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Abstract
Obesity and its comorbidities are a growing problem worldwide. In consequence, several

new strategies have been proposed to promote weight loss and improve insulin sensitivity.

Recently, it has been demonstrated that certain populations of white adipocytes can be

‘browned’, i.e., recruited to a more brown-like adipocyte, capable of thermogenesis through

increased expression of uncoupling protein 1. The list of browning agents that induce these

so-called beige adipocytes is growing constantly. However, the underlying mechanisms are

often poorly understood, with the possibility that some of these agents cause browning as a

secondary effect. Moreover, it remains unclear whether beige adipocytes can contribute

sufficiently to affect whole-body energy expenditure in a functionally significant manner.

This review presents an overview of the different molecular pathways leading to the

induction of beige fat, including direct stimulation and indirect actions on the CNS or the

immune system. We discuss the available evidence on the capacity of beige adipocytes to

influence whole-body energy expenditure in rodents, and lastly outline the potential

problems of translating browning capacity into the potential treatment of human

metabolic diseases.
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Introduction Three kinds of fat
Obesity and its comorbidities are a growing worldwide

health problem (Lobstein et al. 2015). Consequently, a lot

of money and effort have been invested into under-

standing the problem, namely the overflow of lipid storage

capacity in fat and inappropriate lipid deposition in other

organs, as well as finding a potential therapeutic target to

remove the excess fat. Recent studies have put forward

preliminary evidence that the solution to the problem

might lie in the fat itself, which could be turned to

burning fuel instead of storing. This review summarizes

the current knowledge on thermogenic adipose tissue

and discusses its possible use in elevating energy

expenditure to counteract obesity and metabolic diseases

such as type 2 diabetes.
To date, three major types of adipose tissue have been
identified. White adipose tissue (WAT) is characterized by

large white adipocytes with few mitochondria, and can be

found in mice predominantly around the gonads (gonadal

WAT, in male mice also called epididymal WAT) and

subcutaneously close to the hind limbs (inguinal WAT)

(Bartelt & Heeren 2014). In humans, the major sites of

WAT are under the skin (subcutaneous WAT) and

associated with the digestive tract (visceral WAT), but it

can also be found around internal organs such as the

heart (epicardial WAT), kidney (perirenal WAT), lung

(pulmonary WAT), and arteries (periadventitial WAT).

WAT is generally considered as insulation against cold and

as a safe storage space for fatty acids esterified into
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triglycerides. When its storage capacity is exceeded, fatty

acids can no longer be safely cleared from the systemic

circulation and accumulate in other organs such as the

liver and the muscle. This concept called lipotoxicity can

subsequently lead to insulin resistance and result in type 2

diabetes and/or cardiovascular disease (Huang-Doran et al.

2010, Speakman & O’Rahilly 2012).

Brown adipose tissue (BAT) is characterized by smaller

lipid droplets and a high number of mitochondria. In

rodents, BAT can be found in the interscapular region,

located between the shoulders, and to a lesser extent as

perirenal and axillary BAT (Sidossis & Kajimura 2015).

In humans, BAT is found in the neck region of infants with

a volume of around 3.5 ml (van Marken Lichtenbelt et al.

2009, Virtanen et al. 2009, Devlin 2015) – presumably to

warm the blood supply of the brain (Sidossis & Kajimura

2015, Symonds et al. 2015), supraclavicular area and

perirenal area. Interestingly, although BAT and WAT

both have the capacity to store lipids, they are derived

from different progenitors. BAT is derived from precursor

cells, which share the same lineage as skeletal muscle cells

and are positive for Myf5. In contrast to skeletal muscle

cells, BAT progenitors initiate the expression of PRDM16

and BMP7 during development, which drives them to

become mature brown adipocytes (Seale et al. 2008, Tseng

et al. 2008, Rajakumari et al. 2013).

