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Abstract

Insulin resistance (IR) in skeletal muscle is a key defect mediating the link between obesity 

and type 2 diabetes, a disease that typically affects people in later life. Sarcopenia  

(age-related loss of muscle mass and quality) is a risk factor for a number of frailty-related 

conditions that occur in the elderly. In addition, a syndrome of ‘sarcopenic obesity’ (SO) is 

now increasingly recognised, which is common in older people and is applied to individuals 

that simultaneously show obesity, IR and sarcopenia. Such individuals are at an increased 

risk of adverse health events compared with those who are obese or sarcopenic alone. 

However, there are no licenced treatments for sarcopenia or SO, the syndrome is poorly 

defined clinically and the mechanisms that might explain a common aetiology are not yet 

well characterised. In this review, we detail the nature and extent of the clinical syndrome, 

highlight some of the key physiological processes that are dysregulated and discuss some 

candidate molecular pathways that could be implicated in both metabolic and anabolic 

defects in skeletal muscle, with an eye towards future therapeutic options. In particular, the 

potential roles of Akt/mammalian target of rapamycin signalling, AMP-activated protein 

kinase, myostatin, urocortins and vitamin D are discussed.
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Associations between obesity, diabetes and  
skeletal muscle ageing

The International Diabetes Federation has estimated that 
there were 382 million people living with diabetes in 
2013, with this number predicted to rise to 592 million 
by 2035, of which the significant majority would be of 
>40 years old (IDF 2013). Of these, 90% suffer from type 
2 diabetes (T2D), which is characterised by both β-cell 
failure and resistance to the actions of insulin at the 
tissue level (insulin resistance, IR). As skeletal muscle is 
responsible for the majority of the body’s postprandial 
glucose disposal, IR in this tissue results in substantial 

whole-body metabolic disturbances. However, it is likely 
that the metabolic disturbances associated with T2D are 
further exacerbated by the marked loss of skeletal muscle 
mass that can also be associated with these conditions 
(Park et  al. 2009, Kim et  al. 2010). Specifically, loss of 
muscle mass induces a 2–3% decline in basal metabolic 
rate per decade after the age of 20 years and 4% per decade 
after the age of 50 years, resulting from concomitant loss 
of mitochondrial volume density and oxidative capacity 
(Conley et al. 2000).

Open Access

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:mcleasby@rvc.ac.uk
http://dx.doi.org/10.1530/JOE-15-0533


229:2 R68Review m e cleasby and others Muscle insulin resistance and 
sarcopenia

http://joe.endocrinology-journals.org 2016 Society for Endocrinology
Printed in Great Britain

Published by Bioscientifica Ltd.
DOI: 10.1530/JOE-15-0533

Jo
u
rn

al
o
f
En

d
o
cr
in
o
lo
g
y

This loss of muscle mass in the elderly is also the 
principal factor responsible for ‘frailty’, a syndrome that 
has been clinically defined as the possession of three 
of: unintentional weight loss (10 pounds (~4.5 kg) in the 
past year), self-reported exhaustion, weakness (poor grip 
strength), slow walking speed and low physical activity 
(Fried et  al. 2001). Loss of muscle mass (atrophy) is an 
inevitable, although somewhat modifiable, process that 
occurs with ageing (Sayer et al. 2008), when it is referred 
to as primary sarcopenia. In contrast, secondary sarcopenia 
can result from reduced physical activity or pathological 
causes, such as cachexia associated with malnutrition, 
organ failure, inflammatory disease, malignancy or 
endocrine disease (Cruz-Jentoft et al. 2010). Sarcopenia has 
been implicated as a risk factor for numerous adverse health 
outcomes associated with frailty, including weakness, falls 
and fractures, immobility, functional decline, disability 
and loss of independence in the elderly (Cruz-Jentoft et al. 
2010, Batsis et al. 2014). It has also been associated with 
increased mortality in some prospective studies (Landi 
et al. 2013) but not others (Cesari et al. 2009).

The concept of ‘sarcopenic obesity’ (SO) was  
introduced to highlight a syndrome present in a group 
of older patients in whom obesity is accompanied by 
sarcopenia and IR (Baumgartner 2000). The prevalence of 
SO in a recent study of adults in the USA was estimated 
to be 18% of women and 42% of men with a mean age 
of ~70 years, with increased risks of mortality being 
demonstrated for either obese or sarcopenic women 
(Batsis et al. 2014). However, the significance of concurrent  
obesity and sarcopenia was really emphasised by a separate 
study of older people, which demonstrated a 2–3 times 
higher risk of developing disability associated with reduced 
activities of daily living in individuals with SO vs others 
with sarcopenia or obesity alone (Baumgartner et al. 2004). 
Currently, the characterisation of SO is as yet confined to a 
group of clinical and epidemiological observations, rather 
than being underpinned by defined common mechanisms 
(Bollheimer et  al. 2012). Nevertheless, the apparently 
high prevalence of SO and its profound consequences for 
healthcare provision mandates that additional research 
is carried out into the mechanisms underpinning the 
syndrome, in order to establish whether the muscle 
loss and IR associated with SO are indeed inevitable  
co-morbidities and to identify more effective therapies. 
The recommended therapeutic interventions are confined 
to lifestyle changes and are of limited effect, as there are 
no currently licenced medications for the treatment of 
sarcopenia (Bouchonville & Villareal 2013).

