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Abstract
Bile acids (BA), long believed to only have lipid-digestive functions, have emerged as novel

metabolic modulators. They have important endocrine effects through multiple cytoplasmic as

well as nuclear receptors in various organs and tissues. BA affect multiple functions to control

energy homeostasis, as well as glucose and lipid metabolism, predominantly by activating the

nuclear farnesoid X receptor and the cytoplasmic G protein-coupled BA receptor TGR5 in a

variety of tissues. However, BA also are aimed at many other cellular targets in a wide array of

organs and cell compartments. Their role in the pathogenesis of diabetes, obesity and other

‘diseases of civilization’ becomes even more clear. They also interact with the gut microbiome,

with important clinical implications, further extending the complexity of their biological

functions. Therefore, it is not surprising that BA metabolism is substantially modulated by

bariatric surgery, a phenomenon contributing favorably to the therapeutic effects of these

surgical procedures. Based on these data, several therapeutic approaches to ameliorate obesity

and diabetes have been proposed to affect the cellular targets of BA.
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Introduction
Bile acids (BA), which for decades were considered to only

be involved in lipid digestion in the intestinal lumen and

cholesterol solubilization in the bile, now seem to have

pleiotropic effects: contributing to the homeostasis of

lipids, glucose and other metabolic substrates (Li & Chiang

2014, Qi et al. 2015), affecting immune system functions

(Sipka & Bruckner 2014) as well as gut microbiome

composition (Ridlon et al. 2014). By binding to multiple

cytoplasmic as well as nuclear receptors in various organs

and tissues, they act as real hormones. Based on these facts,

a paradigm for BA endocrine functions has recently been

postulated (Houten et al. 2006).
Bile acid metabolism

BA are amphiphilic molecules derived from cholesterol

in the hepatocytes. The principal metabolic changes are
comprised of shortening of the cholesterol side chain plus

hydroxylation of the core of the molecule at specific

carbon atoms, forming the primary BA, cholic acid and

chenodeoxycholic acid respectively (Hofmann 1984).

These primary BA, after conjugation with glycine or

taurine in the liver, are actively secreted into the bile via

the bile salt export pump (BSEP, ABCB11, OMIM *603201).

The BA pool in the human body is maintained by the

efficient enterohepatic circulation (Hofmann 1984), pre-

serving as much as 95% of conjugated BA. The active

reabsorption of conjugated BA occurs in the distal ileum

through the ASBT (also known as ISBT/IBAT/NTCP2,

OMIM *601295) (Modica et al. 2010), and is profoundly

deteriorated by inflammatory conditions affecting

the ileal mucosa, such as in Crohn’s disease (Lenicek

et al. 2011, Vitek 2015). Unconjugated BA, formed after

glycine/taurine hydrolysis by intestinal bacteria, can also

http://joe.endocrinology-journals.org
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be absorbed by passive diffusion from both the small and

large intestine; however, their transport is much less

effective via this route. The so-called ‘BA gut–liver axis’ is

regulated by the farnesoid X receptor (FXR), the intra-

cellular BA sensor. In the ileocytes, FXR controls for BA

uptake, their intracellular trafficking as well as BA

basolateral efflux (mediated by organic solute transporters

a/b (OSTa/b)) (Zwicker & Agellon 2013). Simultaneously,

ileal enterocytes, upon stimulation of FXR with BA, also

secrete FGF19, which downregulates BA synthesis in the

hepatocytes (Holt et al. 2003). However, FGF19 secreted

from the small intestine in response to feeding also has

insulin-like functions, whereas FGF21, a counterpart to

FGF19, secreted from the liver in response to prolonged

fasting, has glucagon-like effects (Potthoff et al. 2012). In

fact, while insulin/glucagon serve as immediately acting

fed-state and fasted-state hormones, FGF19 and FGF21 can

be considered late-acting hormones (Potthoff et al. 2012).

Interestingly, when administered in pharmacological

doses, both FGF19 and FGF21 have insulin-sensitizing

and hypolipidemic effects in rodent models of obesity

and type 2 diabetes (T2DM) (Tomlinson et al. 2002,

Kharitonenkov et al. 2005).

