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Abstract

Weight-dependent loading of the skeleton plays an important role in establishing 

and maintaining bone mass and strength. This review focuses on mechanical signaling 

induced by body weight as an essential mechanism for maintaining bone health. In 

addition, the skeletal effects of deviation from normal weight are discussed. The 

magnitude of mechanical strain experienced by bone during normal activities is 

remarkably similar among vertebrates, regardless of size, supporting the existence 

of a conserved regulatory mechanism, or mechanostat, that senses mechanical strain. 

The mechanostat functions as an adaptive mechanism to optimize bone mass and 

architecture based on prevailing mechanical strain. Changes in weight, due to altered 

mass, weightlessness (spaceflight), and hypergravity (modeled by centrifugation), induce 

an adaptive skeletal response. However, the precise mechanisms governing the skeletal 

response are incompletely understood. Furthermore, establishing whether the adaptive 

response maintains the mechanical competence of the skeleton has proven difficult, 

necessitating the development of surrogate measures of bone quality. The mechanostat 

is influenced by regulatory inputs to facilitate non-mechanical functions of the skeleton, 

such as mineral homeostasis, as well as hormones and energy/nutrient availability 

that support bone metabolism. Although the skeleton is very capable of adapting to 

changes in weight, the mechanostat has limits. At the limits, extreme deviations from 

normal weight and body composition are associated with impaired optimization of bone 

strength to prevailing body size.

Introduction

The skeleton is a complex multifunctional organ system 
that, in adults, comprises 206 bones. The acquisition of 
bone mass occurs primarily during childhood and the 
decade following puberty with peak bone mass achieved 
in the third to fourth decade of life (Baxter-Jones et al. 
2011). Bone loss may be an inevitable consequence 
of aging. However, the rate of loss has been shown to 
differ greatly among individuals (Cauley et  al. 2009). 

Low peak bone mass and excessive age-related bone loss 
predispose individuals to osteoporosis, an important 
underlying risk factor for fragility fractures (Chevalley 
et  al. 2012). Factors influencing skeletal dynamics 
over the lifecycle are under investigation; the usual 
suspects, including genetic variation, disturbed mineral 
homeostasis, gender, reproductive status, diet, physical 
activity, and body weight, have each been shown to 
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be important. However, in spite of major advances, 
current understanding is inadequate to fully explain all 
of the variation in fracture risk.

Physical attributes and physiological functions 
vary among individual bones and among skeletal 
compartments within a bone. Bone provides a stiff 
structure required for locomotion, acts as a physical 
barrier for protection of vital organs, provides a hospitable 
environment for hematopoietic cell maturation, is an 
important adipose tissue depot, is an endocrine organ, 
and a dependable and rapidly mobilizable reservoir for 
calcium and other minerals. Significant throughout life, 
the mineral depot in bone is particularly important during 
catabolic conditions such as late pregnancy, lactation 
and prolonged fasting. The skeleton influences and is, 
in turn, influenced by tissues within the bone marrow 
(hematopoietic, adipose and immune), adjacent tissues 
(muscle, cartilage, tendons and ligaments), and remote 
tissues (endocrine, gastrointestinal, kidney, sensory 
and sympathetic nervous systems). As a consequence 
of competing responsibilities and regulatory inputs, 
optimization of bone mass, architecture and turnover 
for one function could potentially compromise other 
critical functions (Turner 2001). This can be illustrated by 
considering the skeletal response to inadequate dietary 
calcium. Failure to maintain levels of ionic calcium within 
narrow limits has immediate, potentially life-threatening 
consequences. Although the skeleton nearly always 
contains mineral reserves sufficient to balance serum 
calcium requirements, the resulting bone loss associated 
with chronic suboptimal dietary calcium will likely 
reduce the mechanical competence of bone and increase 
fracture risk. Similarly, pathologies such as hemophilia 
and anemia involving marrow can place demands on the 
skeleton that can compromise its mechanical function. 
Specifically, chronic anemia results in reduced BMD 
and increased fracture risk due to osteoclast-mediated 
expansion of the bone marrow cavity in response to 
increased need for hematopoiesis (Vogiatzi et  al. 2005, 
Almeida & Roberts 2005, Perisano et al. 2012, Recht et al. 
2013). The high rate of fragility fractures in the aged, with 
an annual rate of over nine million worldwide, testifies to 
the inability of the skeleton to always maintain sufficient 
mechanical competence (Kanis et al. 2012).

Body weight can influence a multitude of physiological 
functions. Not surprisingly, there is a close association 
between bone mass and weight during growth, and 
preservation of this relationship throughout life is vital to 
bone health. The direct pathway for weight to influence 
bone is via mechanical loading. This review focuses on 

mechanical signaling as an essential mechanism for 
coupling bone mass to changes in body weight during 
growth and adulthood. The influence of weight change, 
ranging from weightlessness to hypergravity, is also 
considered. Finally, factors that result in disturbances 
in the relationship between weight and bone mass are 
discussed. For additional perspectives, please see reviews 
by Dimitri and coworkers (2012) and Shapses and 
Sukumar (2012).

Mechanical loading and skeletal adaptation: 
mechanostat theory

The skeleton serves multiple mechanical functions: (1) 
application of mechanical forces (e.g., jaws and fingers); 
(2) resisting mechanical forces (e.g., weight-bearing 
bones); (3) providing a scaffold for the attachment of 
ligaments and tendons required for locomotion (e.g., 
long bones); and (4) protecting vital organs (e.g., ribs, 
vertebrae, and skull). Body weight exhibits minimal day-
to-day variation. However, static load and the resulting 
deformation of bone (mechanical strain) generated by 
weight depend upon posture. For example, standing on 
one leg places a higher load on weight-bearing bones 
of the lower limb than standing on both legs, whereas 
transferring to a sitting or lying prone position alters 
the direction as well as reduces the magnitude of limb 
loading. These forms of skeletal loading are static; the 
loads are less than body weight and occur over sustained 
durations of seconds or longer. The larger mechanical 
loads applied during physical activities such as walking 
subject loaded bones to higher peak strain levels. Skeletal 
loading associated with physical activity is dynamic 
because loads change rapidly in magnitude and direction 
and peak strain is maintained for short durations (ms). 
During walking, the lower limbs are subjected to peak 
loads equivalent to ~1.5 times the body weight with the 
interval between strides being ~1 Hz (1 cycle/s) (Fritton 
et al. 2000, Al Nazer et al. 2008). More intense physical 
activates, such as those that occur in many sports, place 
even greater strains on loaded portions of the skeleton.

