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Abstract
Metformin is a first-line oral anti-diabetic agent that has been used clinically to treat patients

with type 2 diabetes for over 60 years. Due to its efficacy in therapy and affordable price,

metformin is taken by more than 150 million people each year. Metformin improves

hyperglycemia mainly through the suppression of hepatic gluconeogenesis along with the

improvement of insulin signaling. However, its mechanism of action remains partially

understood and controversial, especially in regard to the role of AMPK in metformin’s action

and the mechanism of AMPK activation. In this review, we discuss recent advances in the

understanding of metformin’s suppression of hepatic glucose production and the

mechanism related to the improvement of insulin signaling.
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Metformin, a time-proven effective agent for
the treatment of patients with type 2 diabetes

In the medieval Europe, the Gallega officinalis plant was

used as a folk medicine to treat diabetes. In the late 1800s,

the plant was found to be rich in guanidine, then a

subsequent animal study in 1918 showed that guanidine

had a blood glucose-lowering effect (Watanabe 1918).

However, guanidine proved to be too toxic for clinical use.

In 1929, the dimethylbiguanide, including phenformin

and metformin, was synthesized. These compounds

preserve the glucose-lowering effect of their parent

compound with reduced toxicity. Phenformin is more

potent than metformin in improving hyperglycemia, but

the high occurrence of lactic acidosis, a serious side effect,

led to the withdrawal of phenformin from the market

in the 1970s.

After over 60 years of clinical use for the treatment of

type 2 diabetes (T2D), metformin has proven to be safe

along with affordable, now making it the most commonly
prescribed oral anti-diabetic agent worldwide, taken by

more than 150 million people each year. The guidelines

for the treatment of T2D, published by the American

Diabetes Association and the European Association for the

Study of Diabetes in 2012, recommended metformin as

the initial drug for T2D treatment (Inzucchi et al. 2012).

Moreover, many studies have shown a reduction in cancer

incidence in patients with T2D treated with metformin

(Evans et al. 2005, Landman et al. 2010).
Metformin alleviates hyperglycemia in T2D
mainly through the direct suppression of
hepatic glucose production

T2D accounts for more than 90% of diabetes cases (Centers

for Disease Control and Prevention 2011), and increased

hepatic glucose production is the major cause of fasting

hyperglycemia in these patients (Magnusson et al. 1992,

Saltiel & Kahn 2001, Wajngot et al. 2001). It is now clear
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that metformin improves hyperglycemia mainly through

the suppression of gluconeogenesis in the liver. In a

human study, treatment of patients with T2D with

metformin led to a decrease in hepatic glucose output via

the suppression of gluconeogenesis by 37% (Stumvoll et al.

1995). In another human study, patients with diabetes

exhibited a twofold increase in the rate of gluconeogenesis,

but metformin administration led to a decrease in gluco-

neogenesis by 33% (Hundal et al. 2000). In animal studies,

metformin reduced hepatic glucose production by over 60%

in a euglycemic-clamp study (Takashima et al. 2010) and led

to 50% suppression of endogenous glucose production in

high-fat-diet-fed rats (Song et al. 2001). Furthermore, we have

found that metformin suppressed cAMP-stimulated glucose

production by 35% in primary hepatocytes (Cao et al. 2014).

These in vivo and in vitro data suggest that metformin acts

mainly through the suppression of hepatic gluconeogenesis.
Metformin suppresses hepatic glucose
production through AMPK activation

AMPK: a master regulator of cellular energy homeostasis

AMPK was first named and reported in 1989 for its AMP-

activation property and its role in regulating three key

enzymes in lipid metabolism (Brown et al. 1975, Hardie

et al. 1989). Over the past decades, numerous studies have

confirmed the function of AMPK as a principal energy

sensor of the cell and its role in regulating cellular and

whole-body energy balance by sensing and responding to

changes in the AMP/ADP concentration relative to ATP

(Hardie et al. 2012). AMPK is activated when cellular

energy levels are low, prompting a switch from ATP-

consuming anabolic pathways to ATP-producing catabolic

pathways by stimulating glucose uptake and utilization

and fatty acid oxidation together with suppression of

hepatic glucose production.

Phylogenetically, AMPK is a highly conserved serine/

threonine kinase and presents in virtually all eukaryotes.