Apart from the FGF19 signaling pathway, hepatic BA

synthesis is also controlled by another FXR-dependent

mechanism, which is the small heterodimer partner (SHP,

another orphan nuclear receptor) mediated downregula-

tion of the CYP7A1 gene, coding for cholesterol 7a-

hydroxylase, the rate-limiting enzyme in BA synthesis

from cholesterol (Chiang 2009). In addition to this

important function, SHP serves as a versatile corepressor

of gene expression by inhibiting numerous transcriptional

factors in diverse metabolic, proliferative and inflam-

matory pathways (Seok et al. 2013).
Cellular targets of BA

The emerging role of BA in various metabolic processes

is mediated through several membrane and nuclear

receptors (Zhou & Hylemon 2014). These involve specific

nuclear receptors. Apart from FXR, there are also vitamin

D receptor (VDR), constitutive androstane receptor (CAR),

pregnane X receptor (PXR) as well as the cytoplasmic

receptors TGR5, muscarinic receptors and sphingosine

1-phosphate receptor 2 (S1PR2) (Table 1).

FXR, in addition to its essential role in cholesterol/BA

metabolism, also contributes to triacylglycerol (Fuchs et al.

2013) and glucose metabolism. In fact, BA, via activation

of FXR present in pancreatic b cells, are capable of

stimulating insulin production (Schittenhelm et al.
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
DOI: 10.1530/JOE-15-0469 Printed in Great Britain
2015). Furthermore, FXR is also involved in the control

of glucose homeostasis via its direct interaction with

carbohydrate-responsive element-binding protein

(ChREBP) acting as an important transcription factor of

glycolytic genes (Benhamed et al. 2014). Surprisingly, FXR

is also expressed in cardiovascular organs such as the heart

and arterial system including coronary arteries, aorta as

well as atherosclerotic arteries (Bishop-Bailey et al. 2004).

The same is also true for the expression of VDR (Mathew

et al. 2008) and PXR (Wang et al. 2013), pointing to the

complexity of BA action on various organs and systems.

Although the role of PXR (another intracellular BA

sensor in the pathogenesis of obesity and other metabolic

disorders) awaits definite clarification, its effect on energy

metabolism has been proven (Gao & Xie 2012). Interest-

ingly, PXR is also involved in the modulation of the innate

immunity system. This is demonstrated even in vascular

cells, protecting them against the harmful effects of

xenobiotics (Wang et al. 2014).

CAR, originally reported as a nuclear receptor regulat-

ing the response to xenobiotics, is another nuclear

receptor activated by BA (Zhang et al. 2004, Huang et al.

2006, Sipka & Bruckner 2014). It is interesting to note that

CAR has been marked as an anti-obesity nuclear receptor

improving insulin sensitivity (Gao et al. 2009) as well as

lipid metabolism (Maglich et al. 2009) and thyroid

functions (Maglich et al. 2004).

TGR5 (GPBAR1), a member of the rhodopsin-like

subfamily of G protein-coupled receptors, is expressed in

the enteroendocrine small-intestinal cells as well as in the

thyroid gland, brown adipose tissue (Zhou & Hylemon

2014), macrophages (Perino et al. 2014) and in many other

organs (Duboc et al. 2014). An increasing body of evidence

shows TGR5’s important role in energy homeostasis,

glucose metabolism (Thomas et al. 2009) and the

modulation of immune functions (Perino et al. 2014). In

addition, recently published data also demonstrated TGR5

expression in pancreatic b cells, with a direct effect on

insulin secretion (Kumar et al. 2012) (in a similar manner

as described above for FXR) and also in cardiomyocytes

(Desai et al. 2010).

BA have also been reported to activate specific

muscarinic receptors (Raufman et al. 2003). Although

this phenomenon has primarily been discussed in

relationship to possible gastrointestinal pathologies

(Zhou & Hylemon 2014), stimulation of muscarinic

receptors in endothelial cells has been shown to attenuate

atherosclerosis in an experimental animal model (Zhou

et al. 2014). Furthermore, muscarinic M3 receptors are also

expressed in the adipose tissue (Yang et al. 2009) as well as
Published by Bioscientifica Ltd.
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the pancreas (Hauge-Evans et al. 2014), contributing

significantly to glucose homeostasis.