The maximum mechanical strain levels in bone 
during activities of normal living are well below levels 
capable of inducing catastrophic failure. Furthermore, the 
magnitude of strain during normal activities is remarkably 
similar among vertebrates, regardless of size, supporting 
the existence of a conserved regulatory mechanism, or 
mechanostat, that senses strain (Rubin & Lanyon 1984). 
When peak strain levels deviate above or below this set 
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point, a compensatory mechanism is initiated, which 
results in addition of bone due to excessive strain or 
removal of bone due to insufficient strain, maintaining 
a low risk for catastrophic failure without incurring the 
metabolic costs associated with forming and maintaining 
unnecessary bone (Fig. 1).

The mechanostat model predicts that incremental 
overall increases in weight can increase bone mass 
and alter bone architecture by inducing an adaptive 

response to increased mechanical loads. Lean mass may 
have additional importance as a contributor to weight-
dependent skeletal loading because muscles are attached 
to bone via tendons and larger and more powerful 
muscles can deliver greater mechanical loads directly 
to bone. We emphasize “can” because mechanostat-
mediated adaptations, as originally envisioned, only 
occur when an upper or lower threshold strain is violated 
(Frost 1987). However, recent studies performed in 
mice suggest that the skeleton’s adaptive response to 
mechanical loading is essentially linear over a wide range 
of strain (Fig. 1) (Sugiyama et  al. 2012). This finding is 
supported by the strong association between weight and 
bone mass in mice (Fig. 2).

The mechanostat functions to help “optimize” the 
ability of bone to resist loads conferred by activities 
of normal living but not the atypical loads often 
experienced during falls (Silva 2007). This is important 
because atypical loads are responsible for the majority of 
low-trauma fractures in children and the elderly. In this 
regard, the highest rates of fractures due to falling occur 
in prepubertal boys and elderly women, indicating that 
the skeleton exhibits a low-safety factor (failure load/peak 
load) in these two groups.

Figure 1
The mechanostat is hypothesized as a mechanism that regulates bone 
mass in response to changes in mechanical strain. As originally envisioned 
(A), strain levels consistently falling below the lower boundary lead to an 
adaptive response where bone is lost, increasing strain. Strain levels 
consistently exceeding the upper boundary lead to an adaptive response 
where bone is gained, decreasing strain. Based on this model, there is a 
zone between upper and lower boundaries where strain differences do 
not evoke an adaptive response (Frost 1987). An alternative model has 
been proposed (B) where strain levels below or above a set point that is 
bone specific evokes an adaptive response (Skerry 2006). Although some 
studies suggest that moderate weight changes need not evoke an 
adaptive response (see text), other findings are consistent with the 
alternative model (Fig. 2).

Figure 2
Leptin alters the sensitivity of the skeleton to body weight changes. 
Total femur mass is strongly associated with body weight in 7-week-old 
female WT, partially leptin-deficient ob/+, and leptin-deficient ob/ob mice 
fed a normal diet. ob/+ have near normal leptin levels due to increased 
fat mass and demonstrate an association between body weight and bone 
mass nearly identical to WT mice. In contrast, ob/ob mice require a much 
higher body weight to achieve a bone mass equivalent to WT. Please note 
that the slope of the regression lines is less than unity (0.49 for WT and 
ob/+ mice and 0.34 for ob/ob mice); increasing body weight by 50% in a 
WT mouse would be expected to lead to ~25% increase in bone mass. 
Reproduced, with permission, from Philbrick KA, Turner RT, Branscum AJ, 
Wong CP & Iwaniec UT (2015) Paradoxical effects of partial leptin 
deficiency on bone in growing female mice, The Anatomical Record 298 
2018–2029. Copyright 2015 Wiley Periodicals, Inc.
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Changes in weight necessarily precede skeletal 
adaptation to changes in mechanical loads. This delay in 
adaptive response may contribute to the high fracture rate 
in rapidly growing children. Additionally, the dynamics 
of bone structure change immediately before and during 
pubertal growth may partially explain the high rate 
of fractures. During rapid growth, addition of bone to 
periosteal bone surfaces is slow compared with bone 
elongation, resulting in inadequate cortical thickness for 
bone length (Clark et al. 2006, Rauch 2012). Overweight 
children appear to be especially prone to fracture (Cole 
et al. 2012, Dimitri et al. 2012). Studies employing high-
resolution peripheral quantitative computed tomography 
(HR-pQCT) and finite element analyses suggest that 
although childhood obesity alters radial and tibial 
microstructure, these adaptations are inadequate to 
compensate for the increased loading potential from 
a fall (Kim et  al. 2013, Dimitri et  al. 2015). Although 
higher body weight can increase mechanical loading on 
bone and, as a consequence, increase bone mass or alter 
microarchitecture to improve bone quality, it also has 
the potential to increase the magnitude of atypical loads 
that are often responsible for a fracture. Thus, weight-
associated increases in mechanical strain would lower the 
safety factor until skeletal adaptation is completed.

Bones change in size, mass, density, and architecture 
through the processes of growth, modeling and 
remodeling. Most bones grow in length through 
endochondral ossification where primary spongiosa 
created by osteoclast-mediated resorption of calcified 
cartilage is replaced by bone through osteoblast-mediated 
deposition of bone matrix. Bones also grow in size due 
to osteoblasts depositing bone matrix onto the periosteal 
surface. Modeling refers to changes in bone architecture 
where bone is added to a preexisting bone surface without 
a requirement for prior bone resorption or by which 
bone is resorbed from a bone surface without initiating 
subsequent bone formation. Remodeling is initiated when 
osteoclasts are recruited to quiescent bone surfaces where 
they degrade bone. Osteoblasts are then recruited to the 
resorption site where they secrete matrix that undergoes 
mineralization to form bone to complete a remodeling 
cycle. When bone formation is tightly coupled to bone 
resorption, there is minimal change in bone architecture 
following completion of bone remodeling. In the 
process of bone formation during growth, modeling, or 
remodeling, some osteoblasts become quiescent lining 
cells whereas others are incorporated into bone matrix 
and become osteocytes.