The most important feature of brown fat is the

capability to oxidize substrates to produce heat for

facultative thermogenesis, which is required to maintain

body temperature under conditions below thermoneu-

trality, and for arousal from torpor (Cannon & Nedergaard

2004). At the molecular level this process depends on

uncoupling protein 1 (UCP1), which shortcuts the proton

gradient in mitochondria to produce heat instead of ATP.

Several other molecules have been identified to be integral

in BAT thermogenesis, the most important being cell

death-inducing DFFA-like effector A, peroxisome prolif-

erator-activated receptor gamma coactivator 1, and

receptor-interacting protein 140 (Uldry et al. 2006,

Emont et al. 2015).

Recently, a third type of adipocyte was identified in

rodents and termed beige or brite fat (brown in white; Wu

et al. 2012). It is characterized by the expression of UCP1,

but localized in classical WAT depots. Although beige

adipocytes share some features of brown adipocytes such

as similar levels of UCP1 in the mitochondria (Shabalina

et al. 2013), their expression profile is distinctly different

and even varies substantially depending on fat depot and

origin. The lineage of these beige fat cells is not well

understood. Evidence suggests that these cells can either
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
DOI: 10.1530/JOE-15-0408 Printed in Great Britain
arise directly from Myh11C smooth muscle precursor cells

(Long et al. 2014), from preadipocytes derived of meso-

dermal stem cells or through transdifferentiation from

white adipocytes by a process called ‘browning’ (Asano

et al. 2014, Carey et al. 2014, Sanchez-Gurmaches &

Guertin 2014, Sidossis & Kajimura 2015, Symonds et al.

2015), although the term appears to be interchangeable

in the literature regardless of origin.

The relative contributions of these pathways most

likely depend on the specific depot of WAT hosting the

UCP1-positive adipocytes, while perigonadal WAT does

not readily produce beige adipocytes and also lacks a

response to norepinephrine in terms of oxygen consump-

tion, inguinal WAT shows significant browning (Okamatsu-

Ogura et al. 2013). In humans, browning has also been

observed (Wu et al. 2012, Jespersen et al. 2013), for

instance in WAT associated with organs such as the

epicardial depot (Sacks et al. 2013). To date, a plethora of

browning agents has been identified (Fig. 1), and the list is

likely to expand further. Therefore, it seems conceivable

that several distinct pathways to beige adipocyte gener-

ation exist, and that they might be species- and WAT

depot-specific.
Ways of browning

Browning of WAT can be achieved by several different

means, including CNS activation modulating sympathetic

output to WAT, the recruitment and activation of immune

cells in WAT, or by direct action on white adipocytes or

beige precursor cells (Fig. 1).

With regard to the CNS, the focus has been on

neurons in the hypothalamus, which constitutes the

master regulator of the autonomic nervous system. This

includes pro-opiomelanocortin and agouti-related peptide

producing neurons, well known for appetite regulation,

which promote or inhibit browning respectively (Ruan

et al. 2014, Dodd et al. 2015). Furthermore, hypothalamic

GLP1 was found to stimulate browning (Beiroa et al. 2014,

Lopez et al. 2015) and to increase triglyceride-derived fatty

acid uptake in subcutaneous WAT (Kooijman et al. 2015).

Likewise, 5-hydroxytryptamine neurons are also import-

ant to maintain beige UCP1 mRNA levels (McGlashon

et al. 2015). These examples, which are likely only the tip

of the iceberg, clearly demonstrate the existence of central

mechanisms that modulate browning, most likely by

adjusting the sympathetic tone to WAT.

The immune system has only recently been impli-

cated in browning. Initially, it was observed that macro-

phages in WAT can undergo alternative activation and
Published by Bioscientifica Ltd.
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Figure 1

Different ways leading to browning of white adipose tissue, including

immune system, CNS, direct activation, or direct inhibition. AgRP, agouti-

related peptide; Cox, cyclooxygenase; GLP1, glucagon-like peptide 1;

IL, interleukin; ILC2 cells, type 2 innate lymphoid cells; miRNA, micro

ribonucleic acid; POMC, proopiomelanocortin; PPAR, peroxisome prolif-

erator-activated receptors; PTEN, phosphatase and tensin homolog; TGF,

transforming growth factor; TLE3, transducin-like enhancer of split 3;