Functional AMPK is a heterotrimeric complex comprised

of an a catalytic subunit and regulatory bg non-catalytic

subunits, with each subunit having several isoforms

(a1, a2, b1, b2, g1, g2, g3, encoded by separated genes)

(Hardie et al. 2012). The catalytic a-subunit consists of an

N-terminal protein kinase domain (conventional Ser/Thr

kinase domain), followed by an auto-inhibitory domain,

a linker domain, and a C-terminal regulatory domain

(a-CTD) (Chen et al. 2009, Hardie et al. 2012). The b-subunits

contain a carbohydrate-binding module (CBM) and a

C-terminal domain (b-CTD). The CBM domain allows
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
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AMPK to act as a glycogen sensor, while the b-CTD works

as a scaffold, interacting with a-CTD and the g-subunit,

thus forming the core of the heterotrimeric complex. The

g-subunit has a tandem of four cystathionine-b-synthase

domains, functioning as the adenine nucleotide-binding

region (Hardie et al. 2012). When the cellular energy status

changes, an increase in the AMP/ATP or ADP/ATP ratio

leads to AMP or ADP binding to the g-subunit. This results

in an allosteric change in AMPK and augments a-subunit

phosphorylation at T172 by an upstream kinase or

prevents dephosphorylation by a protein phosphatase

(Corton et al. 1994, Xiao et al. 2011). Phosphorylation of

the a-subunit at T172 leads to an increase in AMPK enzy-

matic activity of over several hundredfold. In comparison,

AMP only causes a two- to fivefold allosteric activation of

AMPK, which also depends on the nature of the isoforms

present in the AMPK complex (Xiao et al. 2011).

In mammals, the upstream kinases for AMPK

a-subunit phosphorylation at T172 are the LKB1–STRAD–

MO25 complex (Lizcano et al. 2004), the Ca2C/calmodu-

lin-activated protein kinases, especially CaMKKb (also

termed as CaMKK2) (Hawley et al. 2005), or the trans-

forming growth factor-b activated protein kinase-1

(Momcilovic et al. 2006). The LKB1/AMPK pathway plays

a major role in metabolic regulation.
The role of AMPK in mediating metformin action

After oral administration, metformin is absorbed into

enterocytes and then delivered directly to the liver thro-

ugh the portal vein. Plasma concentrations in the portal

vein are between 40 and 70 mM in animals after a thera-

peutic dose (Wilcock & Bailey 1994, He & Wondisford

2015). Over a decade ago, Zhou et al. (2001) reported that

metformin at concentrations found in the portal vein

(%80 mM) activates AMPK by increasing a-subunit phos-

phorylation at T172. A subsequent study reported that

hepatic knockout of LKB1, an upstream kinase for AMPK

a-subunit phosphorylation at T172, abrogated the effect of

metformin on the alleviation of hyperglycemia in mice

fed a high-fat diet (Shaw et al. 2005). In agreement

with this result, our study showed that depletion of

AMPK catalytic a-subunits abolished the suppression of

cAMP- or glucagon-stimulated glucose production by

metformin at concentrations typically found in the

portal vein (%80 mM) (Cao et al. 2014). Furthermore,

metformin-mediated activation of AMPK increases CBP

phosphorylation at S436 via atypical protein kinase i/l

resulting in the disassembly of the CREB co-activator

complex, inhibition of gluconeogenic gene expression,
Published by Bioscientifica Ltd.
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and a reduction in glucose production (He et al. 2009).

A growing body of evidence supports the notion that

metformin suppresses mRNA or protein levels of rate-

limited gluconeogenic gene expression in the liver of mice

and in primary hepatocytes (Cheng et al. 2006, Heishi et al.

2008, He et al. 2009, Martin-Montalvo et al. 2013).

Corroborating our findings, a P300G422S knock-in

mouse model, which harbors a reconstituted metformin

phosphorylation site found in CBP, exhibits exaggerated

hypoglycemia in a metformin tolerance test (He et al.

2014). The previous evidence supports a mechanism for

metformin suppression of hepatic glucose production via

activation of the LKB–AMPK pathway.
Activation of AMPK by low metformin concentrations

(%80 mM) via the promotion of the formation of the

AMPKabg heterotrimeric complex

Metformin has no direct effect on AMPKa enzymatic

activity (Meng et al. 2015). But, metformin is able to

increase AMPK enzymatic activity by stimulating the

phosphorylation of the a subunit at T172 (Zhou et al.