Osteocytes, through their intricate network of  
lacunae and interconnecting canaliculi, play an essential 
role in mechanosignal transduction. Osteocytes 
embedded in a mineralized matrix experience strain-
induced interstitial fluid flow and fluid shear stress 
resulting in activation of signaling pathways that regulate 
bone turnover (Govey et al. 2015). Mechanoreceptors on 
osteocytes fall into three general classes: ion channels, 
G-protein-coupled receptors, and cytoskeletal/integrin 
complexes (Robling 2012). Mechanoactivation of 
these receptors on osteocytes results in transduction of 
signals to cells lining bone surfaces that communicate 
mechanical strain magnitude and distribution.

Bone lining cells and osteoblasts cover the majority 
of bone surfaces and are interconnected by gap junctions, 
allowing intracellular communication via ions and small 
molecules. Gap junctions and ion channels are also used to 
communicate signals from osteocytes to osteoblast lineage 
cells (Lloyd et  al. 2014). Additionally, osteocytes generate 
soluble factors, including fibroblast growth factor 23, 
sclerostin, tumor necrosis factor ligand superfamily member 
11 and dickkoph homolog 1 that regulate bone turnover 
(Goldring 2015). Several mechanically regulated intra
cellular signaling cascades have been described, including 
activation of kinases (Akt, MAPK and FAK), catenin beta 1, 
GTPases, and calcium signaling (Thompson et  al. 2012). 
Additionally, nitric oxide signaling (Klein-Nulend et  al. 
2014) and BMP signaling (Kopf et al. 2014) play important 
roles in the skeletal response to mechanical loads.

The signaling pathways mentioned above are not 
unique to mechanoregulation (Price et al. 2011) and the 
state of our knowledge is inadequate to accurately predict 
the skeletal consequences of manipulating individual 
pathways. To date, the effects of mechanical signaling 
on the human skeleton have been studied primarily 
by altering the applied loads. This is accomplished by 
increasing physical activity or by evaluating the skeletal 
response to changes in body weight. Based on extensive 
observational and intervention studies in humans and 
animal models, several principles emerge (Skerry 2006): 
(1) the skeleton responds to mechanical strain stimulus, 
but the strain stimulus is different in different parts of 
the skeleton; (2) peak strain magnitude, duration, rate of 
change and frequency are among the important variables 
that impact mechanosignal transduction; (3) the efficacy 
of the mechanostat in maintaining bone mass and 
quality diminishes with age; and (4) mechanical signal 
transduction can be influenced by systemic factors such 
as hormones, cytokines and nutritional status.

http://dx.doi.org/10.1530/JOE-16-0089
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Peak strain is dependent on the magnitude of force 
applied to bone. Force is, in turn, proportional to mass 
and velocity. Changing either parameter will change 
strain, which, in turn, has the potential to influence 
bone microarchitecture. Increasing mechanical strain 
has been used as a strategy to develop biomechanical 
based interventions to improve bone health (Rittweger 
2008). Increasing mechanical strain to increase bone 
mass has been found to be more effective before puberty 
than in adults (Gunter et al. 2008). High-impact loading 
during jumping (increased velocity) has proven to be 
effective in increasing bone mass in children in part by 
increasing bone size. Importantly, this form of high-
impact exercise was shown to confer lasting benefit 
(Gunter et  al. 2008). In adults, increasing mechanical 
loading by wearing weighted vests (increased mass) does 
not increase bone mass but appears to slow age-related 
bone loss (Snow et al. 2000).

Weightlessness

The importance of static and dynamic weight bearing 
on the skeleton has been investigated in humans 
and animals subjected to spaceflight or ground-based 
models for spaceflight. An astronaut in the low Earth 
orbit is essentially weightless due to the astronaut and 
surroundings being uniformly accelerated toward the 
Earth. Although mass of the astronaut remains constant, 
static and dynamic loading of the skeleton essentially 
cease because there is no net external force to induce 
changes in strain energy within bone tissue. In ground-
based models for weightlessness (hindlimb unweighting), 
dynamic and static loading of portions of the skeleton are 
reduced (Morey et al. 1979).

Astronauts typically lose bone during exposure 
to weightlessness, but the pattern of bone loss shows 
considerable site specificity (Orwoll et al. 2013, Sibonga 
2013). In general, bone loss is confined to sites subjected 
to high levels of dynamic weight bearing. Bone mineral 
density (BMD) in crewmembers aboard the International 
Space Station (ISS) showed precipitous declines at 
weight-bearing sites, including the hip and spine after 
a typical 6-mo mission but negligible impact at many 
other skeletal sites (Sibonga et al. 2015). Forces measured 
during treadmill walking and running on the ISS, 
using in-shoe monitors, were reduced by 25 and 46%, 
respectively, compared with similar activities on the 
Earth. A mean calculated decrease of 25% in the daily 
load experienced by the lower extremity was associated 

with BMD decreases of 0.7 and 0.8% per month in the 
femoral neck and lumbar spine, respectively (Cavanagh 
et al. 2010). The rate of bone loss observed in these male 
astronauts greatly exceeds the rapid bone loss observed 
in women following menopause. Long-duration bed rest 
also results in bone loss (Spector et al. 2009). In addition 
to bone loss, bed rest results in an increase in marrow 
adipose tissue (MAT) (Trudel et  al. 2009). MAT has not 
been investigated in astronauts but has been shown to 
increase in rats subjected to weightlessness and hindlimb 
unweighting (Jee et al. 1983, Tian et al. 2011, Keune et al. 
2016). The similarity in skeletal response to weightlessness 
and ground-based models for weightlessness argue that 
static loads generated by weight have little direct effect 
on the skeleton, whereas dynamic loads have important 
site-specific effects.