In this review, we intend to highlight potential 
mechanisms and pathways that might underpin both 
sarcopenia and IR in ageing muscle, which may, in the 
future, be of interest as therapeutic targets for SO.

Clinical and functional delineation  
of sarcopenia and SO

The study of sarcopenia is still hampered by a lack of 
consensus regarding both definitions and techniques 
for assessment. Various diagnostic criteria have been 
used in studies to date; however, these have frequently 
been established purely on Gaussian distributions of 
measurements made in the test populations (Baumgartner 
et  al. 1998, Janssen et  al. 2002, Newman et  al. 2003). 
More recently, two consensus statements have been 
issued aiming at defining sarcopenia objectively. The 
European Working Group on Sarcopenia in Older People 
stipulated that low muscle mass and either low muscle 
strength or physical performance should be present for a 
positive diagnosis to be made (Cruz-Jentoft et al. 2010), 
whereas the Society of Sarcopenia, Cachexia and Wasting 
Disorders defined ‘sarcopenia with limited mobility’ as 
lean appendicular mass/height2 of two SDs or more below 
the mean for 20–30 year olds, with a walking speed of 
≤1 m/s (Morley et al. 2011).

In addition to the challenges of defining SO, its 
assessment may be confounded by unchanging or 
increasing body mass index in older individuals due to 
increased adiposity, as this will mask any coincident 
loss of skeletal muscle mass. Therefore, evaluation of SO 
necessitates the careful assessment of body composition by 
other methods (Muller et al. 2012). For example, in a recent 
cross-sectional survey that considered risk factors for and 
associations with SO in Korean people >65 years, sarcopenia 
was defined as weight-adjusted dual-X-ray absorptiometry-
determined appendicular skeletal muscle mass <2 standard 
deviations below the mean for healthy young adults (Ryu 
et al. 2013). In the separate longitudinal Korean Sarcopenic 
Obesity Study, the extent of visceral obesity at the start of 
the study was shown to correlate with the extent of loss of 
appendicular muscle over ~2 years of follow-up, indicating 
that there may be a causal component to this association. 
However, baseline muscle mass was unable to predict the 
development of obesity (Kim et al. 2014).

A further challenge to the definition and assessment of 
SO is that loss of muscle strength with age is substantially 
more pronounced than loss of mass, suggesting that the 
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close relationship between muscle cross-sectional area and 
mass in younger people is not maintained in sarcopenia 
(Klein et al. 2002). Moreover, this notion asserts that the 
loss of skeletal muscle quality is a significant contributor to 
age-related frailty (Goodpaster et al. 2006). Therefore, the 
term ‘dynapenia’ has been proposed as a more clinically 
relevant alternative to sarcopenia, to reflect the fact that 
loss of muscle function and mass is not reciprocally related 
and that the former is more relevant to an increased risk 
of adverse events, such as falls (reviewed in Manini & 
Clark 2012). Indeed, using a tertile-based classification 
of both muscle strength and adiposity in a small study 
population, it was shown that the presence of ‘dynapenic 
obesity’, but not SO, was predictive of increased risk of 
falls (Scott et  al. 2014). However, as sarcopenia and SO 
are the terms that are best established in clinical use  
(Cruz-Jentoft et al. 2010), we have used these terms in this 
review. A general summary of the factors involved in SO 
is presented as Fig. 1.

Although numerous animal models have been 
established to study muscle atrophy associated with 
disuse (Bodine et  al. 2001a), denervation (Muller et  al. 
2007), sepsis (Breuille et  al. 1998), cancer cachexia 
(Temparis et al. 1994) and glucocorticoid administration 
(Gardiner et al. 1980), it seems that sarcopenia associated 
with ageing is mechanistically distinct from acute 
atrophy induced by such disease processes (Edstrom et al. 
2006). Furthermore, the study of bona fide sarcopenia in 
animal models is hampered by the length of time animals 
must be housed in order to reach an age at which it is 
detectable (20–24 months for rodents) (Muller et al. 2007, 
Bollheimer et al. 2012, Bernet et al. 2014, Tardif et al. 2014, 
Fry et  al. 2015). In addition, studies of animal models 
of SO demonstrating pathophysiological or molecular 
mechanisms pertinent to the development of the 
syndrome in humans have rarely been reported. However, 
some researchers have studied aged rats with diet-induced  
obesity (Bollheimer et al. 2012, Tardif et al. 2014), whereas 
obese Zucker rats are characterised by marked obesity, IR 
and generalised muscle atrophy (Nilsson et al. 2013), and 
thus may be useful for the study of SO at a younger age.