Interestingly, BA also activate S1PR2 in liver cells, a

mechanism believed to significantly regulate hepatic lipid

metabolism (Zhou & Hylemon 2014). Sphingosine-1

phosphate, another natural ligand of S1PR2, also binds

to apolipoprotein M, whose expression is under the

influence of FXR, and it plays an important role in the

pathogenesis of atherosclerosis and diabetes (Ren et al.

2015). Finally, deoxycholic acid, a secondary BA, has been

surprisingly demonstrated to activate the epidermal

growth factor receptor (EGFR) in hepatocytes (Qiao et al.

2001). EGFR is a factor known to be associated with the

progression of vascular dysfunction in diabetes (Benter

et al. 2015).

Apart from receptor-mediated actions, BA exert

multiple functions through additional non-receptor-

driven mechanisms involving the activation of large

conductance Ca2C-activated KC channels that regulate

arterial tone (Dopico et al. 2002), as well as many other less

well-defined effects, including apoptosis, angiogenesis/

neovascularization, NO metabolism and/or inflammatory

processes (for a review, see Khurana et al. (2011)). This sug-

gests the complexity of the totality of possible biological

functions of BA.

This wide array of BA-mediated functions results in

the modulation of multiple signaling pathways including

JNK1/2, ERK1/2 or AKT1/2, with many possible bio-

chemical, pathophysiological and clinical consequences

(Hylemon et al. 2009). BA (particularly UDCA) have been

reported to even modulate the miR-34a/sirtuin1/p53 pro-

apoptotic pathway in non-alcoholic fatty liver disease

(NAFLD; Castro et al. 2013). It also modulates sirtuin 1,

a histone deacetylase, which is an important sensor in

regulating energy homeostasis (Li 2013) as well as in

diabetes pathophysiology (Kitada & Koya 2013). Indeed,

BA, via multiple transcriptional cofactors such sirtuin 1

or SHP, have been suggested to behave as epigenomic

cofactors affecting the posttranslational modification of

histones (Kemper 2011, Smith et al. 2013), with deep

impacts on the possible pathophysiological consequences.

Indeed, BA-induced phosphorylation of SHP has been

demonstrated to posttranslationally regulate hepatic

metabolic genes (Seok et al. 2013). BA also inhibit lysine-

specific histone demethylase 1 (LD1) (Kim et al. 2015), an

enzyme playing an important role in adipogenesis (Musri

et al. 2010) as well as in the development of diabetes

(Brasacchio et al. 2009). Furthermore, BA have been shown

to be involved in the posttranscriptional modification of
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
DOI: 10.1530/JOE-15-0469 Printed in Great Britain
HMG-CoA reductase, a rate-limiting gene in cholesterol

biosynthesis (Duckworth et al. 1991).

BA have also been shown to have potent immuno-

suppressive effects (Sipka & Bruckner 2014). Obesity is

associated with a chronic, low-grade inflammation

(termed metabolic inflammation), which is an important

contributor to the initiation and progression of NAFLD,

insulin resistance, T2DM and atherosclerosis (Gregor &

Hotamisligil 2011). Thus, BA may also exert their potential

anti-obesity actions via these anti-inflammatory

mechanisms.
BA, gut microbiota and diabetes

Recently published data strongly suggests an important

role of the gut microbiota in the development of obesity

and NAFLD (Park et al. 2013). Gut microbiota cover more

than 2000 species of commensal bacteria (Neish 2009),

but only the recent progress in molecular techniques

has revealed the vast diversity of gut microbiota, with

Firmicutes and Bacteroidetes being the predominant

bacterial phyla (Neish 2009).