Human spaceflight and long-duration bed rest studies 
have been performed exclusively in adults. Thus, they 
provide little insight into the role of weight on bone 
accrual during growth. On the other hand, animal studies 
focusing on the skeletal effects of weightlessness have 
generally been performed in growing rodents, initially 
rats and more recently mice (Turner 2000, Keune et  al. 
2015). Of key importance to this review is the observed 
reduction of bone accrual onto periosteal surfaces 
of weight-bearing long bones during weightlessness 
followed by normalization upon reweighting (Sessions 
et  al. 1989). Additionally, site-specific reductions in 
cancellous bone mass have been reported following 
weightlessness in rodents and astronauts (Vico et al. 2000, 
Keune et al. 2015). Furthermore, the deficiency in bone 
accrual was shown to have a negative effect on bone 
strength (Sessions et  al. 1989). Taken together, studies 
in humans and animals provide strong evidence that 
weight-dependent mechanical loading of the skeleton 
plays an important role in establishing and maintaining 
bone mass and strength.

Rodent studies provide insight into whether the 
mechanostat is sufficient to fully account for the tight 
coupling between bone mass and body weight. Bone 
length is an important determinant of bone mass, but 
weightlessness had no effect on longitudinal bone growth 
(Sibonga et  al. 2000). Additionally, a strong interaction 
between weight and estrogen status was identified 
(Westerlind et al. 1997, Luo et al. 2000). Subsequent ground-
based studies in mice further suggest an important role 
of estrogen receptor signaling in mechanotransduction 
(Galea et al. 2013, Melville et al. 2015). Finally, although 
weightlessness and reweighting affect bone mass in 
opposing directions, the kinetics differ; the time course 
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for bone mass changes during unloading is much more 
rapid than reloading, implying that factors in addition to 
mechanostat signaling are involved in mediating skeletal 
adaptation to changes in weight.

Astronauts are healthy and physically active when 
subjected to weightlessness. They remain physically 
active yet experience dramatic site-specific bone loss 
in only 4–6 months. The rate of recovery of BMD 
following restoration of normal weight bearing is much 
slower than the rate of loss; recovery approximates an 
exponential function with 50% restoration of bone 
requiring ~9 months and complete restoration requiring 
several years (Sibonga et  al. 2007). This slow recovery 
occurs in spite of immediate restoration of normal 
skeletal loading. Similar findings regarding rapid skeletal 
changes during weightlessness and slow recovery have 
been reported in rodents (Sessions et  al. 1989). These 
findings suggest that the rate of skeletal adaptation to 
weight change may depend on the direction as well as 
magnitude of weight change.

Hypergravity

Weight is the product of mass and acceleration, the 
latter typically being the net acceleration imparted by 
gravity. However, an individual located within an isolated 
compartment cannot distinguish force imparted by the 
action of gravity from force imparted by a mechanical 
device. Hypergravity refers to a force that exceeds that 
of gravity and is modeled in humans and animals using 
centrifugation. Hypergravity has been used to investigate 
physiological adaptation to changes in weight. Male mice 
subjected to a two-fold increase in weight for 21 days 
exhibited decreased osteoclast surface and increased 
osteoblast surface in femur and vertebra, resulting in 
increased cancellous bone (Gnyubkin et  al. 2015). Also, 
increasing weight 2.8-fold increased femur density in female 
rats during a long-duration (810 days) study (Jaekel et al. 
1977). Increasing body weight three-fold had detrimental 
effects on the skeleton of mice, but these data are more 
difficult to interpret because body mass increment slowed 
compared with normally housed controls, suggesting 
that the adaptive response to weight are antagonized by 
physiological stress (Gnyubkin et al. 2015).

The effect of long-duration continuous hypergravity 
on the human skeleton is unknown. However, the effects 
of transient increases of 2–6 times body weight in young 
men during 12 months of training to fly high-performance 
aircraft have been reported. Increases in thoracic spine 

(11%), pelvis (4.9 %), and total body BMD (3.7%) were 
observed, but no changes were noted in the pilots’ lumbar 
spine, arms or legs (Naumann et al. 2001). These findings 
suggest that large but intermittent increases in ‘weight’ 
can have dramatic effects on the human skeleton at sites 
subjected to increased mechanical loads.

Scaling bone mass to body weight

Studies performed on microgravity and hypergravity 
generally support the concept of a gravity continuum 
where the skeleton continuously adapts to changes in 
gravitational loading (Wade 2005). Weight generally 
continues to increase following cessation of linear 
growth but at a much slower rate, typically ≤0.25 kg/year 
(Weigle 1990). However, a parallel increase in BMD is not 
typically observed. A complicating factor in interpreting 
this apparent discrepancy with the concept of a gravity 
continuum is that fracture resistance is not solely 
dependent on BMD. Weight gain in adults is generally 
accompanied by changes in the relative proportions of 
lean tissue and fat tissue and changes in fat distribution. 
An important unanswered question is whether bone 
mass and quality is appropriate for adult-associated 
weight gain. Several methods have been used to adjust 
BMD for differences in body size in children and adults. 
In children, dual-energy absorptiometry data have been 
adjusted using univariate and multivariate models that 
include age, weight, height, BMC, bone area, lean mass, 
and fat mass as variables (Dimitri et  al. 2012). Similar 
adjustments have been made in adults and in animal 
models with the simplest adjustment being dividing 
bone mass by body mass. None of these methods are 
completely satisfactory because the adjustments typically 
assume a uniform effect of weight on bone throughout 
the skeleton. This assumption is not supported by animal 
studies where bone mass, density, and microarchitecture 
can be easily determined at multiple locations. Although 
a strong linear association was shown between body 
weight and bone mass in young male mice fed a normal 
diet, the slope of the linear regression was less than 
unity, indicating that heavier mice normally have less 
bone/g body weight than lighter mice (Fig. 2). Also, the 
Pearson’s R value ranged from 0.55 to 0.88, depending 
on skeletal site and age (Iwaniec et al. 2009), indicating 
considerable variation in the response of individual 
bones and bone compartments to weight change during 
normal growth. In addition, BMD adjustments to 
weight provide little insight into the amount of bone 
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required to provide equivalent mechanical competence 
in individuals who differ in weight.