2001). Considering that the upstream kinase LKB1 is a

constitutively active kinase (Lizcano et al. 2004), we asked

whether metformin could affect the formation of

functional AMPK heterotrimeric complex, consisting of

an a catalytic subunit and bg non-catalytic subunits, to

increase the phosphorylation of the a subunit at T172 by

upstream kinase (Davies et al. 1994, Mitchelhill et al. 1994,

Stapleton et al. 1996). However, previous studies showed

that AMPK a1b1g1 or a2b1g1 subunits exist in a 1:1:1

molar ratio (Davies et al. 1994, Stapleton et al. 1996), and

it is generally thought that the heterotrimeric complex

assembles immediately following translation in order to

keep the subunits stable. Free subunits may not be stable

and will therefore degrade rapidly (Neumann et al. 2003).

Interestingly, we were able to express AMPK-a1,b1,-g1

individually in both primary hepatocytes and Hepa1-6

cells (Cao et al. 2014, Meng et al. 2015). Purified AMPK

subunits did not associate with other subunits in a

coomassie stained gel, indicating that free AMPK subunits

can exist and are stable. Furthermore, we examined the

protein levels of the AMPK subunits in different mouse

tissues and found that the protein levels of different AMPK

subunits vary from tissue to tissue (Meng et al. 2015),

suggesting that cellular protein levels of AMPK subunits

are unlikely to exist in a 1:1:1 molar ratio (Davies et al.

1994, Stapleton et al. 1996).

To assess the cellular ratio of endogenous AMPK

subunits, we generated and purified FLAG-tagged -a1,
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
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-b1, -g1 since they account for over 90% of AMPK activity

in hepatocytes (Davies et al., 1994, Stapleton et al. 1996).

We first determined the amounts of purified FLAG-tagged

-a1, -b1, -g1 subunits that were equivalent to the

corresponding protein levels in the same amount of

cellular lysates. Subsequently, these amounts of purified

FLAG-tagged -a1, -b1, and -g1 subunits were used and

immunoblotted with anti-FLAG antibody. Our data reveal

that the -a1, -b1, and -g1 subunits exist approximately in a

1:5:0.6 molar ratio in Hepa1-6 cells and in a 1:31:0.5 molar

ratio in mouse liver (Meng et al. 2015). Our data suggest

that the b1 subunit is much more abundant than a1 and

g1 subunits in both Hepa1-6 cells and liver.

The unequal expression of endogenous -a1, -b1, and

-g1 protein levels suggest that not all of the -a1, -b1, and

-g1 are in the heterotrimeric complex. Therefore, we

reasoned that metformin might be able to affect the

assembly of the AMPK heterotrimeric complex. In

immunoprecipitation studies, we found that both a and

g subunits were co-immunoprecipitated when using b1/2

antibodies in metformin-treated Hepa1-6 cells. In con-

trast, in untreated Hepa1-6 cells, the g1 but not the a

subunit co-immunoprecipitated with b1 subunit. These

data suggest that b1 and g1 subunits are preassembled, and

metformin promotes the association of the a1 subunit

with b1 and g1 complex to form the functional hetero-

trimeric complex (Meng et al. 2015). In agreement with

these results, we found that mice fed a high-fat diet were

given metformin in the drinking water exhibited an

increase in a subunit phosphorylation at T172 as well as

the association of the a subunit with the b subunit in the

liver (Meng et al. 2015). Furthermore, low concentrations

of metformin also increased the formation of AMPKabg

heterotrimeric complex in in vitro assembly assay.

Interestingly, neither AMP/ADP, nor phenformin affected

the heterotrimeric assembly, suggesting that they activate

AMPK through different mechanisms.

As we found that metformin was able to promote the

formation of the AMPKabg heterotrimeric complex, we

further tested whether the formation of the AMPKabg

heterotrimeric complex had any effect on the phosphoryl-

ation of the a1 subunit at T172 by an upstream kinase.