IR with respect to skeletal muscle glucose, 
lipid and protein metabolism

Peripheral glucose utilisation is reduced as part of the 
IR that develops with age (Gumbiner et al. 1992) and is 
substantially impaired in T2D (Cusi et al. 2000); however, 
protein turnover is also dysregulated. Skeletal muscle 
accounts for 40–50% of lean body mass in an adult human 
and therefore for the majority of whole-body insulin-
stimulated glucose disposal (Baron et al. 1988, DeFronzo & 
Tripathy 2009). Thus, muscle mass is an important 
determinant of glucose and energy homeostasis (Wolfe 
2006) and is determined by the balance between protein 
synthesis and breakdown in the tissue. An abundant 
supply of essential amino acids both inhibits proteolysis 
and stimulates protein synthesis (Castellino et  al. 1987, 
Giordano et al. 1996, Cuthbertson et al. 2005), whereas at 
least in younger people, insulin has a predominant effect 
to inhibit protein catabolism in muscle (Fukagawa et al. 
1985, Gelfand & Barrett 1987, Abdulla et al. 2016).

Insulin-mediated accretion of muscle mass has been 
ascribed to activation of p38 MAPK and mammalian target 
of rapamycin (mTOR)/p70S6 kinase, and thus stimulation 
of mRNA translation (Kimball et  al. 1998, Guillet et  al. 
2004a, Fujita et al. 2007). In humans, it is most likely that 
these effects are mediated through enhanced amino acid 
availability or delivery through increased perfusion (Fujita 
et al. 2006, Timmerman et al. 2010), all of which have been 
reported to be impaired in aged muscle (Bell et al. 2005, 
Cuthbertson et  al. 2005, Rasmussen et  al. 2006, Groen 
et  al. 2014). Thus, the concept of age-related ‘anabolic 
resistance’ has been proposed to describe the reduced 
muscle protein synthesis that occurs in response to 
nutrients (Cuthbertson et al. 2005) or insulin (Rasmussen 
et  al. 2006, Fujita et  al. 2009) and the reduced insulin-
mediated suppression of proteolysis (Guillet et al. 2004b, 
Wilkes et al. 2009) that is associated with sarcopenia. 

Interestingly, resistance to the anabolic action of 
insulin has been demonstrated in older individuals  
of normal muscle mass and may therefore precede the physical 
manifestations of sarcopenia (Rasmussen et al. 2006). Indeed, 

Figure 1  
Clinical characterisation of sarcopenic obesity (SO). 
Sarcopenia, obesity and insulin resistance (IR) 
increase in prevalence with advancing age. When 
individuals display several of the clinical signs 
listed, they may be defined as showing SO. Dotted 
arrows indicate likely causative relationships and 
suggest that IR may be central to the syndrome.
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it seems that differential IR with respect to glucose, protein 
and lipid metabolism can develop with ageing, IR and SO. 
For example, many older individuals are sensitive to insulin 
with regard to glucose metabolism, but not protein synthesis 
(Fujita et al. 2006). However, insulin, essential amino acids and 
resistance exercise are all less effective at inducing increases in 
muscle protein synthesis with increasing adiposity (Guillet 
et al. 2009, Nilsson et al. 2013, Murton et al. 2015). Metabolite 
fluxes within young, normal muscle and in muscle from 
older SO patients are shown in Fig. 2.

Adding further complexity, muscles of differing 
fibre type composition show contrasting sensitivity 
of both glucose and protein metabolism to insulin 
(Lillioja et  al. 1987, Baillie and Garlick 1991). T2D is 
characterised by reduced numbers of predominantly 
oxidative type I fibres and increased numbers of 
predominantly glycolytic type II fibres (Oberbach et al. 
2006), with the proportion of type I fibres correlating 
positively with insulin sensitivity (Stuart et  al. 2013). 
Ageing also results in a preferential reduction in the size 
of type II fibres (Lexell 1995), and the net result is that 

reduced mitochondrial activity (Johannsen et al. 2012) 
and IR (Groen et al. 2014, Tardif et al. 2014) may also 
be evident in muscle. In summary, it appears that IR, 
loss of muscle mass and changes in muscle fibre type all 
have the potential to independently or additively alter 
whole-body glucose homeostasis with ageing.