5-HT1, 5-hydroxytryptamine receptor 1.
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begin to release catecholamines (Qiu et al. 2014), which

triggers browning via pathways similar to sympathetic

stimulation. Interestingly, cold-induced browning of

WAT also appears to be dependent on the immune system,

namely eosinophils and the interleukin 4 (IL4)/IL13

signaling pathway (Qiu et al. 2014). A more recent study

shed more light on the underlying complex immuno-

logical pathways: when ILC2 immune cells are triggered

by IL33, they produce IL5, which in turn activates

eosinophils to release IL4. This subsequently activates

macrophages to produce norepinephrine, which starts

browning events in WAT. However, IL4 and IL13 seem to

also have direct browning properties (Brestoff et al. 2015,

Flach & Diefenbach 2015, Lee et al. 2015).
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
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Most studies have identified mechanisms that

directly cause browning of WAT, for instance, by

activation of PPARa (Rachid et al. 2015) or PPARg (Petrovic

et al. 2010), through FGF21 (Coskun et al. 2008), IL6

(Petruzzelli et al. 2014), natriuretic peptides (Bordicchia

et al. 2012), adenosine through A2A receptors (Gnad

et al. 2014), melatonin (Jimenez-Aranda et al. 2013),

TLE3 (Villanueva et al. 2013), soluble guanylyl cyclase

(Hoffmann et al. 2015), or even micro RNA such as miRNA-

30 (Hu et al. 2015). Unfortunately, the precise mechanisms

are often unclear, and some of the identified candidates

might well act through indirect mechanisms such as

increasing sympathetic tone systemically, which leads

to thermogenesis through b-adrenergic activation
Published by Bioscientifica Ltd.
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(Bachman et al. 2002), or by altering body temperature

through the promotion of heat loss (Warner et al. 2013).

Moreover, at least for FGF21, it has been shown that some

of the beneficial metabolic effects are in fact not depen-

dent on UCP1 (Samms et al. 2015, Veniant et al. 2015).

In addition to these direct positive stimuli, a large

number of pathways have been identified that seem to

actively suppress browning. Consequently, the inhibition

of these pathways in turn leads to the appearance of

beige adipocytes. This includes peripheral serotonin levels

(Crane et al. 2015), the TGFb/SMAD3/myostatin

cascade (Shan et al. 2013, Singh et al. 2014), hepatic

PTEN (Peyrou et al. 2015), Notch or prolactin receptor

signaling (Auffret et al. 2012, Bi et al. 2014), as well as Cox2

(Madsen et al. 2010).
Do beige adipocytes contribute to whole body
energy expenditure in rodents?

Studies in vitro have shown that beige adipocytes have

almost the same thermogenic potential as brown adipo-

cytes (Shabalina et al. 2013). However, in rodents it is

estimated that in vivo beige fat can only reach about 20%

of the UCP1-dependent oxygen consumption per gram of

tissue compared to canonical BAT, and the total mito-

chondrial mass of inguinal beige fat reaches at best 30% of

the levels found in BAT (Shabalina et al. 2013). Likewise,

the b3-adrenergic-induced increase in glucose metabolism

in pooled subcutaneous WAT of Zucker diabetic fatty rats

was over 40 times less than in BAT (Liu et al. 1998).

Whether recruited beige adipocytes can contribute signi-

ficantly to whole-body energy expenditure in vivo there-

fore remains controversial, particularly since convincing

direct measurements of its thermogenic contribution are

currently lacking. There are three major reasons for this

gap in knowledge: the complex relationship between BAT

and browning of WAT, which clearly interfere with each

other (Pan et al. 2014), the use of cold exposure and

pharmacological agents such as b3-adrenergic agonists,

which act on both brown and beige fat in parallel, and the

use of UCP1 mRNA as a readout of thermogenic activity

(Nedergaard & Cannon 2013).