Animal studies have proven that colonization of lean

germ-free mice with the cecal microbiota of obese

counterparts increases hepatic triacylglycerol accumu-

lation, most likely through an increase in short-chain

fatty acid (SCFA) fermentation in the intestinal lumen,

leading to the stimulation of de novo synthesis of hepatic

triacylglycerols (Backhed et al. 2004). Indeed, the gut

microbiota of obese humans have a higher proportion of

energy-harvesting Firmicutes bacteria, which is believed

to increase the energy yield from the intestinal contents

and accelerate fat accumulation in the human body

(Turnbaugh et al. 2006). In fact, the ratio between the

Firmicutes and Bacteroidetes phyla is important for SCFA

production and is linked to obesity (Fernandes et al. 2014).

These recent observations are also the rationale for several

clinical trials recently initiated to treat obesity, NAFLD

and/or diabetes with fecal bacterial transplantation

((Vrieze et al. 2012); and www.clinicaltrials.gov, accessed

Oct 31, 2015). Further support for these data is reinforced

by the results of gastric bypass studies, which have

shown marked changes in the gut microbiota, correlating

with weight loss (Zhang et al. 2009, Furet et al. 2010,

Li et al. 2011).

Besides obesity, the pathogenesis of diabetes also

seems to be closely linked with gut microbiota. Based on

metagenome-wide association studies, an increase in

sulfate-reducing bacteria and a decrease in butyrate-

producing species have been detected in T2DM (for a
Published by Bioscientifica Ltd.
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review, see Tilg & Moschen (2014)). It should be

mentioned that sulfate-reducing bacteria utilize taurine

for sulfur reduction. Taurine-conjugated BA are closely

associated with a Western type of diet, contrasted to

glycine-conjugated BA predominance (e.g. in native

African populations), which are also devoid of ‘diseases

of civilization’ (McGarr et al. 2005). Indeed, the Western

diet has been reported to induce the taurine-conjugated

BA pool, with important changes to the gut microbiome

(Devkota et al. 2012). In addition, expansion of the

Firmicutes phyla in the gut lumen is related to the

intestinal BA pool (Islam et al. 2011). The relationship

between BA metabolism and the intestinal microbiome

is mutual. It is not only gut bacteria that are capable of

metabolizing BA, but BA also importantly influence the

gut’s microbiota composition. This influence is mediated

through direct antimicrobial effects on gut microbes

(Begley et al. 2005), via production of antimicrobial

peptides mediated by activated FXR in ileocytes (Inagaki

et al. 2006), or by inhibiting intestinal absorption of

bacterial endotoxins (Kocsar et al. 1969, Parlesak et al.

2007). However, these potential antimicrobial effects are

still poorly understood (Hofmann & Eckmann 2006).

It is also interesting to note that gut microbiome

diversity is an important factor, capable to differentiate

between lean and obese human subjects (Le Chatelier et al.

2013). The gut microbiome gene richness efficiently

responds to dietary interventions (Cotillard et al. 2013),

suggesting promising therapeutic approaches for obese

patients.

BA, besides their ‘classical’ lipid digestive and respect-

ive TGR5-mediated metabolic functions, may also exert

many other effects within the intestinal lumen. These, in

turn, affect the susceptibility to obesity, the metabolic

syndrome and/or diabetes.

One of these additional mechanisms may involve BA-

mediated modulation of innate intestinal immunity. It

has been demonstrated that activation of FXR modulated

TLR4 of the intestinal myeloid cells results in anti-

inflammatory effects in murine models of colitis (Vavassori

et al. 2009). Also, vice versa, activation of TLR4/9 on

monocytes has potent modulating effects on FXR,

indicating a close interplay between FXR and effectors of

innate immunity (Renga et al. 2013). Although it has been

proposed that these mechanisms are implicated in

intestinal inflammatory diseases, it is highly likely that

they can also affect energy homeostasis as well as the risks

of obesity, NAFLD and diabetes. These are all conditions

where TLRs are believed to play an important pathogenic

role (Jia et al. 2014, Ferreira et al. 2015).
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
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As mentioned above, both TGR5 and FXR (NR1H4) are

also functionally expressed in pancreatic b-cells, where

they regulate insulin secretion (Renga et al. 2010, Seyer

et al. 2013). In fact, Fxr-deficient mice develop insulin

resistance (Zhang et al. 2006); on the other hand,

activation of FXR reverses this phenomenon in various

animal models (Zhang et al. 2006, Cipriani et al. 2010).