Clearly, defects that impair insulin-stimulated glucose 
disposal into muscle and thus negatively impact on whole-
body glucose homeostasis will likely be compounded 
by concurrent sarcopenia, as in SO. It is known that 
interventions aimed at increasing muscle mass counter 
the development of IR (Dela et  al. 1996); however, it is 
still not fully appreciated whether this is merely due 
to a proportionate increase in capacity for glucose  
disposal, or whether metabolic adaptation works 
synergistically with an increase in muscle mass. Recent 
studies in our laboratories have illustrated the potential 
for a dual effect, as manipulating bioavailability of single 
proteins in individual muscles, for example by inhibition 
of myostatin (MSTN; Cleasby et  al. 2014), can result in 
enhanced glucose disposal on a per unit mass basis in 

 
Figure 2  
Insulin resistance and ‘Anabolic resistance’ in skeletal muscle and the role of intramyocellular lipid (IMCL) deposition. (A) Normal muscle of young adult. 
Protein synthesis predominates over proteolysis under stimulation by supply of essential amino acids and insulin. Optimal insulin sensitivity favours 
glucose disposal and oxidation of lipids. (B) Muscle of aged adult with sarcopenic obesity. Obesity-associated increases in intramyocellular lipid 
deposition, among other factors, causes impaired insulin signalling, protein synthesis and glucose metabolism. there is also a reduced anabolic response 
to exercise, amino acids and insulin. However, the extent of this resistance to insulin on protein, lipid and glucose metabolism varies between 
individuals. Straight arrows: metabolite flux. Broken straight arrows: reduced metabolite flux. Filled curved arrows: stimulatory effect. Open curved 
arrows: inhibitory effect.
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addition to increased muscle mass and therefore an 
enhancement in the total capacity for glucose disposal 
into the tissue.

Possible mechanisms: accumulation of 
intramyocellular lipid and  
intermuscular adipocytes

Both aberrant adipogenesis in muscles and excess intra-
cellular lipid deposition have been associated with 
impaired muscle mass and insulin sensitivity. Increased 
adipocyte infiltration between muscle fascicles has been 
associated with both impaired gait (Scott et al. 2015) and 
IR (Albu et  al. 2005). Furthermore, a longitudinal study 
demonstrated that progressive loss of muscle mass/quality 
was associated with increasing intermuscular fat in both 
ageing humans (Delmonico et al. 2009) and rats (Tardif 
et al. 2014), whereas another recent paper has shown that 
cultured intermuscular adipocytes produce pro-diabetic 
substances, providing evidence of a causal relationship 
(Laurens et  al. 2016). Additionally, a mechanistic link 
between expansion of visceral adipose tissue and muscle 
atrophy has been suggested by the observation of reduced 
expression of contractile proteins in human myotubes 
co-cultured with visceral adipocytes from obese subjects 
(Pellegrinelli et al. 2015).

The impact of accumulation of intramyocellular lipid 
(IMCL) has been thoroughly studied, and there is a well-
established association between IMCL and muscle IR and 
T2D. However, triacylglycerol, the main storage form of 
lipid, is not considered to be mechanistically linked with 
the development of IR (reviewed in Turner et  al. 2014). 
Instead, the more bioactive derivatives ceramide and 
diacylglycerol have direct inhibitory effects on insulin 
signalling and metabolism (Chibalin et  al. 2008, Ussher 
et al. 2010). Increased IMCL has also been associated with 
impaired muscle function in a number of studies. Lipid 
infusion results in reduced protein synthesis in response to 
both amino acids and insulin in healthy human volunteers 
(Stephens et  al. 2015), whereas diet-induced obesity and 
ectopic deposition of lipid in muscle rather than adipose 
tissue are also associated with impaired protein synthesis in 
rodents (Anderson et al. 2008, Masgrau et al. 2012, Tardif et al. 
2014). This is associated with increased phosphorylation 
of elongation factor 2B, a key mediator of ribosomal 
protein synthesis, in rodent muscle and a saturated fatty 
acid (SFA)/ceramide-induced increase in elongation factor 
2α activation in cultured muscle cells (Tardif et  al. 2014). 
However, the nature of the lipids is important because diets 

enriched in the SFAs impair muscle protein synthesis in rats 
than those based on unsaturated fatty acids (Tardif et  al. 
2011), in addition to their increased tendency to cause IR 
(Budohoski et  al. 1993). The effect of increased IMCL on 
metabolite fluxes in the muscle of sarcopenic obese patients 
is shown in Fig. 2.

Inflammation in obesity and in muscle

Obesity is now recognised to be a subclinical inflamma-
tory state characterised by increased infiltration of 
adipose tissue with pro-inflammatory cell types, most 
notably macrophages (Lumeng et al. 2007). Macrophage 
infiltration has also been demonstrated by a number of 
groups (Hevener et al. 2007, Fink et al. 2014), but not all 
(Tam et al. 2012), to be a feature of obesity-associated IR 
in skeletal muscle, and a synergistic interaction between 
macrophages and fatty acids that leads to impaired muscle 
insulin action has been reported (Varma et  al. 2009). 
However, an alternative proposal is that dyslipidaemia 
associated with obesity activates cellular stress signalling 
pathways and thereby apoptosis and atrophy in skeletal 
muscle (Sishi et al. 2011). In particular, SFA can specifically 
induce pro-inflammatory macrophage activation and 
consequent p38 MAPK-mediated IR in cultured myotubes, 
an effect that is ameliorated by the UFA palmitoleate 
(Talbot et al. 2014). This role of p38 MAPK contrasts with 
its positive involvement in normal insulin-stimulated 
glucose disposal into muscle (Kimball et al. 1998), while in 
addition, loss of skeletal muscle satellite cell self-renewal 
is associated with impaired p38 MAPK α/β activation 
in aged muscle (Bernet et  al. 2014), implying that  
non-specific inhibition of this kinase is unlikely to yield 
overall beneficial effects in vivo. The explanation for these 
apparently disparate roles of p38 MAPK may be distinct 
functional specificities of the four identified isoforms of 
the kinase (Brault et al. 2013), a possibility that has not 
yet been fully investigated.