In in vitro phosphorylation assays, the phosphorylation of

the a1 subunit at T172 by LKB1 is tenfold greater in the

presence of b1 and g1 subunits than a1 subunit alone. The

presence of the g1 subunit is essential for metformin’s

effect on the phosphorylation of the a1 subunit at T172 by

LKB1, as metformin’s effect was lost when the g1 subunit

was absent in the reaction. A previous study showed that

cells expressing a mutant AMPKg subunit (R531G) were
Published by Bioscientifica Ltd.
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resistant to metformin activation of AMPK (Hawley et al.

2010), suggesting that R531 in the g subunit is critical for

metformin binding. Furthermore, low metformin concen-

trations (!100 mM) prevented the dephosphorylation

of the catalytic a1 subunit by PP2C in the presence of b1

and g1 subunits, and this effect was lost in the absence of

b1 and g1 subunits. Taken together, our data support

that metformin binds directly to AMPK subunits, resulting

in increased assembly of the AMPK abg heterotrimeric

complex as well as allosteric changes, making it more

accessible for upstream kinases, such as LKB1, to phos-

phorylate the a1 subunit at T172 (Fig. 1). The formation

of the AMPK abg heterotrimeric complex also hinders

the dephosphorylation of the a1 subunit at T172 by

protein phosphatase (Meng et al. 2015). Overall, the

collective effects of metformin action lead to the

activation of AMPK.
Gluconeogenic gene 

PS133 

Transcription 
CBP CRTC2

P P

CREB

Figure 1

Metformin suppression of hepatic glucose production by promoting the

formation of the AMPKabg heterotrimeric complex. Metformin increases

the phosphorylation of AMPK by promoting the formation of the AMPK

heterotrimeric complex. Activated AMPK leads to the phosphorylation of

CREB co-activators and the inhibition of gluconeogenic gene expression.
Metformin suppresses hepatic glucose
production through the inhibition of
mitochondrial respiratory chain complex 1
and AMP deaminase

Mitochondria respiratory-chain complex 1, also termed

NADH:ubiquinone oxidoreductase, is the first membrane-

embedded supramolecular complex in the electron trans-

port chain. Complex 1 catalyzes the transfer of a hydride

ion from NADH and a proton from the matrix to

ubiquinone. Ubiquinol (QH2), a lipid-soluble carrier

ubiquinone, can diffuse quickly in the inner mito-

chondrial membrane from complex 1 to complex 3.

Complex 1 also transfers four protons from the matrix to

the intermembrane space to generate a high electron

gradient, which is the energy source in ATP synthesis. In

1955, it was documented that guanidine can inhibit the

oxygen uptake of mitochondria. This was the first study

that showed that guanidine may have an effect on the

mitochondrial respiratory chain (Hollunger 1955). In

2000, two studies showed that metformin’s action is

through the disruption of mitochondrial complex I

(El-Mir et al. 2000, Owen et al. 2000), leading to a decrease

in ATP production. More recently, Foretz et al. (2010)

suggested that the change in the AMP/ATP or ADP/ATP

ratio after metformin’s inhibition of the mitochondrial

complex is primarily responsible for metformin’s effect

and that this occurs through an AMPK-independent

pathway. It was also shown that metformin increases

AMP levels via the inhibition of AMP deaminase (Fig. 2,

Ouyang et al. 2011). In addition, elevated AMP levels after

metformin treatment led to the inhibition of adenylate
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
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cyclase and a decrease in cAMP levels, resulting in the

suppression of the cAMP-PKA pathway, and the inhibition

of gluconeogenesis was proposed (Miller et al. 2013). We

also found that metformin is able to decrease cellular ATP

levels and increase the ratios of AMP/ATP or ADP/ATP

(Cao et al. 2014). Since gluconeogenesis is an energy-

demanding process in which synthesis of one molecule of

glucose from lactate or pyruvate requires four molecules of

ATP and two molecules of GTP, reduction of cellular ATP

levels by metformin will lead to the suppression of hepatic

gluconeogenesis (Fig. 2).

However, metformin’s inhibition of mitochondrial

complex I or AMP deaminase activity occurred at

concentrations R5 mM in hepatocytes (El-Mir et al.