The material and mechanical properties of bone are 
often determined in animal models as a surrogate measure 
of fracture resistance. During mechanical testing, load 
(compression, tension, torsion, or bending) is applied 
directly to bone. This approach can be exquisitely 
sensitive. For humans, noninvasive imaging methods 
are being developed to predict bone strength (Bouxsein 
& Seeman 2009). However, the methods used in animal 
models and humans fail to account for the contribution 
of soft tissue attached to or located immediately 
adjacent to bone that deforms under mechanical load, 
thus effectively diminishing the load on bone (Fig.  3). 
To determine fracture risk, it is necessary to account for 
the contribution of all tissues involved in dissipating 
loads during falls and other traumatic injury events. 
The ‘gold standard’ for evaluating skeletal loading 
in  vivo is surgical implantation of strain gages onto 
bone surfaces (Meakin et al. 2014). Unfortunately, strain 
measurements to determine whether skeletal adaptation 
in response to weight gain is appropriate to maintain 
mechanical competence have yet to be performed. A 
far less precise but clinically meaningful alternative is 
to evaluate the associations between weight, BMD, and 
fracture prevalence.

The prevalence of osteoporosis (defined by low BMD) 
in older men and women is inversely associated with 
body mass index (BMI, kg/m2), and this association is 
observed among diverse ethnicities. The prevalence of 
osteoporosis has been reported to decrease from 45% 
in underweight (BMI < 18.5) to <1% in obese (BMI > 30) 
women (Nielson et al. 2012). Hip fracture prevalence was 
also shown to decrease with increased BMI in men and 
women. In women, the decrease was progressive; fracture 
rates decreased from 131 fractures/10,000 person years in 
underweight women to 50 fractures/10,000 person years in 
obese women. The relationship was less clear in men. The 
fracture rates decreased from 56 fractures/10,000 person 
years in underweight men to 30 fractures/10,000 person 
years in normal weight men but showed no additional 
change in the overweight and obese male populations. 
We interpret these findings as evidence that a higher body 
weight, at least partially, counteracts age-associated bone 
loss. It is, however, unlikely that the higher BMD values 
in overweight and obese adults are exclusively due to a 
reduction in bone loss during aging. Obesity is associated 
with higher BMD throughout adulthood (Maïmoun 
et  al. 2016). Reciprocal changes have been observed in 
the prevalence of obesity and hip fracture rates in the 
USA over several decades (Wright et al. 2012). Although 
causality has not been established, weight gain during 
the same interval may have contributed to reduced hip 
fracture rates. Reduced fracture risk may not be the only 
positive benefit of excess weight; if fractures occur, obese 
and overweight subjects experience lower mortality rate 
(Prieto-Alhambra et al. 2014).

Despite the generally positive effects of weight on 
bone health, excess weight may not always be beneficial. 
The impact of a higher BMI to reduce prevalence 
of osteoporosis (as defined by BMD) is greater than 
the contribution of increased BMI to reduce fracture 
prevalence. When adjusted for BMD (see previous text for 
caveats), the advantage of being overweight disappears, 
implying that the main positive impact of increased weight 
on fracture prevalence is an increase in BMD. At very 
high BMI, adjusted fracture risk is increased, suggesting a 
reduction in bone quality (Nielson et al. 2012). Moreover, 
some obese men and women have unexpectedly low 
BMD (Greco et al. 2010), and not all studies have found 
obesity to be protective against fractures (Compston 
et al. 2011). There are several plausible explanations for 
the discrepant results. Most studies to date have not 
segregated the contributions of lean tissue and adipose 
tissue depots to BMI. This may be important because the 
contribution of muscle to skeletal loading includes the 

Figure 3
The complex relationship between BMI, BMD, and fracture risk is 
illustrated in the schematic. Compared with an underweight individual, 
an overweight individual experiencing a fall from the same height would 
generate a proportionately greater load on a limb (ground reaction 
force). However, the presence of greater amount of soft tissue in the 
heavier individual should attenuate more of the load and distribute the 
remaining load over a larger bone surface, reducing peak strain such that 
the effective load could be greater in the lighter individual. Assuming 
equivalent bone quality, the higher BMD typical in the heavier individual 
would be a further advantage in reducing strain below that required for 
a fracture. However, based on epidemiological studies, further increases 
in weight may provide a diminishing return because the reductions in 
load during a fall related to soft tissue and higher BMD may not fully 
compensate for increased weight.
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forces generated by muscle as well as weight, whereas 
the contribution of adipose tissue to skeletal loading is 
limited to weight. Adipose tissue can also influence bone 
as a consequence of the tissue’s endocrine function. The 
potential for dysregulation of bone due to excess adipose 
tissue will be discussed later.

Increased muscle mass and function is likely to 
contribute to the positive impact of higher BMI on bone 
health. Sarcopenic and dynapenic obese individuals 
appear to be at a greater risk for lower BMD and higher 
fracture risk than obese individuals with normal muscle 
mass and strength (Scott et al. 2016). This interpretation 
is consistent with studies reporting that obese osteopenic 
individuals are at a higher fracture risk compared with 
normal weight osteopenic individuals (Cawsey et  al. 
2015). Finally, sarcopenia and dynapenic could result in 
higher strain levels during a fall or increased fall frequency. 
Additional research focusing on muscle is required to 
evaluate these possibilities.

In summary, the full advantage of increasing weight 
on BMD or fracture rate may not extend to morbid obesity. 
Also, the precise relationship between weight and fracture 
rate may depend on fracture type. Increased weight 
is generally associated with reduction in osteoporotic 
fractures (hip and vertebral), but in obese subjects, there 
appears to be an increase in the less common upper 
arm and ankle fractures (Compston et  al. 2011, Prieto-
Alhambra et al. 2012, Caffarelli et al. 2014, Mpalaris et al. 
2015). In general, if weight gain leads to successful skeletal 
adaptation, as evidenced by an increase in BMD, fracture 
risk is reduced.