Further evidence implicates the balance between 
M1- and M2-type macrophage levels in muscle function. 
Obesity is characterised by the accumulation of M1-type 
macrophages, at the relative expense of the M2 subtype 
(Lumeng et  al. 2007). However, muscle expression of 
M1-related cytokines correlates positively with muscle mass 
and strength (Beenakker et  al. 2013), whereas M2a-type  
macrophages accumulate in ageing muscle (Wang 
et  al. 2015). Thus, the shift in macrophage phenotype 
with ageing may be in the opposite direction to that in  
insulin-resistant muscle.

http://dx.doi.org/10.1530/JOE-15-0533
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Skeletal muscle inflammation is also characterised 
by activation of the classical signalling pathway to the 
transcription factor nuclear factor κB (NF-κB). Chronic 
activation of this pathway causes profound atrophy in 
mouse muscle (Cai et  al. 2004), while correspondingly 
it is activated by immobilisation of muscle (Bar-Shai  
et al. 2005), and targeted ablation of the NF-κB activating 
enzyme inhibitor κB kinase 2 (IκK2) improves skeletal 
muscle strength, maintains mass and promotes 
regeneration (Mourkioti et al. 2006). However, short-term 
muscle fibre-specific overexpression of IκK2 or the p65 
subunit of NF-κB, sufficient to cause atrophy, does not 
impair insulin-stimulated glucose disposal (Polkinghorne 
et  al. 2008), providing further evidence that these two 
phenotypes are not inextricably linked as part of a  
pro-inflammatory phenotype.

Other molecular pathways potentially  
mediating the development of both  
sarcopenia and IR

A summary of the roles of the molecules and pathways in 
glucose and protein metabolism discussed here is shown 
in Fig. 3.

Phosphatidylinositol 3-kinase/Akt  
and mtOR signalling

Insulin and insulin-like growth factor-1 (IGF1) have 
predominant metabolic and anabolic effects on muscle 
respectively. However, upon binding to their cognate 
receptors, both exert their effects by recruitment of 
intracellular adaptor proteins, including insulin receptor 
substrate 1, to the receptor complex and activation 
of phosphatidylinositol 3-kinase (PI3K). The resulting 
phosphoinositol triphosphate promotes phosphorylation 
of protein kinase B/AKT, which then phosphorylates 
substrates that orchestrate the various physiological effects 
of the two hormones. Increased glucose disposal is mediated 
predominantly through phosphorylation of AKT substrate 
of 160 kDa (TBC1D4) and TBC1D1, and thus movement of 
GLUT4-containing vesicles to the plasma membrane (Cartee 
& Funai 2009), as well as disinhibition of glycogen synthesis 
by phosphorylation of glycogen synthase kinase  3. AKT 
mediated activation of mTOR, and thus p70S6 kinase and 
eukaryotic translation initiation factor 4E-binding protein 
1, is responsible for protein synthesis, and indeed amino 
acid-stimulated protein synthesis is also mediated through 
activation of mTOR. In parallel, AKT mediated inhibition 
of forkhead transcription factor (FOXO) activity reduces 

 
Figure 3  
Roles of selected candidate molecular mediators in skeletal muscle glucose and protein metabolism. Published effects of insulin, insulin-like growth 
factor 1 (IGF1), amino acids, myostatin, urocortins and vitamin D on signalling pathways and effector machinery (glucose transporters, mitochondrial 
function, translation and activation of E3 ubiquitin ligases) relating to glucose and protein metabolism, as discussed in the text. Unmarked arrow: 
movement of molecules. Arrow with ‘ + ’: direct stimulatory effect on expression or activity. Arrow with ‘−’: direct inhibitory effect on expression or 
activity. Broken arrow: indirect effect. P indicates phosphorylation. ACt2BR, activin 2B receptor; AMPk, AMP-activated protein kinase; AS160, Akt 
substrate of 160 kDa; CRFR2, corticotrophin-releasing factor receptor 2; FOXO, forkhead transcription factor; GLUt4, glucose transporter 4; IGF1R, IGF1 
receptor; NFκB, nuclear factor κB; PGC1α, peroxisome proliferator-activated receptor coactivator 1α; MAPk, mitogen-activated protein kinase; mtOR, 
mammalian target of rapamycin; PI3k, phosphoinositol 3-kinase; SIRt1, sirtuin 1; VDR, vitamin D receptor.

http://dx.doi.org/10.1530/JOE-15-0533
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expression of the E3 ubiquitin ligases that are principally 
responsible for mediating atrophy (atrogin-1/muscle 
atrophy F-box and muscle RING finger 1; Schiaffino et al. 
2013).

