meier 1973) 
and Mozambique tilapia (Oreochromis mossambicus; 
Nikaido et al. 2010), at the beginning of the scotophase in 
sea bass (Planas et al. 1990), tench (De Pedro et al. 1998) 
and sole (Solea senegalensis; López-Olmeda  et  al. 2013) 
and during the scotophase in brown trout (Salmo trutta; 
Pickering & Pottinger 1983) and Japanese char (Salvelinus 
leucomaenis; Yamada  et  al. 2002). Two peaks in cortisol 
have been described in sea bass (Cerdá-Reverter  et  al. 
1998) and Atlantic salmon smolts (Ebbesson et al. 2008). 
In addition to this range of daily profiles of circulating 
cortisol, there is also evidence for seasonal changes in 
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some salmonids (Rance et al. 1982, Pickering & Pottinger 
1983, Thorpe et al. 1987), cyprinids (Kühn et al. 1986) and 
perciformes (Planas et al. 1990).

The feeding–fasting cycle and feeding time are 
powerful non-photic signals that may synchronise the 
daily cortisol rhythms in fishes. Indeed, periprandial 
cortisol changes have been observed in some teleosts, 
such as rainbow trout (Bry 1982, Hernández-Pérez et al. 
2015), brown trout (Pickering & Pottinger 1983), goldfish 
(Spieler & Noeske 1984, Vera  et  al. 2007) and gilthead 
seabream (Sparus aurata; Montoya et al. 2010). However, 
this relationship between cortisol levels and feeding 
phase may be driven by the increase in locomotor 
activity rather than feeding time entrainment. The effect 
of fasting on the daily cortisol rhythm remains unclear, 
as starvation decreases the mean plasma cortisol level 
in channel catfish (Ictalurus punctatus; Small 2005), but 
increases the average cortisol levels (acting as a stressful 
event) without any modification to the daily cortisol 
rhythm in rainbow trout (Polakof et al. 2007, Hernández-
Pérez et al. 2015). One interesting and almost unexplored 
question is whether these daily rhythmic variations 
in circulating cortisol in fishes are endogenous. To our 
knowledge, only one study has addressed this question, 
which indicated that the daily rhythm in plasma cortisol 
shows endogenous characteristics in the common dentex 
(Dentex dentex; Pavlidis et al. 1999).

The daily rhythms in the HPA axis have been widely 
reported in mammals (Kalsbeek  et  al. 2012, Spiga  et  al. 
2014), whereas the existence of rhythms in the HPI axis 
components of fish has scarcely been investigated. A daily 
rhythm in circulating adrenocorticotropic hormone 
was demonstrated in goldfish (Singley & Chavin 1976), 
and more recently, a rhythmic expression of genes 
encoding pro-opiomelanocortin (Gilchriest  et  al. 1998, 
López-Olmeda  et  al. 2013), corticotropin-releasing 
hormone (Crh; López-Olmeda  et  al. 2013) and the Crh 
receptor 1 (Azpeleta et al. 2012) has been demonstrated. 
Furthermore, the similar profiles that have been observed 
in crh expression and plasma cortisol in sole suggest that 
the daily cortisol rhythm may be a direct consequence of 
hypothalamic Crh production (López-Olmeda et al. 2013).

The recent discovery of a rhythmic expression of clock 
genes in the adrenal tissue of mammals strengthens the 
support for the existence of a functional circadian clock 
in this gland (Nicolaides  et  al. 2014, Spiga  et  al. 2014). 
However, the only report on the rhythmic expression of 
clock genes in fishes was in the interrenal tissue of the 
goldfish, where it was shown that the 24-h rhythmicity 
of per1a, per3 and cry3 is in antiphase to the clock1a 

rhythm, as would be expected for a functional core 
clock (Azpeleta et al. 2012). These data indicate that the 
interrenal tissue may act as a node within the circadian 
system network in fishes (Fig. 1).