The reporting of UCP1 mRNA expression as verifica-

tion of significant browning and thermogenesis is a

setback when determining whether browning of white

fat is of functional relevance (Keipert & Jastroch 2014,

Jastroch & Andersson 2015). As UCP1 mRNA expression is

already relatively high in BAT at ambient temperature,

further activation of BAT by cold exposure or pharma-

cological agent will only cause a modest increase in mRNA
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
DOI: 10.1530/JOE-15-0408 Printed in Great Britain
levels, which usually translates into a measurable change

in tissue oxygen consumption and thermogenesis. In

contrast, WAT depots such as inguinal or epididymal

exhibit a very low and often very heterogeneous levels of

baseline UCP1 mRNA expression (Wu et al. 2014), and any

increase presented as fold elevation from virtually nothing

can be a misrepresentation towards functional change

(Nedergaard & Cannon 2013). Consequently, absolute

threshold cycle (CT) values should be reported (Keipert &

Jastroch 2014). In addition, increases in UCP1 mRNA

expression do not necessarily translate to measurable

UCP1 protein expression in subcutaneous and gonadal

WAT, which becomes especially difficult in animals kept at

thermoneutrality or in obese animals. Moreover, this is

additionally confounded by the fact that many commer-

cially available UCP1 antibodies detect proteins other

than the target, often very close to the correct band

weight, requiring optimal separation conditions and the

need for a BAT lysate control (Veniant et al. 2015).

Different blot exposure times between BAT and subcu-

taneous WAT are almost always needed, but usually not

reported, giving the illusion that the presence of UCP1

is at a similar level when shown in the same figure.

Consequently, when assessing browning of WAT, it is

recommended to provide mRNA and protein data in direct

comparison with BAT samples.

More importantly, alternative and additional readouts

for thermogenesis should be provided to gain further

insights into the biological relevance of the browning

process at the tissue level. These alternatives could include

tissue-specific substrate uptake studies using a variety of

tracers, thereby determining functional significance by

separating out the substrate uptake in each tissue in vivo

without ‘disrupting the system’ (Bartelt et al. 2011, Khedoe

et al. 2015, Kooijman et al. 2015). Using this approach,

subcutaneous WAT has been shown to increase triglycer-

ide uptake under cold exposure, although compared to

BAT the effect was minimal (Bartelt et al. 2011). Moreover,

blood flow to BAT and WAT depots can be an important

indicator of metabolic function. The use of microspheres

(Foster & Frydman 1978, Rothwell & Stock 1981) and more

recently microbubbles (Baron et al. 2012) to measure blood

flow, and therefore an approximation of oxygen con-

sumption, can prove useful for measuring functional

significance of individual tissues. Furthermore, more

direct measurements of thermogenesis, for instance by

recording tissue temperature (in relation to body and BAT

temperature) through implantable transmitters or direct

infrared thermography of fat pads, could shed light on the

individual contributions to whole body thermogenesis.
Published by Bioscientifica Ltd.
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However, here it needs to be taken into consideration that

browning might be highly heterogeneous for the different

WAT depots.

An alternative approach to discriminating BAT from

beige fat thermogenesis could be the functional removal

of interscapular brown fat via either chemical sympath-

ectomy or physical denervation. However, this is not ideal

as a means to study beige contribution, due to the ability

of the other BAT depots to fully compensate (Rothwell &

Stock 1989). Moreover, in genetic models of BAT ablation

it is difficult to separate true beige fat thermogenesis from

developmental compensation, despite showing that

browning of white fat is increased (Schulz et al. 2013).

As an opposite approach, transplantation of fat depots

into recipient mice has proved successful in improving

some metabolic parameters with BAT (Stanford et al. 2013,

Liu et al. 2015), and to a lesser extent subcutaneous WAT

into the visceral cavity (Tran et al. 2008). Also matrix

assisted stem cell-derived beige fat transplantations gener-

ated some interesting effects (Tharp et al. 2015). Unfortu-

nately, these approaches create very artificial situations,

with yet unknown effects exerted by the donor tissue,

including endocrine mechanisms, alterations of body

temperature or other physiological parameters that are

sensed by the brain and compensated for through changes

in sympathetic tone, or even immune or stress responses.