2000, Owen et al. 2000, Ouyang et al. 2011). The

concentrations of metformin required to affect the ratios

of AMP/ATP or ADP/ATP are R250 mM (Foretz et al. 2010,

Cao et al. 2014). These metformin concentrations are

unreachable in the portal vein after a therapeutic dose
Published by Bioscientifica Ltd.
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Figure 2

Direct suppression of hepatic glucose production by metformin through

the inhibition of mitochondrial respiratory chain complex 1, AMP

deaminase, and mitochondrial glycerol 3-phosphate dehydrogenase.

Inhibition of mitochondrial complex 1 also leads to an increase in AMP

levels or the AMP/ATP ratio, as does the inhibition of AMP deaminase,

resulting in the activation of AMPK. However, high metformin

concentrations are needed to inhibit the mitochondrial complex and

AMP deaminase. Metformin inhibition of mitochondrial glycerol

3-phosphate dehydrogenase (G3PDH) will increase NADH levels in the

cytoplasm and suppress the conversion of lactate from pyruvate.

This mechanism of metformin action is important for patients

with high levels of serum lactate.
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(Wilcock & Bailey 1994, He & Wondisford 2015).

Interestingly, using typical pharmacologic dosing in

mice, metformin administration did not decrease, but

significantly increased mitochondrial complex I activity

in the liver (Martin-Montalvo et al. 2013). We also found

that a low metformin concentration (80 mM) signi-

ficantly increased ATP levels in primary hepatocytes

treated with cAMP. This may be due to the inhibition of

gluconeogenesis and activation of fatty acid oxidation

(Cao et al. 2014), but metformin still significantly

activated AMPK (Zhou et al. 2001, Cao et al. 2014) and

the suppression of glucose production relative to cAMP

treatment alone in primary hepatocytes (Cao et al. 2014).

These data indicate that inhibition of mitochondrial

complex I activity is unlikely at pharmacologic metfor-

min concentrations found in the portal vein, and that

the inhibition of mitochondrial complex I is unnecessary
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
DOI: 10.1530/JOE-15-0447 Printed in Great Britain
for metformin’s suppression of gluconeogenesis. Since

very high metformin concentrations are required to

inhibit mitochondrial complex I and perhaps, the AMP

deaminase activity in hepatocytes as well (El-Mir et al.

2000, Ouyang et al. 2011), we suggest the effects of

metformin seen at high concentrations might be either

an off-target phenomena or signals of cell toxicity and

are therefore clinically irrelevant.
Metformin suppresses hepatic glucose
production through the inhibition of
mitochondrial glycerol 3-phosphate
dehydrogenase and through affecting
gut–brain communication

It has been reported that metformin suppresses hepatic

glucose production by inhibiting the enzymatic activity of
Published by Bioscientifica Ltd.
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mitochondrial glycerol 3-phosphate dehydrogenase

(mG3PDH), which blocks the transport of NADH from

the cytoplasm into mitochondria (Madiraju et al. 2014).

This mechanism of metformin action may be important

for the suppression of hepatic glucose production in

patients with diabetes who have high levels of serum

lactate, as the conversion of lactate to pyruvate leads to

the generation of NADH. The inhibition of mG3PDH

will result in an increase in NADH levels and a decrease

in NADC levels, resulting in no NADC available for

converting lactate to pyruvate. Subsequently, this action

will halt glucose production from lactate (Fig. 2, right

panel). Interestingly, AMPK negatively regulates the

activity of yeast glycerol 3-phosphate dehydrogenase 2

(an analog of mammalian mG3PDH) by phosphorylating

S72 (Lee et al. 2012). However, it remains to be determined

whether AMPK can affect mG3PDH enzymatic activity by

phosphorylation.

Moreover, intestinal nutrients can regulate glucose

homeostasis in a manner involving the gut–brain–liver

axis (Wang et al. 2008). Affecting gut–brain communi-

cation will lead to a change in hepatic glucose production.