Weight loss

Weight fluctuations >0.25 kg/year occur in adults and 
can impact BMD and bone turnover (Holbrook & Barrett-
Connor 1993, Newman et al. 2005, Von Thun et al. 2014). 
Weight loss, particularly rapid weight loss induced by 
dieting, is generally associated with a decrease in BMD, 
which is not completely restored following a regain in 
weight. Bariatric surgery is now commonly performed as 
an alternative to dieting to induce weight loss; in 2013, 
approximately a half million procedures were performed 
worldwide (Angrisani et  al. 2015). Not surprising, bone 
loss is a common negative side effect of bariatric surgery 
(Scibora 2014). Changes in bone microarchitecture, 
including reduced trabecular number, suggest an 
accompanying reduction in bone strength (Frederiksen 
et al. 2016). The reduction in BMD and strength may not 

be entirely due to weight loss and the magnitude of change 
varies with the surgical procedure (Hsin et al. 2015). In this 
regard, bariatric surgery can negatively affect bone health 
due to impaired absorption of critical micronutrients and 
alterations in bone-regulating hormones (Yu 2014).

The bone loss associated with weight loss can 
involve decreased bone formation and/or increased 
bone resorption (Shapses & Riedt 2006, Redman 
et  al. 2008, Rector et  al. 2009). Studies performed in 
rodents suggest that endocrine status is one of the 
factors that affect the cellular mechanisms for bone 
loss associated with skeletal unweighting. Cancellous 
bone loss in unweighted hindlimbs of normal male 
and female rats was due to decreased bone formation, 
but in ovariectomized rats was due to increased bone 
resorption (Hefferan et  al. 2003). Changes in energy 
intake are often responsible for changes in weight in 
adults. In skeletally mature mice, reducing energy to 
60% of normal resulted in cortical bone loss in femur 
with preservation of cancellous bone (Hamrick et  al. 
2008). As little as a 5% reduction in body weight in 
adult female rats induced by caloric restriction was 
accompanied by decreased bone formation, increased 
bone resorption, and cancellous bone loss (Turner & 
Iwaniec 2011). These findings contrast with the lack 
of an effect of a 21% increase in body weight on bone 
mass, architecture, and turnover in skeletally mature rats 
(Turner & Iwaniec 2010). The rapidity of the bone loss 
during severe caloric restriction as well as the failure of 
weight gain resulting from moderately increased energy 
intake to increase bone mass are not easily explained by 
mechanostat theory.

Energy homeostasis

Several hormones are intimately associated with skeletal 
growth, maturation, and turnover. These include 
pituitary-, gonadal-, thyroid- and adipocyte-derived 
hormones. Optimal growth is critically dependent on 
adequate energy availability, and energy insufficiency 
reduces secretion and/or antagonizes the actions of 
growth-promoting hormones. The adipocyte-derived 
hormone leptin is of particular interest because there 
is strong evidence that leptin acts to regulate bone cell 
differentiation and function at multiple levels, via 
direct actions on skeletal tissues and indirectly through 
modulation of bone-regulating hormones and energy 
homeostasis. There is also evidence that leptin plays a role 
in mechanostat signaling.
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Leptin is produced primarily by adipocytes and leptin 
levels in blood are positively associated with adipose tissue 
mass (Friedman & Halaas 1998). The hormone crosses 
the blood–brain barrier and acts at the hypothalamus 
to communicate the size of peripheral energy stores 
(Harris 2013). Notably, leptin acts to reduce appetite and 
increase energy expenditure (Ahima & Flier 2000). Leptin 
deficiency due to inactivation of the leptin (ob) gene results 
in morbid obesity (Campfield et al. 1995, Montague et al. 
1997). The excess weight in leptin-deficient ob/ob mice is 
the result of a combination of hyperphagia and reduced 
thermogenesis (Hwa et  al. 1996). In addition, leptin 
deficiency in mice results in hypogonadism (Barkan et al. 
2005), elevated corticosteroid levels (Saito & Bray 1983), 
impaired thermoregulation (Trayhurn & James 1978), and 
impaired growth hormone signaling (Luque et al. 2007). 
Thus, when leptin levels are very low, signaling low-energy 
availability, key regulatory pathways required for growth 
and reproduction are suppressed and as a consequence, 
bone growth, maturation, and turnover are impaired.

Obesity due to loss-of-function mutations in the gene 
for leptin or its receptor is very rare in humans. However, 
despite absence of leptin signaling and hypogonadism, 
bone age was accelerated in a prepubertal female child and 
BMD was increased in an older girl with loss-of-function 
mutation in the receptor for leptin (Hannema et al. 2016). 
These findings contrast with individuals with low leptin 
production associated with anorexia or lipodystrophy. 
In these individuals, very low leptin levels are associated 
with low BMD and leptin treatment was shown to increase 
bone mass (Mantzoros et  al. 2011, Sienkiewicz et  al. 
2011). These divergent observations may be explained if 
metabolic changes secondary to and/or responsible for 
leptin deficiency affect bone metabolism. This conclusion 
is supported by studies performed in leptin-deficient  
ob/ob and partial leptin-deficient ob/+ mice where weight, 
adiposity, and serum glucose levels were associated with 
important leptin-independent differences in bone mass, 
architecture, and metabolism (Turner et al. 2014, Philbrick 
et al. 2015).

Leptin and mechanosignaling

There is a positive association between body weight and 
bone mass in wild-type (WT) mice, which is preserved 
in mice heterozygous (ob/+) for the obesity gene (Fig. 2) 
(Philbrick et al. 2015). ob/+ mice have a reduced ability 
to generate leptin but compensate for this deficiency 
by increasing adipose tissue. Although there is also a 

positive association between body weight and total 
femur bone volume in ob/ob mice (Iwaniec et al. 2009), 
the presence of leptin appears to dramatically sensitize 
the skeletal response to increased body weight (Philbrick 
et  al. 2015). This conclusion is supported by evidence 
that leptin modulates mechanosensitivity of the skeleton 
(Baek & Bloomfield 2009, Kapur et  al. 2010). However, 
other mechanisms are plausible. Estrogen alters the 
mechanosensitivity of the skeleton by increasing the set 
point at which bone responds to mechanical load (Luo 
et al. 2000). As ob/ob mice are hypogonadal, low estrogen 
levels could contribute to the relative insensitivity of  
ob/ob mice to increased weight. Alternatively, it is possible 
that one or more cytokines produced by the abundant 
adipose tissue antagonize the positive effect of weight 
gain on bone mass in these mice.