Consequently, detailed further studies potentially invol-

ving conditional beige vs BAT specific knockouts are

urgently needed to delineate the respective individual

contributions. This approach, however, requires detailed

knowledge on brown and beige specific genes that can be

used to drive tissue-specific manipulations.

Taken together, there is currently sparse evidence that

beige fat contributes significantly to whole-body energy

expenditure and thermogenesis under physiological

conditions in rodents. Only under certain conditions,

where for instance specific BAT depots are incapacitated or

beige fat has been implanted, have significant actions

been observed. Due to the issues previously indicated, this

remains to be further validated.
Role of thermogenic fat for weight loss
in humans

Owing to its capability to dissipate stored energy in the

form of heat, there has been a renewed interest to use

thermogenic fat for the treatment of obesity with the

rediscovery of brown fat in the supraclavicular region

of adult humans (van Marken Lichtenbelt et al. 2009,

Virtanen et al. 2009). This brown fat depot seems to
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
DOI: 10.1530/JOE-15-0408 Printed in Great Britain
be highly variable, depending on gender, age, and

ambient temperature (Cypess et al. 2015, Wang et al.

2015a). Moreover, it is still unclear whether this

thermogenic fat is in fact brown, beige, or even a mixture

of both (Wu et al. 2012, Jespersen et al. 2013), and whether

the adipocytes are derived from Myf5C precursors like true

BAT or whether they are transdifferentiated white

adipocytes. What is certain, however, is that these

depots express UCP1 and have true thermogenic capacity,

which can increase their uptake of circulating glucose

and free fatty acids. They can also be activated by cold

and b3-adrenergic stimulation as well as by weight loss

(Boon et al. 2015).

The most crucial point is whether the capacity for

energy expenditure in these depots is high enough to shift

energy expenditure compared to other means like exercise

or food restriction (Fig. 2) and bring about tangible

therapeutic benefits. First estimates from simple upscaling

of rodent data suggested that a fully activated adult

human BAT would burn about 300 kcal/day, which

would be a substantial contribution to the daily energy

expenditure of a human. However, when factoring in

tissue specific alterations in energy expenditure for species

and size such as the Kleiber’s law, the estimate would be

around 50 kcal/day for fully activated BAT (Devlin 2015).

The first studies using real life conditions rather than

algorithms now estimate that human BAT activated

by mild cold exposure would contribute expenditure of

15–25 kcal/day (Muzik et al. 2013).

These findings are rather discouraging in the context

of obesity treatment as an overweight person would

require about 15 years of fully active BAT to melt off

20 kg of fat. This becomes even less feasible when

considering that BAT is more difficult if not impossible

to recruit in obese people (van Marken Lichtenbelt et al.

2009, Virtanen et al. 2009), highly variable between

individuals (Cypess et al. 2009, Lee et al. 2013, Xue et al.

2015), and that any increase in energy expenditure is often

met by increased compensatory food intake. More

importantly, it is not sufficient to activate the BAT on a

single occasion, as the additional thermogenesis will cease

as soon as the individual returns to the usual thermo-

neutral environment, around 22 8C for clothed humans.

This was clearly demonstrated in a recent study, where

BAT was activated by cold exposure (15–16 8C) for 6 h

daily for 10 days, but resting metabolic rate was not

elevated when the patients returned to thermoneutrality

(van der Lans et al. 2013).

It can certainly be argued that if a conversion of

additional human WAT depots to beige fat were possible,
Published by Bioscientifica Ltd.
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Figure 2

Estimated energy expenditure generated by fully activated human BAT (Muzik et al. 2013, Devlin 2015) in relation to other every day life events that concern
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resulting in more thermogenic fat than in the supraclavi-

cular region alone, this could substantially contribute to

energy expenditure, especially in obese patients. Unfortu-

nately, so far no significant beige adipocyte populations

have been observed in the traditional WAT depots:

UCP1C cells were only observed in perirenal, visceral

and subcutaneous fat of non obese children, but not at all

in obese children or adults (Rockstroh et al. 2015).