Based on these observations, FXR activation has been

proposed as a promising therapeutic target for diabetic

patients (Zhang et al. 2006). Indeed, treatment of patients

having NAFLD and T2DM with obeticholic acid (a potent

FXR agonist) has been demonstrated to increase insulin

sensitivity in a recent human trial (Mudaliar et al. 2013);

however, this was not confirmed in another study

(Neuschwander-Tetri et al. 2015).

Furthermore, GLUT4, the main insulin-responsive

glucose transporter, playing a critical role in maintaining

systemic glucose homeostasis and contributing to insulin

resistance, can be induced in hepatocyte- and adipocyte-

like cells by chenodeoxycholic acid, which is a natural FXR

agonist (Shen et al. 2008). Nevertheless, BA might also

exert protective effects via FXR-independent action by the

suppression of hepatic fatty acid and triacylglycerol gene

expression (Wu et al. 2014).

However, not all recent data are fully supportive of the

concept of the beneficial effects of FXR activation on

energy homeostasis. It has recently been reported that

selective disruption of intestinal FXR mediates gut

microbiota-associated NAFLD development via the cer-

amide axis, pointing out the complexity of the entirety of

FXR-mediated actions (Jiang et al. 2015). Additionally, in a

mouse model, it has been demonstrated that alteration of

the gut microbiota can antagonize the intestinal FXR via

increased production of taurine-conjugated muricholic

acid (Li et al. 2013, Sayin et al. 2013). It remains to be

confirmed whether human BA conjugates may also exert

the same inhibitory action on intestinal FXR.
BA metabolism in constipation and possible
link to metabolic diseases

The interrelationship between BA homeostasis and meta-

bolic diseases is far more complex. For example, it is

known that patients with chronic constipation have a

higher risk for cardiovascular disease (Shakir et al. 2007,

Salmoirago-Blotcher et al. 2011) and T2DM (Talley et al.

2003, Salmoirago-Blotcher et al. 2011). In fact, decreased

fecal BA output, a phenomenon associated with chronic

constipation (Abrahamsson et al. 2008, Hofmann et al.

2008), has been reported in patients with coronary
Published by Bioscientifica Ltd.
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atherosclerosis (Charach et al. 1998, 2011). Constipation

not only seems to be a consequence of autonomic diabetic

neuropathy (Vinik et al. 2003), but, based on the evidence

discussed above, is instead a contributing factor, via

impaired intestinal and hepatic BA metabolism.
BA, thyroid functions and energy expenditure

Apart from in the small intestine, TGR5 is expressed in

numerous tissues and organs including the thyroid

gland, brown adipose tissue, skeletal cardiac muscle,

liver and pancreas (Duboc et al. 2014). This fact led to

investigations of the effects of BA on these organs.

Surprisingly, it turned out that BA-activated TGR5 in

brown fat in mice (as well as in human myocytes)

stimulated intracellular cAMP formation and activated

type 2 iodothyronine deiodinase (D2), which is respon-

sible for the conversion of T4 to T3, and mediated

thermogenic effects of BA (Watanabe et al. 2006). This

observation was also confirmed in an experimental study

by da-Silva et al. (2011), who observed exactly the same

effects on D2 activity and energy expenditure with

tauroursodeoxycholic acid. However, these effects may

be due to the modulation of intracellular pathways

unrelated to TGR5 activation (Malisova et al. 2013).

In fact, thermogenic effects of BA were also verified in a

human study by Ockenga et al. (2012), who reported a

positive association in subjects of venous BA concen-

trations with energy expenditure; however, this was not

observed in obese subjects (Brufau et al. 2010). The effect

of BA on thyroid function seems to be more complex.