Leptin attenuates the negative skeletal effects of 
unweighting and weight loss. Food restriction lowers 
serum leptin levels and enhances the negative effects of 
hindlimb unweighting (Baek et al. 2008), which, in turn, 
are attenuated by leptin treatment (Baek & Bloomfield 
2009). The positive effects of leptin appear to be mediated 
by peripheral leptin signaling because administering 
high levels of leptin into the hypothalamus not only 
resulted in weight loss and lower serum leptin levels but 
exaggerated bone loss in the non-weight-bearing limbs 
of hindlimb unweighted rodents (Martin et  al. 2008). 
Weight loss typically results in decreased leptin levels 
(Hamann & Matthaei 1996), reduced bone accrual during 
growth (Devlin et  al. 2010), and accelerated age-related 
bone loss (Talbott et  al. 2001, Turner & Iwaniec 2011). 
Importantly, leptin treatment attenuates the inhibitory 
effects of caloric restriction on bone growth (Goldstone 
et al. 2002, Gat-Yablonski et al. 2004). Furthermore, leptin 
administered at supraphysiological levels was reported 
to maintain BMD despite inducing weight loss (Stunes 
et al. 2012). These studies identify leptin as playing a key 
role in coupling bone metabolism to energy availability. 
Leptin appears to accomplish this role by a variety of 
mechanisms, including modulating mechanosignaling.

Dysfunction

The mechanostat is not infallible as witnessed by chronic 
bone loss in elderly women and men. The dramatic 
increase in atraumatic fractures, especially notable in 
women having low and normal BMI, implies that the 
mechanostat becomes less effective with advancing age 
in maintaining the biomechanical components of the 
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skeleton. Several explanations for this failure have been 
proposed, including a parallel age-associated decrease 
in muscle mass, reduced levels of physical activity, and 
altered levels of bone-regulating hormones (Faulkner 
et  al. 2007, Ribeiro & Kehayias 2014). Reductions in 
muscle mass and weight-bearing physical activity clearly 
have the potential to decrease peak mechanical loads on 
the skeleton. The skeletal adaptation to reduced loading 
could then lower bone mass to a level that restores 
strain to pre-muscle loss levels. An age-related decrease 
in growth hormone secretion (Melmed 2013, Sattler 
2013) contributes to muscle atrophy and bone loss in 
humans (Kuzma et  al. 2013), suggesting that growth 
hormone facilitates the mechanostat through its anabolic 
actions on bone. Notably, growth hormone had similar 
anabolic effects on bone in weight-bearing and weightless 
rats (Turner 1995), a finding that suggests that reduced 
skeletal loading does not impair the skeletal response to 
growth hormone.

Gender differences are important to bone accrual 
during growth and bone loss during aging. Females 
accumulate more bone at puberty than is required to 
support the skeleton’s mechanical requirements (Wang 
et  al. 2015) and lose bone following menopause at a 
more rapid rate than aging males (Clarke & Khosla 2010). 
Postmenopausal bone loss is prevented with hormone 
replacement. There are multiple lines of evidence that 
estrogen acts physiologically to modulate the sensitivity 
of the mechanostat to mechanical loads. Bone in excess 
of the minimum required for mechanical function would 
be beneficial to provide minerals for bone development 
and growth during pregnancy and lactation (Kovacs 
2005, Clarke & Khosla 2010). Animal studies further 
support an important role for estrogen in modulating 
the skeletal response to mechanical loading (Westerlind 
et  al. 1997). Reduced dynamic loading (Turner et  al. 
1998) and weightlessness (Keune et  al. 2015) result in 
bone- and bone-compartment-specific further bone loss 
in estrogen-deficient rats. Increased skeletal loading 
can attenuate estrogen deficiency-associated bone loss, 
whereas increased estrogen levels can attenuate bone loss 
associated with reduced mechanical loading (Westerlind 
et  al. 1997). Thus, altered endocrine status during 
aging may contribute to chronic bone loss by multiple 
mechanisms that are not completely counteracted by 
the mechanostat. In some cases, hormone action (e.g., 
growth hormone) on bone appears to be independent of 
the mechanostat, whereas in other cases, the hormone 
(e.g., estrogen and leptin) is an integral component of the 
mechanisms mediating mechanosignaling.

High-fat diet

Based on mechanostat theory, increased body weight 
should attenuate age-related decline in bone mass by 
increasing skeletal loading, and as described earlier, 
there is evidence that this indeed occurs. However, 
there is also creditable evidence that underfeeding and 
overfeeding can impair the ability of the skeleton to fully 
adapt to mechanical loads. In regard to overfeeding, 
there has been a great deal of recent interest regarding 
the impact of specific components of the diet (e.g., fat) 
on bone health.