Duca et al. (2015) tested whether metformin has any effect

on the gut–brain–liver axis and found that metformin

suppression of hepatic glucose production occurs in part

through the gut–brain–liver axis. Gut–brain communi-

cation is critical for acute metformin action, as metformin

suppression of hepatic glucose production was negated in

rats with blockade of the gut–brain–liver axis. The acute

metformin effect is AMPK-dependent, involving the

activation of PKA by GLP-1 in duodenal enterocytes

(Duca et al. 2015). However, the importance of the gut–

brain–liver axis in chronic metformin action remains to be

determined.
Metformin alleviates hyperglycemia in
T2D through the improvement of insulin
signaling: an indirect pathway of metformin
action

Even though metformin improves hyperglycemia

mainly through the suppression of gluconeogenesis in

the liver, it has also been found to be able to increase

insulin sensitivity. This effect would improve insulin-

mediated suppression of hepatic glucose production and

enhance insulin-stimulated glucose disposal in skeletal

muscle (Stumvoll et al. 1995, Inzucchi et al. 1998,

Hundal et al. 2000). The potential mechanism of a

metformin-mediated increase in insulin sensitivity will be

discussed.
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
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Metformin alters gut microbiota and maintains the

integrity of the intestinal barrier

Obese individuals have a different composition of gut

microbiota, and in a rodent model, obesity is associated

with altered gut microbiota (Ley et al. 2005, 2006, Ridaura

et al. 2013). High-fat-diet feeding leads to a similar change

in gut microbiota composition and to a two- to threefold

increase in blood lipopolysaccharide (LPS) (endotoxin)

levels in mice (Cani et al. 2007, 2008). In addition, a single

oral administration of lipids in human or mice acutely

increased serum LPS concentration (Cani et al. 2007,

Laugerette et al. 2011). Germ-free mice resisted high-fat-

diet induced insulin resistance (Backhed et al. 2007). A

low-dose LPS infusion mimicked high-fat-diet feeding and

induced fasting hyperglycemia and hepatic insulin resist-

ance in a mouse model (Ley et al. 2005). This line of

evidence suggests that LPS from the gut is a critical

etiologic factor for the development of insulin resistance.

Increased LPS leakage from the gut has emerged as one of

the most appealing mechanisms to explain the connec-

tion between changes in the intestinal microbiota and

insulin resistance (Cani et al. 2007).

Recently, metformin has been shown to modulate the

composition of gut microbiota in high-fat diet-fed and

diabetic mice and decreases serum LPS levels (Shin et al.

2014). In addition, metformin can activate mucosal AMPK

in the intestine (Duca et al. 2015). An earlier study showed

that high-fat-diet feeding increases the intestinal per-

meability of LPS (Cani et al. 2007, 2008, Creely et al. 2007,

Oliveira et al. 2011), and AMPK plays a critical role in

maintaining intestinal barrier integrity (Peng et al. 2009,

Elamin et al. 2013). Therefore, metformin-mediated

activation of AMPK should decrease LPS leakage from the

gut (Fig. 3).
Metformin blocks the activation of the NF-kB pathway

and affects the expression of PTEN

The liver is the major organ responsible for LPS clearance.

After being delivered to the liver, LPS binds to the

multireceptor complex constituted of CD14, TLR4 and

MD2 within the lipid rafts of hepatocytes and triggers the

signal activation of IRAK, and subsequently, its down-

stream target, the NF-kB pathway (Scott & Billiar 2008).

NF-kB first drew attention in the development of insulin

resistance and T2D after the landmark finding that the

anti-inflammatory agent aspirin inhibits NF-kB. Acti-

vation of NF-kB leads to insulin resistance (Arkan et al.

2005), and inactivation of this pathway protects against
Published by Bioscientifica Ltd.
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Figure 3

Metformin improves insulin signaling in the liver. Metformin can alter the

microbiota in the intestine, resulting in a reduction in LPS production and

translocation across the intestinal barrier. Activation of AMPK by

metformin also blocks LPS-mediated activation of the NF-kB signaling

pathway and PTEN induction.
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the development of insulin resistance, as evident in

mice with NF-kB (p50) knockout (Gao et al. 2009). This

mouse model exhibited increased insulin sensitivity in the

liver and produced significantly less glucose in a hyper-

insulinemic–euglycemic clamp. Furthermore, inhibition

of the NF-kB pathway improved insulin resistance in

db/db mice (Kim et al. 2013). Of particular interest is the

finding that the activation of AMPK by AICAR inhibited

the NF-kB pathway (Cacicedo et al. 2004). Aligning with

this, metformin-mediated AMPK activation attenuates

the activation of the NF-kB pathway (Hattori et al. 2006,

Huang et al. 2009). Therefore, the inhibition of the NF-kB

pathway by metformin-mediated AMPK activation

would lead to an improvement in hepatic insulin

signaling (Fig. 3).