Since the pioneering demonstration that the 
glucocorticoid hormone analogue dexamethasone can 
reset the circadian rhythms of clock gene expression in 
multiple peripheral cell types in the rat (Balsalobre et al. 
2000), there has been increasing evidence that the 
circadian output of the adrenal gland plays a relevant 
role in synchronising the peripheral clocks in mammals 
(Dickmeis 2009, Kalsbeek  et  al. 2012, Schibler  et  al. 
2015). So, does cortisol act as a resetting signal for the 
peripheral and/or central clocks in fishes? The few 
results currently available suggest that this is the case. 
Dexamethasone entrains bioluminescence rhythms in 
zebrafish and cavefish cell lines that have been transfected 
with zfper1b-luc (Cavallari  et  al. 2011). The molecular 
mechanism underlying this entrainment appears to be 
the glucocorticoid induction of per1, which has been 
reported to occur in the goldfish liver both in vivo and 
in vitro (Sánchez-Bretaño  et  al. 2016) and in cavefish 
cell lines (Cavallari  et  al. 2011). Similarly, in mammals, 
multiple glucocorticoid-response elements (GREs) are 
found in the per1 gene promoter sequence (Reddy et al. 
2007). Moreover, in goldfish, dexamethasone represses the 
positive elements of the liver clock (bmal1a and clock1a) 
in culture (Sánchez-Bretaño  et  al. 2016), supporting a 
putative resetting function of glucocorticoids in fishes 
(Fig.  2). The widespread distribution of glucocorticoid 
receptors in fishes (Prunet et al. 2006) suggests that other 
peripheral clocks may also be entrained by cortisol.

It has been suggested that glucocorticoids may 
also act as a temporal signal in the broader context of 
circadian functional organisation, but it is currently 
unknown which physiological functions are regulated 
by putative glucocorticoid-sensitive clocks. In this 
sense, cortisol has been identified as a component of a 
systemic signalling pathway that is required for circadian 
cell cycle rhythmicity in zebrafish (Dickmeis  et  al. 
2007) and appears to be involved in the regulation of 
the melatonergic system rhythmicity in rainbow trout 
(Benyassi et al. 2001, Ceinos et al. 2005), catfish (Clarias 
gariepinus; Yanthan & Gupta 2007) and Mozambique 
tilapia (Nikaido et al. 2010).

Overall, these findings support the notion that 
cortisol acts as an input and maybe an output of the 
circadian system in fish. However, further investigation is 
required to demonstrate such an assertion and to explore 
the remaining unresolved questions, such as the nature 
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of the inputs that synchronise the interrenal clock and 
cortisol rhythms.

Communication among oscillators: 
hormones as temporal internal messengers

Based on all the data presented here, we propose a 
hypothetical model of entrainment of the molecular 
clockwork, in which the 24-h clock gene oscillations 
are sustained via light and hormonal inputs (Fig.  2). 
The LD cycle reaches the core clock via the light-evoked 
induction of cry1 and per2 in zebrafish (via the functional 
E- and D-boxes and the thyrotroph embryonic factor 
(Tef) transcription factor; Tamai et al. 2007, Vatine et al. 
2009, 2011). Based on the observed acute induced 
changes in gene expression, we also propose additional 
mechanisms whereby hormones such as cortisol and 
ghrelin can entrain the molecular clocks. As discussed 
previously, in the goldfish liver, cortisol induces per1a 
and per1b and represses bmal1a and clock, whereas ghrelin 
induces a variety of clock genes via the PLC-PKC pathway 
and, to a lesser extent, the AC-PKA pathway (Sánchez-
Bretaño  et  al.  2016; Sánchez-Bretaño A, Blanco AM,  
Alonso-Gómez AL, Delgado MJ, Kah O & Isorna E, 
unpublished observations; Fig. 2).

However, the bidirectional link between the daily 
rhythms of clock genes in endocrine tissues and hormonal 
rhythms still needs to be deeply studied in fishes. In 
particular, it is important to know the answers to two 
questions: are clock gene oscillations in endocrine tissues 
linked to hormonal overt rhythms and are hormonal-
induced changes in clock gene transcripts sufficient to 
induce the entrainment of the molecular core?