Likewise, mild cold exposure for 10 days did not induce

browning in abdominal WAT (van der Lans et al. 2013).

So far evidence of browning in humans has been observed

only in extraordinary circumstances such as cachexia

(Petruzzelli et al. 2014) or severe adrenergic stress through

burns (Sidossis et al. 2015).

Therefore, it is currently uncertain how anatomical

regions other than the supraclavicular depots can success-

fully be converted to thermogenic fat and how they can

contribute significantly to overall energy expenditure.
Pharmacological activation of human
thermogenesis

Emphasis on the activation of human thermogenesis to

increase energy expenditure as a therapeutic intervention

for obesity and related metabolic disorders such as type 2
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
DOI: 10.1530/JOE-15-0408 Printed in Great Britain
diabetes is pervasive. While it might be questionable

whether this approach could really be effective for weight

loss, given the potentially low daily energy expenditure as

previously mentioned and possible compensatory hyper-

phagia, the real benefit may lie in reducing circulating

glucose and fatty acids, therefore increasing insulin

sensitivity. Recent studies have shown that by increasing

the volume of BAT through cold exposure, glucose

clearance also improves (van der Lans et al. 2013,

Chondronikola et al. 2014). However, this requires

constant activation and substrate turnover of the BAT, as

its storage capacity is limited. Most importantly,

unwanted side effects must be considered, including

increased sweating and hyperthermia, hunger and even

cardiovascular problems, as UCP1 seems to have a

negative effect on arterial plague formation (Dong et al.

2013). Consequently, well-controlled human studies are

urgently required, if possible using several alternative

strategies to assess BAT function, as the commonly used
18FDG–PET–CT technique measuring glucose uptake does

not account for fatty acid oxidation, and the mechanism

of preferential uptake between substrates is poorly under-

stood (Townsend & Tseng 2012).

The most obvious mechanisms to initiate thermo-

genesis in humans would be cold exposure or direct
Published by Bioscientifica Ltd.
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b3-adrenergic agonists. While recent studies have shown

some promise (Cypess et al. 2009), b3-adrenergic agonists

have historically proven less effective in patients

compared to rodents (Arch 2008), probably because the

b3-adrenergic signaling pathway is generally less sensitive

in humans (Lafontan & Berlan 1993), and cardiovascular

side effects might be an issue. Consequently, many of the

proposed activation strategies in rodents might ultimately

fall short if they depend on b3-adrenergic signaling.

Conversely, cold exposure works impressively well,

increasing energy expenditure and thermogenesis as well

as the capacity for glucose clearance (van der Lans et al.

2013). However, this effect seems to require constant cold

activation, as a return to thermoneutrality normalizes

resting energy expenditure (Yoneshiro et al. 2011, van der

Lans et al. 2013). Since constant cold exposure is some-

what uncomfortable for humans, pharmacological

mechanisms that allow for permanent induction of

thermogenesis could be favourable to keep the tissue in a

constantly activated state. This would then circumvent

any adaptational measures such as a reduced sympathetic

tone in response to elevated body temperature, since it has

been shown that browning can be reversed upon cold

acclimation (Jankovic et al. 2015) and beige adipocytes can

undergo ‘whitening’ again if not constantly activated

(Rosenwald & Wolfrum 2014).
Problems in translating current rodent data

There has been no shortage in recent publications

demonstrating the induction of thermogenic fat in

rodents. However, the precise mechanism is often unclear,

and simply tipping the sensitive regulation of body

temperature to hypothermia can already stimulate

thermogenesis (Nedergaard & Cannon 2014). This could

include peripheral heat loss, changes in insulative capacity

due to alterations in subcutaneous fat, skin or fur, or even

behavioral changes that alter nesting. Additionally, many

practical factors in experimental design affect the accurate

measurement of thermogenesis in rodents, such as

housing conditions, ambient temperature, and metabolic

measurement (Virtue & Vidal-Puig 2013, Xiao et al. 2015).