A negative association between BA and TSH levels has

been reported in certain patients (Patti et al. 2009,

Ockenga et al. 2012) as well as in healthy subjects

(Song et al. 2015). This is most likely due to the effect of

BA on TGR5 expressed in the pituitary gland (Doignon

et al. 2011, Ockenga et al. 2012). Importantly, BA

sequestrants have been shown to efficiently ameliorate

hyperthyroidism (Shakir et al. 1993, Hagag et al. 1998,

Kaykhaei et al. 2008), even in refractory patients

(Sebastian-Ochoa et al. 2008, Alswat 2015, Yang et al.

2015). This effect is believed to be mediated by impaired

reabsorption of thyroid hormones (de Luis et al. 2002),

but is probably much more complex.

In this context, it is also interesting to note a feedback

effect of TSH/thyroxine on BA production, primarily

mediated by the modulation of CYP7A1 in the liver tissue

(Ellis 2006, Song et al. 2015). However, not all data are

conclusive, and the role of thyroid hormones in the BA

biosynthetic pathway still awaits further elucidation.
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
DOI: 10.1530/JOE-15-0469 Printed in Great Britain
BA, incretins and glucose homeostasis

Incretin hormones, specifically glucagon-like peptide 1

(GLP-1) and glucose-dependent insulinotropic peptide

(GIP), are intestine-derived hormones that increase

insulin secretion and decrease glucagon secretion upon

stimulation by food ingestion (Holst & Gromada 2004),

thus significantly contributing to the regulation of glucose

metabolism (Holst et al. 2008). A majority of patients with

T2DM have a combination of reduced GLP-1 secretion and

partial resistance to its effects (Nauck et al. 2011). Both of

these defects contribute to impairments of glucose

metabolism in T2DM. Pharmacological approaches,

which either increase endogenous GLP-1 or use the

analogues of GLP-1 with a longer half-life, are now

routinely used in the treatment of T2DM (Martin et al.

2011). Glucagon-like peptide 2 (GLP-2) is another intes-

tine-derived hormone, which, in contrast to GLP-1 and

GIP, does not have incretin effects. It is an important

regulator of gastric motility, gastric acid secretion and

intestinal hexose transport, with enhancing effects on the

barrier function of the gut epithelium (Yusta et al. 2012).

BA have been shown to directly promote GLP-1 and

GLP-2 secretion in small-intestinal enteroendocrine cells

through TGR5 (Parker et al. 2012). Furthermore, their effect

appears to be synergistic to that of glucose (Parker et al.

2012). Studies have shown that increased BA concen-

trations after malabsorptive bariatric surgery procedures

(details provided in the next section) correlate with peak

GLP-1 levels and fasting GIP levels (Patti et al. 2009,

Pournaras et al. 2012, Kohli et al. 2013a). Similar

associations have also been found in some other types of

surgical manipulations. Importantly, numerous experi-

mental studies have also found a positive correlation

between increased BA levels after bariatric surgery and

improvements in glucose homeostasis (Penney et al. 2015).
How BA contribute to the effect of bariatric
surgery on energy homeostasis

Bariatric surgery not only substantially decreases body

weight, but also markedly improves glucose metabolism,

frequently leading to a complete remission of diabetes,

as evidenced in both experimental and clinical studies

(Ashrafian et al. 2010). Nevertheless, different types of

operations clearly differ in their rates of diabetes remission

as well as in the timing of metabolic improvements (Dixon

et al. 2012). In general, bariatric operations can be classified

as restrictive procedures such as gastric banding, gastric

plication and sleeve gastrectomy (LSG) – or malabsorptive
Published by Bioscientifica Ltd.
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or combined procedures (e.g. gastric bypass, biliopancrea-

tic diversion) (O’Brien 2010). In the former group, the

decreased food intake and weight loss is achieved through

the restriction of the stomach size without further

modifications of digestive tract anatomy (Pories 2008). In

the majority of malabsorptive procedures, the stomach size

is also partially restricted, and a direct connection of the

stomach and the lower part of the small intestine is created,

thus bypassing a significant portion of the intestine.