The answer to the first question seems clear for 
melatonin rhythms. Clock gene oscillations in the fish 
pineal gland are directly driven by LD cycles, and these 
oscillations, in turn, control the expression of the clock-
controlled gene aanat2, which codes the key enzyme for 
melatonin synthesis (Appelbaum et al. 2006, Falcón et al. 
2009). However, as stated previously, hepatic leptin 
expression rhythms are not always linked to clock genes 
daily rhythms in the liver of goldfish (Tinoco et al. 2014). 
Furthermore, although feeding time drives clock genes 
oscillations in the sea bream liver (Vera  et  al. 2013), 
it does not control the rhythms of enzymes that are 
involved in lipid metabolism (Paredes et al. 2014); and in 
zebrafish, lipid metabolism is linked to the LD cycle and 
independent of feeding time (Paredes et al. 2015). Thus, 
the physiological functions of peripheral oscillators in 

fishes remain unclear. The use of in silico analysis to search 
for clock-controlled genes (i.e. genes whose promoters 
hold putative E-box, D-box and RORE elements) would be 
very useful for further investigating this issue.

With regard to the second question, glucocorticoids 
have a clear role as internal messengers in mammals 
(Albrecht 2012, Kalsbeek et al. 2012, Schibler et al. 2015) and 
this also appears to be the case for fishes. Dexamethasone 
entrains bioluminescence rhythms in zebrafish and 
cavefish cell lines that have been transfected with zfper1b-
luc (Cavallari et al. 2011), as well as clock gene rhythms 
in the goldfish liver in vitro (Sánchez-Bretaño  2016). As 
discussed previously, glucocorticoids probably repress the 
positive elements and induce the negative elements of the 
core clock (Sánchez-Bretaño et al. 2016; Fig. 2). However, 
whether the acute changes in clock gene expression that 
are induced by orexin and ghrelin in vivo (Nisembaum et al. 
2014a,b) and by ghrelin in vitro (Sánchez-Bretaño A,  
Blanco AM, Alonso-Gómez AL, Delgado MJ, Kah O & 
Isorna E, unpublished observations) can reset the clock 
remains to be explored. Finally, considering the variety 
of signals that are involved in regulating clock genes, it is 
likely that other less-studied hormones also influence the 
fish clockwork. In particular, the family of per genes appears 
to be the target for different cues in fishes, including 
light, orexin, ghrelin and glucocorticoids (Vatine  et  al. 
2009, Nisembaum  et  al. 2014a,b, Sánchez-Bretaño  et  al. 
2015; Sánchez-Bretaño A, Blanco AM, Alonso-Gómez AL, 
Delgado MJ, Kah O & Isorna E, unpublished observations;  
Fig. 2) and so may be involved in shifting the molecular 
clock. Similarly, the light-resetting of the SCN clock and 
the adjustment of peripheral oscillators by glucocorticoids 
are also mediated by per genes in mammals (Albrecht 
2012, Schibler et al. 2015).

Our hypothetical model of endogenous clock 
entrainment agrees with the non-hierarchical model 
of fish circadian organisation, in which the variety of 
oscillators can be entrained independently by different 
hormonal cues and according to the specific sensitivity 
of each tissue to these signals. Recently, it has been 
proposed that peripheral oscillators are also entrained by 
temperature via transient receptor potential channels, 
which are also involved in light synchronisation 
(Poletini  et  al. 2015), but the functional entrainment 
has not been demonstrated to date. These findings 
support the concept of a more flexible organisation of 
the circadian system in fishes than previously thought. 
It could be hypothesised that vertebrate ancestors would 
have had a variety of clocks that were widely distributed 
and probably independently synchronised to different 
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factors (light, temperature and food), which has since 
evolved into a very hierarchical system in mammals and 
perhaps an intermediate state in fishes. As previously 
suggested (Idda et al. 2012), a versatile circadian system in 
fishes is expected considering the large number of teleost 
species and the wide variety of habitats they inhabit.
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