Bone-compartment-specific increases and decreases 
in bone mass have been reported in growing mice 
fed high-fat diets, but most studies report negative 
effects. Several mechanisms have been proposed to 
explain the negative effect of excess fat on rodent 
bone. Obesity results in chronic mild inflammation 
and insulin resistance (Xu et al. 2003), conditions that 
could negatively affect bone turnover (Hardy & Cooper 
2009) and reduce the efficacy of mechanosignaling. 
Although obesity, in general, may have detrimental 
effects, fat depots within the skeleton may be 
particularly damaging because of the proximity to 
bone cells. An obesity-associated increase in MAT has 
been suggested as an additional mechanism by which 
excess weight could negatively affect the skeleton. 
Anorexia, severe weight loss, and weightlessness each 
result in increased MAT (Duque 2008, Bredella et  al. 
2009, Trudel et  al. 2009), implicating MAT in bone 
loss. Bone marrow adipocytes have been implicated in 
regulating cell differentiation through generation and 
release of adipokines (Kilroy et al. 2007). Additionally, 
osteoblasts and adipocytes are derived from the 
mesenchymal lineage and share a common bone 
marrow progenitor cell (Prockop 1997). The reciprocal 
relationship between MAT and bone mass that is often 
observed is potentially explained by lower osteoblast 
number (Akune et al. 2004). A deficiency in PPARγ, a key 
mediator of adipocyte differentiation, reduces marrow 
fat and enhances osteogenesis (Akune et al. 2004). Thus, 
increased MAT may reflect altered lineage decision 
where increased adipocyte differentiation occurs at 
the expense of osteoblast differentiation. However, 
a causal relationship between differentiation  of 
adipocytes and osteoblasts has not been established 
and the results obtained in some studies suggest that 
adipocyte and osteoblast numbers in bone marrow 
can be regulated independently (Menagh et  al. 2010, 
Iwaniec & Turner 2013).
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When considering diet, species differences need to 
be considered. Increases in body weight are commonly 
induced in rodents by feeding energy-dense high-
fat diets, where fat typically contributes 45–60% of 
total energy. Notably, normal rodent diets typically 
contribute 10–15% of calories as fat. Although the 
mechanostat has been conserved among vertebrate 
species, their dietary requirements show dramatic 
divergences. Contemporary hunter gatherers show 
variability in diet that is related to environmental 
differences, but in most populations, the majority of 
energy is obtained from animal products (Cordain et al. 
2002). Diet reconstruction using stable isotope analysis 
supports animal products contributing the majority of 
energy to the diet in preagricultural populations (Eaton 
& Eaton III 2000). On the other hand, with the advent 
of agriculture, >10,000 BP humans have successfully 
adapted to predominantly plant-based diets. Present 
dietary recommendations for fat vary among countries 
but are generally between 20 and 35% of total energy 
in adults and fat consumption in the USA and Europe 
is typically at the upper end of the recommended range 
(Arnett et  al. 2000, Vergnaud et  al. 2013). In spite of 
increased prevalence of obesity, in the USA, there has 
been a progressive decrease in fat consumption, whereas 
in Europe, fat consumption has increased (Vergnaud 
et al. 2013). In general, excess weight gain in humans is 
more associated with excess calories rather than excess 
in a specific macronutrient. Thus, it is not clear whether 
the high-fat diets administered to rodents accurately 
model any commonly consumed human diet.

In spite of uncertainty regarding the precise role 
of dietary fat, there is growing evidence that excessive 
fat accrual due to excess calories can have negative 
effects on BMD (Zhang et  al. 2015). Although lean 
mass is generally positively associated with BMD, the 
relationship between fat mass and BMD is more complex. 
Visceral and subcutaneous fat may have independent 
effects with the former reported to be negatively 
associated with BMD (Zhang et al. 2015). Additionally, 
there is evidence for a threshold where the relationship 
between fat mass and BMD changes from a positive 
to a negative association (Liu et  al. 2014). Successful 
mechanical adaptation of the skeleton to changes in 
weight and body composition should confer a reduction 
in fracture risk. In this regard, the evidence associating 
BMI and fracture rate is often contradictory. However, 
there is strong evidence that low-trauma fractures in 
the obese represent a significant and growing health 
problem (Premaor et al. 2010, Greco et al. 2015).

Hyperleptinemia: too much of a good thing?

The regulatory actions of leptin to reduce energy intake 
are mediated through a hypothalamic relay involving 
activation of leptin receptors on orexigenic NPY and 
anorexigenic POMC-expressing neurons (Forbes et  al. 
2001). In contrast, the physiological actions of leptin to 
increase bone growth are primarily mediated by systemic 
actions of the hormone (Turner et  al. 2013). Humans 
and rodents exhibit age-related weight gain and bone 
loss in spite of increased leptin levels. The failure of 
increased serum leptin to prevent further weight gain 
is generally attributed to leptin resistance (Burguera 
et  al. 2000, Banks & Farrell 2003). As discussed below, 
it seems plausible that development of leptin resistance 
may play a causal role for impaired skeletal adaptation 
to greatly increased body weight. Thus, low leptin levels 
in severely underweight and leptin resistance associated 
with obesity may negatively affect optimization of bone 
mass to body weight.

There are several mechanisms by which obesity could 
result in skeletal resistance to the bone anabolic actions 
of leptin, including receptor saturation, reduced receptor 
levels, and activation of counter regulatory pathways. 
Based on the affinity of leptin for its receptor in cultured 
human osteogenic cells (Kd of ~0.4 nM), the bone 
anabolic effects of the hormone would occur at relatively 
low circulating levels (Hess et al. 2005). Overweight and 
obese individuals have serum leptin levels in great excess 
of the Kd and would, as a consequence, derive little or 
no additional benefit of higher hormone levels on bone 
compared with normal weight individuals (Boden et al. 
1996, Weigle et al. 1997). Continuous exposure to high 
levels of leptin have been shown to result in down-
regulation of leptin receptor mRNA and protein in the 
hypothalamus (Martin et al. 2008). However, the impact 
of hyperleptinemia on leptin receptors in skeletal tissues 
is unknown. Finally, continuous exposure to high levels 
of leptin has been shown to increase expression of Socs3 
in the hypothalamus, which in turn blocked leptin-
induced signal transduction (Bjørbæk et al. 1998). Socs3 
is also a potent negative regulator of cytokine signaling 
in osteoblasts and osteoclasts (Gao & Van Dyke 2013), 
but its role in leptin signaling in bone has not been 
investigated.

Summary and conclusions

Lifelong maintenance of the mechanical competence 
of the skeleton requires a bone mass appropriate for 
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body size. Skeletal growth and maturation is regulated 
by several hormones and is dependent on adequate 
energy to support growth. The mechanostat functions 
as an adaptive mechanism to help optimize bone mass 
and architecture based on prevailing mechanical strain 
induced by body weight. However, the mechanostat 
is influenced by regulatory inputs mandating non-
mechanical functions of the skeleton, such as mineral 
homeostasis. Although the skeleton is very capable of 
adapting to changes in weight, the mechanostat has 
limits related to magnitude and rate of change in bone 
mass. Both underweight and obesity are associated 
with impaired optimization of bone strength. The 
mechanisms for these deficiencies are unknown but 
may be related; we speculate that leptin deficiency and 
leptin resistance may be a common factor contributing 
to decreased mechanical competence noted in anorectic 
and obese individuals.
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