Phosphatase and tensin homolog (PTEN), a tumor

suppressor, can reverse PI3K (Phosphatidylinositol-4, 5-

bisphosphate 3-kinase) function by dephosphorylating

the PI(3,4,5)P3 to PI(4,5)P2, therefore, suppressing the

PI3K-PKB/AKT pathway (Myers et al. 1998, Stiles et al.

2004). Intriguingly, LPS can induce the expression of

PTEN (Okamura et al. 2007), and metformin can suppress
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
DOI: 10.1530/JOE-15-0447 Printed in Great Britain
PTEN expression in pre-adipocyte 3T3 cells (Okamura et al.

2007, Lee et al. 2011). This metformin action is AMPK

dependent, as the metformin effect is lost in cells treated

with Compound C (an AMPK inhibitor) or with AMPK

depletion by shRNA. This report showed that PTEN is a

downstream regulator of AMPK and that the AMPK–PTEN

pathway plays a critical role in regulating inflammatory

response (Fig. 3). However, further studies will be needed

to demonstrate conclusively how metformin’s effect on

PTEN occurs in the liver as well as muscle and determines

how activated AMPK suppresses PTEN expression.
Perspective

Since the maximum metformin dose prescribed to

patients with diabetes is w2.5 g/day, this high therapeutic

dose might affect multiple targets. As an oral agent,

metformin can change the composition of gut microbiota

(Shin et al. 2014) and activate mucosal AMPK (Duca

et al. 2015) that will maintain intestinal barrier integrity

(Peng et al. 2009, Elamin et al. 2013). Together, these

metformin effects will decrease LPS levels in the
Published by Bioscientifica Ltd.
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circulation as well as hepatic LPS levels, since LPS is

delivered directly to the liver through the portal vein. In

addition, the activation of duodenal AMPK by acute

metformin treatment will stimulate the gut–brain–liver

axis to regulate hepatic glucose production (Duca et al.

2015). After being delivered to the liver from the

intestines, metformin can inhibit gluconeogenesis

through different mechanisms. First, it can activate

hepatic AMPK, which will then inhibit gluconeogenesis

by phosphorylating the critical co-activators CBP and

CRTC2 (He et al. 2009, Fig. 1). Second, high metformin

concentrations can suppress hepatic gluconeogenesis by

inhibiting mitochondrial respiratory chain complex 1 to

reduce cellular ATP levels and increase the AMP/ATP ratio

(El-Mir et al. 2000, Owen et al. 2000, Foretz et al. 2010) due

to the high-energy demand of gluconeogenesis. We found

that depletion of AMPKa1/2 decreased the suppression of

glucose production in primary hepatocytes at high

metformin concentrations (Cao et al. 2014). Thus, the

increased ratio of AMP/ATP or ADP/ATP should activate

AMPK (Oakhill et al. 2011, Xiao et al. 2011, Gowans et al.

2013) to augment the inhibition of gluconeogenesis.

Third, inhibition of mG3PDH enzymatic activity by

metformin will affect transport of NADH from the

cytoplasm into mitochondria (Madiraju et al. 2014),

suppressing gluconeogenesis process from lactate.

Reducing LPS leakage from the gut and blocking the

activation of the NF-kB pathway, in concert with down-

regulating the expression of PTEN, will result in an

increase in insulin sensitivity. Moreover, metformin

administration will activate AMPK to increase fatty acid

oxidation by phosphorylating acetyl-CoA carboxylase and

consequently improve insulin sensitivity in the liver

(Fullerton et al. 2013). Collectively, suppression of

gluconeogenesis by metformin’s direct effects and the

indirect improvement of insulin signaling in the liver will

lead to the amelioration of hyperglycemia in patients with

T2D. Even though our studies demonstrate that suppres-

sion of gluconeogenesis by low metformin concentrations

is through the activation of AMPK by promoting the

formation of the AMPKabg heterotrimeric complex in

both in vivo and in vitro assays (Cao et al. 2014, Meng et al.

2015), and the g subunit plays a critical role in the

phosphorylation of the a subunit at T172 by upstream

kinase LKB1. However, the exact metformin binding

site(s) on AMPK subunits and the detailed mechanism

leading to the improvement of insulin signaling by

metformin still remain unknown and need to be unra-

veled in future studies.
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