Consequently, activation of proximal PI3K pathways 
would be expected to have dual positive effects on muscle 
size and metabolism. This is clearly illustrated by muscle 
overexpression of Akt in rodents, which causes both 
muscle  hypertrophy and increased glucose disposal per 
unit muscle mass, with the predominant effects determined 
by the isoform used (AKT 1 vs AKT 2-predominant effects, 
respectively; Bodine et  al. 2001b, Cleasby et  al. 2007). 
Furthermore, defects in both components of the pathway 
were identified in leptin receptor-null (db/db) mice and 
obese Zucker rats. Treatment with the insulin-sensitising 
thiazolidinedione drug rosiglitazone also led to an 
improvement in muscle mass, leading to the suggestion that 
IR per se could cause muscle wasting through suppression of 
PI3K/AKT signalling (Wang et al. 2006, Katta et al. 2010). 
However, it is equally plausible that activation of the  
AKT-mTOR cellular signalling pathways following 
peroxisome proliferator-activated receptor (PPAR)γ 
stimulation by rosiglitazone impacts positively 
on both IR and muscle mass. The physiological 
relevance of this is unclear, as impairment of the  
AKT-mTOR pathway in muscle does not seem to occur 
naturally in ageing humans or mice (Sandri et al.  
2013); however, it may yet represent a therapeutic target.

AMP-activated protein kinase (AMPk)

AMPK is a cellular energy sensor that is activated by an 
increased AMP:ATP ratio, leading to increased glucose and 
fatty acid uptake and oxidation in skeletal muscle (Koh 
et al. 2008). It plays a major role in coordinating energy use 
during exercise in muscle, but also mediates the long-term 
effects of exercise, through mitochondrial biogenesis. This 
process is initiated by AMPK-mediated activation of silent 
mating-type information regulator 2 homolog 1 (SIRT1) and 
PPAR coactivator-1α (PGC1α) (Mounier et al. 2015). AMPK 
has been extensively studied as a potential molecular target 
for the development of novel therapies for T2D (Coughlan 
et al. 2014), and recent work has identified an additional 
role for AMPK in muscle turnover/plasticity. It can 
protect against age-related functional and mitochondrial 
impairment by promoting myocyte macroautophagy, 
an essential process for cellular maintenance (Bujak et al. 
2015). AMPK likely mediates the effects of adiponectin to 
promote macroautophagy (Liu et  al. 2015), which partly 
mediates this adipokine’s insulin-sensitising effect in muscle 

(Patel et al. 2012). However, the effects of AMPK on muscle 
mass appear less favourable. A study of ageing rodents 
showed an inverse relationship between activating AMPK 
phosphorylation and load-induced hypertrophy (Thomson &  
Gordon 2005). Furthermore, AMPK stimulates myofibrillar 
protein degradation through increased FOXO expression 
(Nakashima & Yakabe 2007) and causes down-regulation 
of the mTOR pathway, thus restricting protein synthesis 
(Bolster et  al. 2002). In addition, liver kinase b1, one 
of AMPK’s upstream kinases, has been shown to limit 
differentiation of satellite cells (stem cells present in adult 
skeletal muscle) through the same mechanism (Shan et al. 
2014). Thus, further studies are necessary to ascertain 
whether AMPK activation would have a net beneficial 
effect in individuals with both IR and sarcopenia.

Myostatin

MSTN is now well established as a central determinant of 
muscle size and mass, as demonstrated by the pronounced 
increases in muscle mass caused by gene-inactivating 
mutations in mice (McPherron et  al. 1997) and by 
naturally occurring genetic loss-of-function variants in 
several domestic species (Hill et al. 2010). Consistent with 
this, its expression has also been shown to be increased in 
sarcopenia in some studies (Leger et al. 2008); however, this 
has not been a universal finding (Ratkevicius et al. 2011).

However, in addition to its effects on muscle mass, 
MSTN deficiency has more recently been shown to have 
beneficial effects on metabolism, adiposity and insulin 
sensitivity. Both Mstn-null mice (Guo et  al. 2009) and 
mice treated with either soluble MSTN receptor activin 
receptor IIb (Akpan et  al. 2009), which sequesters the 
mature peptide in the plasma, or the natural inhibitor 
follistatin-like 3 (Brandt et al. 2015) show increased muscle 
glucose utilisation and insulin sensitivity, associated with 
increased lean mass and decreased fat mass.