Studies have shown that restrictive procedures do not

alter circulating BA concentrations, with a majority of the

studies reporting either no change of BA after gastric

banding (Kohli et al. 2013a) or inconsistent results after

sleeve gastrectomy (Haluzikova et al. 2013, Myronovych
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Receptor-mediated effects of bile acids on various tissues and organs

involved in energy homeostasis. CAR, constitutive androstane receptor;

EGFR, epidermal growth factor receptor; FXR, farnesoid X receptor;
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et al. 2014). On the contrary, malabsorptive operations

such as gastric bypass, which are usually more effective

toward improvements of glucose metabolism, increase

circulating BA levels (Kohli et al. 2013a). Plasma BA levels

have also been found to increase after ileal interposition

surgery, where the ileum is repositioned distal to the

duodenum (Kohli et al. 2010). This manipulation is also

associated with improvement of the components of the

metabolic syndrome in rats with diet-induced obesity.

Furthermore, the insertion of a duodenal–jejunal bypass

liner (an endoscopically implanted device that eliminates

the duodenum and proximal jejunum contact with

digested food) has also been found to be associated with

increased BA concentration in an experimental study
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(Habegger et al. 2014). We recently observed a similar

increase in patients with type 2 diabetes 6 months

after the implantation of a duodenal–jejunal bypass liner

(Kavalkova P, Mraz M, Trachta P, Haluzikova D, Lacinová Z,

Benes M, Vlasakova Z, Petr T, Vitek L, Pelikanova T &

Haluzik M, unpublished observations). Two experimental

studies have directly demonstrated the importance of BA

in post-bariatric surgery metabolic improvements by

experimental diversion of bile to the distal gut, using

either a catheter placed into the common bile duct of male

obese rats to divert BA to the more distal jejunum (Kohli

et al. 2013b) or a surgical manipulation to divert BA into

the ileum (Pournaras et al. 2012) respectively. Both

manipulations were associated with increased serum BA,

postprandial GLP-1 secretion and improved glucose

metabolism. Finally, Fxr-null mice have been shown to

exhibit significantly blunted weight loss and improve-

ments in glucose metabolism after bariatric surgery,

suggesting an important role of FXR-mediated BA signal-

ing after bariatric surgery (Ryan et al. 2014). Taken

together, BA concentrations are significantly increased

after malabsorptive bariatric surgery procedures. Multiple

studies have shown that this increase significantly contrib-

utes to improvements in glucose homeostasis through

modulations of GLP-1 secretion from the gut, changes of

gut microbiota and endocrine effects of circulating BA in

various organs and tissues (Fig. 1).
Conclusion

Our knowledge on the effects of BA on energy homeostasis

and metabolism has dramatically expanded during the last

decade. It is likely that further surprises are on the horizon,

and BA will appear to have even more profound metabolic

impacts. One example might be found in the observation

that administration of BA sequestrants (a completely

different approach from that described above) increases

insulin sensitivity (Staels & Kuipers 2007, Suzuki et al.

2007a). This most likely takes place by delaying fatty acid

absorption (Suzuki et al. 2007b) and increased production

of secondary BA derived from sequestrant-trapped primary

BA (Harach et al. 2012), thus leading to the stimulation of

GLP-1 release. The same mechanism also seems to be in

play for the ASBT inhibitor elobixibat, which may provide

positive metabolic side effects (in addition to positive

effects on the symptoms and signs of constipation

mentioned above), reducing the risk for CVD and T2DM.

Indeed, decreased LDL-cholesterol and increased GLP-1

levels have been reported in patients with dyslipidemia

treated with elobixibat (Rudling et al. 2015). Interestingly,
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
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the hypoglycemic effect of metformin has been suggested

to be at least partly accounted for by decreased intestinal

BA absorption (Carter et al. 2003). Thus, it is not surprising

that colesevelam, a potent BA sequestrant, has been

approved by the FDA for the treatment of T2DM. An

increasing body of evidence demonstrates the important

therapeutic potential of BA metabolism modulation,

either through the direct regulation of a wide array of

their specific receptors or as a consequence of bariatric

surgical procedures. BA interaction with the intestinal

microbiome is also important, although in this respect,

our knowledge is still far from complete.
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