Fortunately, studies are increasingly being conducted at

both room temperature and thermoneutrality to discern

true action of potential browning agents from other

factors such as thermoregulatory compensation (Warner

et al. 2013). Moreover, there are even distinct differences

between different strains (Guerra et al. 1998, Li et al. 2014),

age (Xue et al. 2007, Lasar et al. 2013) and adiposity

(Kooijman et al. 2015), which affect the ability to induce
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
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beige fat in mice. Finally, several studies use doses that are

at a high pharmacological level (Commins et al. 1999,

Fisher et al. 2012, Wang et al. 2015b), which are likely to be

unrealistic for use in humans.

The lack of the precise mechanism for the induction of

thermogenesis will certainly hamper the translation of

rodent data to the design of human studies, as a number

of species differences are known between mice and

humans that affect specific thermogenic systems. In

addition to the aforementioned changes in b3-adrenergic

signaling, there are also differences for instance in the

thermogenic response to food, the so-called diet-induced

thermogenesis, between species. This phenomenon

depends on BAT in rodents (Rothwell & Stock 1981,

Feldmann et al. 2009), but is still somewhat enigmatic in

humans and may differ for different substrates (Schlogl

et al. 2013). Moreover, adult human thermogenic fat

does not share the same gene expression profile as either

rodent BAT or beige fat, with current data suggesting

that it could even be a mixture of both types, with the

deepest neck areas possessing the most brown fat

characteristics and displaying the highest expression of

UCP1 (Park et al. 2015).
The future of beige adipocytes

Despite an overwhelming number of comprehensive

studies on thermogenic fat in humans and browning of

white fat in rodents, several issues still remain enigmatic:

What exactly is the thermogenic fat in adult humans?

Where does it come from? Which mechanisms activate

and deactivate it? How does it compare to BAT or beige

fat in rodents? Moreover, it remains uncertain what the

role for beige fat is in rodents, especially as there is

accumulating evidence that the thermogenic contri-

bution might be insignificant. Could it be that beige fat

constitutes some kind of thermogenic appendix, given

that UCP1 evolved before a specialized tissue for

thermogenesis such as BAT existed (Nedergaard &

Cannon 1990, Oelkrug et al. 2015)? While white fat

expressing UCP1 might certainly be an advantage in the

absence of functional BAT (Schulz et al. 2013) and

sufficient fuel would also be available from surrounding

WAT depots, it still would require some time to recruit

this tissue for thermogenesis given the relatively low

capacity of available mitochondria. Alternatively, one

could also speculate that beige fat might have a different

physiological function than thermogenesis. This is

supported by the fact that it can be induced by exercise

(Bostrom et al. 2012, Stanford et al. 2013, Rao et al. 2014),
Published by Bioscientifica Ltd.
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which is a condition where thermogenesis is certainly not

needed and might even be counterproductive, or by

thyrotoxicosis, a condition where body temperature is

already elevated by the increased basal metabolic rate

(Obregon 2014).

Finally, the big questions: which of the rodent

mechanisms are also applicable to the human condition,

and which mechanisms really unlock the true metabolic

potential of thermogenesis without severe side effects?

Here a vast number of agents capable of browning by

several different means under very specific circumstances

must be considered. Unfortunately for many of these

agents, the underlying mechanisms are unclear and might

turn out to be a consequence of reducing body tempera-

ture or activating the immune system. Furthermore,

alternative strategies aiming at activating brown (not

beige) fat in rodents through for instance hypothalamic

AMPK activation (Lopez et al. 2010) or reducing body

temperature by increasing heat loss (Warner & Mittag

2014), might provide more successful strategies for

metabolic improvement. However, additional more com-

prehensive studies aiming to address these issues are

therefore urgently needed to facilitate the translation of

rodent thermogenesis for human metabolic health.
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