Genetic or pharmacological inactivation of MSTN 
increases activation of AMPK (Zhang et  al. 2011), 
increases lipolysis and fatty acid oxidation in peripheral 
tissues, and also increases the expression of brown 
adipocyte markers in white adipose tissue (Zhang et  al. 
2012), providing a number of potential mechanisms for 
its metabolic activity. Importantly, we have also recently 
shown that short-term local impairment of MSTN action 
in rats by overexpression of the MSTN propeptide and 
sequestration of the active peptide enhances skeletal 
muscle glucose disposal to a greater extent than would be 
expected due to increased muscle mass alone, implying 
that additive or synergistic mechanisms are in operation. 
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The associated increase in glucose transporter (GLUT1 
and GLUT4) protein levels may underpin the metabolic 
effects observed (Cleasby et al. 2014).

A number of modalities utilising inhibition of MSTN 
activity as a therapeutic approach have not yet borne fruit, 
although antisense-mediated destructive exon skipping is 
currently being evaluated. This has shown some promise 
in preserving muscle mass in a mouse model of Duchenne 
muscular dystrophy (Lu-Nguyen et  al. 2015), and its 
metabolic effects are currently under investigation.

Urocortins

Urocortins (Ucns) are neuropeptide ligands for the 
corticotrophin-releasing factor receptor 2 (CRFR2) that 
are expressed not only in the central nervous system but 
also in peripheral metabolic tissues. There are particularly 
high levels of UCN2 and CRFR2 in skeletal muscle (Chen 
et al. 2006), implying that these ‘stress regulators’ play a 
role in muscle physiology. Furthermore, Crfr2 expression 
was reduced on an average by 71 and 92% in the soleus 
and tibialis cranialis muscles, respectively, of aged mice  
24 vs 3 month old; n = 6, P < 0.001).

Global knockout of either Ucn2 or Crfr2 produced mice 
that were resistant to diet-induced obesity and IR (Bale 
et al. 2003, Chen et al. 2006), the former also demonstrat-
ing increased muscle mass. Interestingly, however, global 
overexpression of Ucn3 also resulted in mice with marked 
muscular hypertrophy. These mice had increased Igf1 
expression in muscle and also resisted the increased adi-
posity and metabolic abnormalities associated with feeding 
a high-fat diet, despite the lack of endogenous muscle Ucn3 
expression (Jamieson et  al. 2011). In order to dissect the 
muscle-autonomous component of this phenotype further 
and to indicate whether CRFR2 might have the potential as 
a therapeutic target, we performed short-term overexpres-
sion of Ucn3 in rat muscle and showed increased glucose 
disposal, associated with elevated levels of glucose trans-
porter expression, and phosphorylation of both AMPK 
and insulin signalling intermediates, before any increased  
muscle mass was detectable (Roustit et al. 2014). Thus, a 
strategy to target CRFR2 may also have the potential to 
improve muscle mass and metabolism additively.

Vitamin D

There has recently been renewed interest in potential 
novel roles for vitamin D, including in the maintenance 
of muscle mass and insulin sensitivity, which has been 

provoked in part by the identification of a high prevalence 
of vitamin D deficiency among adults (Bates et al. 2011). 
Profound dietary insufficiency leads to impaired muscle 
strength as a result of hypophosphataemia in rats 
(Schubert & DeLuca 2010). However, epidemiological and 
intervention studies in humans have yielded contradic-
tory results with regard to the role of vitamin D in muscle  
mass/function and metabolic endpoints. For example, 
insulin sensitivity has been reported to be either 
improved or unaffected by vitamin  D supplementation 
(Talaei et  al. 2013, Wongwiwatthananukit et  al. 2013). 
Vitamin  D supplementation was reported to increase 
muscle fibre size in immobile older women (Ceglia et al. 
2013); however, a recent systematic review of studies 
showed a benefit of supplementation for individuals with 
vitamin D deficiency at the start of the trial in terms of 
improved muscle strength, but not in muscle mass or 
power (maximum force generated in minimum time; 
Beaudart et al. 2014). These contradictory findings might 
be a result of insufficient study power and/or imprecise 
subject selection in many instances. 

Attempts to explain a hypothesised role for 
vitamin D in muscle on a molecular level have been few 
to date; however, knockout of the vitamin  D receptor 
(Vdr) in mice resulted in reduced muscle size, impaired 
motor activity (Burne et al. 2006) and abnormal muscle 
development (Endo et  al. 2003), In addition, Vdr-null 
mice are leaner (Narvaez et  al. 2009), possibly due to 
increased uncoupling protein expression (Wong et  al. 
2009), but conversely have recently been shown to be 
insulin resistant, a phenotype that was shown to be 
mediated through increased muscle FOXO1 activation 
(Chen et  al. 2016). Further work is needed to define 
the mechanistic links between vitamin D, the VDR and 
ageing-related phenotypes.

Additional therapeutic perspectives

Sarcopenia (Baumgartner et al. 1999, Raguso et al. 2006, 
Lee et al. 2007, Park et al. 2010, Genton et al. 2011, Scott 
et al. 2011, Szulc et al. 2004) and SO (Ryu et al. 2013) have 
been associated with low levels of physical activity in both 
cross-sectional and longitudinal studies, whereas exercise-
based interventions are well established to improve 
both muscle mass and performance (Skelton et al. 1995, 
Vincent et  al. 2002) and insulin sensitivity (Fujita et  al. 
2007) in aged individuals. However, it is clear that these 
interventions are of more use in the prevention, rather 
than treatment, of sarcopenia or SO and metabolic 
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dysfunction, as elderly individuals are often too frail to 
undertake the degree of exercise required to achieve a 
beneficial effect (Wolfe 2006), while they may also suffer 
from anabolic resistance.

In addition, it is clear that a profound reduction in 
dietary energy intake can have a remarkable effect to 
alleviate IR and T2D (Steven & Taylor 2015). However, 
the inevitable lean tissue mass that is lost using this 
approach alone renders it undesirable in the already 
sarcopenic elderly, unless concurrent exercise or 
appropriate nutritional supplementation is undertaken 
(Yoshimura et  al. 2014, Verreijen et  al. 2015). Although 
a comprehensive assessment of dietary approaches is out 
with the scope of this review, it is clear that motivation 
and compliance can frequently be a major limiting factor 
in the success of such lifestyle interventions (Evangelista 
et al. 2003).

In terms of current pharmacotherapy, androgen 
replacement in hypogonadal men is effective in increas-
ing muscle mass; however, its use is as yet unproven in 
normal ageing individuals and is accompanied by unde-
sirable side effects (Giannoulis et al. 2012). Nevertheless, 
androgen use may also be associated with an improvement 
in insulin sensitivity (Traish et al. 2009). The development 
of selective androgen receptor-modulating therapies may 
help mitigate many of these side effects. Preclinical and 
phase II trials of candidate drugs have demonstrated ben-
eficial effects on insulin sensitivity as well as on muscle 
mass and strength (Gao et  al. 2005, Dalton et  al. 2011, 
Min et al. 2009).

One possible novel therapeutic approach might 
be to stimulate satellite cell activity and thus myofibre 
regeneration or replacement (Bernet et  al. 2014), with 
the intention not only of improving muscle strength but 
also the capacity for glucose disposal. However, satellite 
cell ablation in adult mice did not affect age-related 
sarcopenia in a recent study (Fry et  al. 2015), implying 
that strategies aimed at stimulating their fusion or 
proliferation may not be effective. Furthermore, chronic 
activation of pathways triggering muscle growth, such 
as the IGF1AKT pathway (Bellacosa et al. 2005), involves 
the activation of known oncogenes, and thus the risk of 
tumour development.

PGC1α is another molecular target that might be a 
promising candidate for alleviation of both metabolic 
inefficiency and sarcopenia. This molecule is regarded 
as a key mediator of the beneficial effects of endurance 
exercise. Increased expression of PGC1α in muscle 
improves metabolic fitness and prevents sarcopenia in 
ageing mice (Wenz et  al. 2009), although it is unclear 

whether it promotes muscle strength in addition. 
Activation of PGC1α has been shown to result in increased 
secretion of a novel hormone, irisin, which alleviates IR 
in mice (Bostrom et al. 2012), although the significance 
of this finding for human biology has been questioned 
(Timmons et al. 2012, Raschke et al. 2013). Nevertheless, 
there is much interest in designing an ‘exercise mimetic’ 
drug, based on such a molecular target, which would 
improve both muscle mass/function and metabolism, 
to tackle obesity-related metabolic disorders. However, it 
would seem unlikely that an approach aimed at targeting 
a single mediator would be successful in human trials. 

Conclusions and challenges for the future
This review has discussed current knowledge of the 
physiological and molecular mechanisms that govern 
both atrophy/sarcopenia and IR in skeletal muscle. We 
have aimed to highlight potential common ground 
between these mechanisms that could point to future 
development of novel therapies for SO in the elderly.

A number of challenges remain to address the 
deficiencies in our knowledge of this syndrome:
(i) To establish a robust clinical definition of SO to 

enhance study design and thus permit improved 
comparability between clinical studies.

(ii) To establish whether sarcopenia and muscle IR 
are in fact inevitable co-morbidities, given the 
substantial overlap in the molecular pathways that 
are dysregulated in each.

(iii) To develop a more suitable animal model for SO 
to permit more practical mechanistic studies and 
preclinical therapeutic trials.

(iv) To further elucidate the key molecular pathways 
mediating both pathologies, permitting identification 
of molecular targets suitable for the development of 
combined therapies.
Addressing these priorities will hopefully provide a 

sounder footing to attempt more rational treatment of 
this common and debilitating condition.
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