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Abstract
Immature contractile cardiomyocytes proliferate to rapidly increase cell number, establishing

cardiomyocyte endowment in the perinatal period. Developmental changes in cellular

maturation, size and attrition further contribute to cardiac anatomy. These physiological

processes occur concomitant with a changing hormonal environment as the fetus prepares

itself for the transition to extrauterine life. There are complex interactions between

endocrine, hemodynamic and nutritional regulators of cardiac development. Birth has been

long assumed to be the trigger for major differences between the fetal and postnatal

cardiomyocyte growth patterns, but investigations in normally growing sheep and rodents

suggest this may not be entirely true; in sheep, these differences are initiated before birth,

while in rodents they occur after birth. The aim of this review is to draw together our

understanding of the temporal regulation of these signals and cardiomyocyte responses

relative to birth. Further, we consider how these dynamics are altered in stressed and

suboptimal intrauterine environments.
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Introduction
Since the late 20th century it has been recognized that,

near the time of birth, growth of the mammalian heart

transitions from proliferation of contractile cardiomyo-

cytes to cellular enlargement (Adler 1975, Bishop & Hine

1975, Clubb & Bishop 1984, Rumyantsev 1991). The

number of cardiomyocytes continuously decreases with

age in adulthood and, contribution of stem cell-derived

myocytes notwithstanding, progressive loss of adult

myocytes is associated with heart failure (Olivetti et al.

1991, Pessanha & Mandarim-de-Lacerda 2000, Levkau

et al. 2008, Laflamme & Murry 2011). Thus, perinatal

cardiomyocyte endowment is consequential for life-long

health. Factors in the fetal environment resulting from

both normal and stressed pregnancies act on the develop-

ing heart to modulate cardiomyocyte number. Many of
these regulatory factors change dramatically at or near the

time of birth.

Proliferation, terminal differentiation, attrition and

cellular enlargement are processes that must all be

considered in the regulation of cardiomyocyte number

and the size of the developing heart. Each of these cellular

processes can be to some extent governed separately.

Regulatory factors may effect different outcomes in a

suboptimal intrauterine environment compared to

normal development. Thus, it is critical to understand

the dynamics of normal cardiomyocyte growth during this

period before we can fully appreciate the outcomes

following prenatal stress. The chronically catheterized

fetal sheep model has enabled a detailed examination of

how the fetal cardiac environment shapes cardiomyocyte
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growth, maturation and endowment. The purpose of this

review is to summarize what is known about endocrine

and other regulators of growth and maturation of

cardiomyocytes in the immature ovine heart and how

these factors may contribute to normal development.
Proliferation

Terminal
differentiation

Cellular hypertrophy

S Jonker

Figure 1

Modes of cardiomyocyte growth in the fetal heart. Mononucleated

cardiomyocytes have the potential to proliferate. They can also become

binucleated, indicative that they are unable to undergo further cytokinesis.

They can, however, replicate their DNA and become polyploid (not shown).

Both mononucleated and binucleated cardiomyocytes can undergo cellular

enlargement, or apoptosis (not shown).
Sheep as a model of cardiac development

Our knowledge about in vivo regulation of fetal cardiomyo-

cytes depends heavily on animal models because cardiac

biopsies are rarely available from healthy human infants.

Likewise, sampling of blood and direct hemodynamic

measurements of the healthy human fetus are very rarely

undertaken. The fetal sheep model has filled this gap

because it tolerates chronic surgical instrumentation,

allowing serial blood sampling and measurement of

hemodynamic factors. Additionally, altered endocrine or

hemodynamic fetal environments can be experimentally

produced to investigate the regulation of cardiac outcomes.

Specific interspecies differences must be borne in mind

when extrapolating knowledge of sheep cardiac develop-

ment to the human. Adult sheep are a good model of the

adult human cardiac function (Milani-Nejad & Janssen

2014), and form the basis for much of our knowledge of

cardiac function in the immature heart (Rudolph 2009).

Sheep have a dissimilar placenta to humans, which may

influence the materno-fetal nutritional, hemodynamic

and hormonal milieu guiding cardiac development (Carter

2007, Barry & Anthony 2008). While most human

pregnancies are singletons, sheep commonly bear single-

tons or twins; multiple pregnancy in sheep affects

placental nutrient transfer, and consequently reduces

fetal growth, although the magnitude of this effect is

only half that as occurs in human twinning (Gardner et al.

2007, The et al. 2010, van der Linden et al. 2013). The same

hormones are responsible for maintenance of pregnancy

and initiation of parturition in humans and sheep, and

some of these hormones influence heart growth (in sheep,

there is late gestation systemic withdrawal of progesterone

that is unmatched in humans; Challis et al. 2000). The

gestational period of a sheep is slightly more than half that

of a human, long enough for good resolution of time-

dependent growth-regulating effects in experimental

studies. Sheep are born somewhat more mature than

humans in regards to their ability to stand and walk, but

many of their physiological systems have similar relative

rates of development, including kidney and brain (Hin-

chliffe et al. 1992, Gimonet et al. 1998, Back et al. 2006).

Notably, in the perinatal periods of humans and sheep,

cardiomyocyte numbers experience similar plateaus,
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
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cardiomyocyte cell cycle activity declines similarly, and

polyploidy or binucleation increase rapidly (Adler &

Costabel 1975, Adler & Costabel 1980, Kim et al. 1992,

Huttenbach et al. 2001, Burrell et al. 2003a, Jonker et al.

2015). In this review we focus on data from humans and

sheep, except where critical data is available only from

other species.
Modes of growth in the fetal sheep heart

Proliferation

Proliferation of immature contractile cardiomyocytes is

well established in all vertebrate orders (Rumyantsev

1991), and is responsible for increasing ovine cardiomyo-

cyte number throughout gestation and the perinatal

period (Fig. 1 and 2A and C; Burrell et al. 2003b, Jonker

et al. 2007a, Jonker et al. 2015). It has long been thought

that in mammals this process ends around the time of

birth, and that cardiomyocyte endowment for life is set in

the prenatal period (Thornburg et al. 2011). New evidence

suggests that proliferation of contractile cardiomyocytes

increases cell number in neonatal sheep (Jonker

et al. 2015) and even in the juvenile human (Mollova

et al. 2013). Although division of contractile cells in

the adult heart has been highly debated, stem cell

replacement of cardiomyocytes is now recognized

to occur (reviewed in Laflamme & Murry 2011). Never-

theless, net cardiomyocyte number declines continuously

between young adulthood and senescence in the human
Published by Bioscientifica Ltd.
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Figure 2

Regulation of cardiomyocyte growth and maturation in the normally-

growing fetal and neonatal sheep left ventricle (LV; solid line) and right

ventricle (RV; dashed line). Cell cycle activity as assessed by Ki-67 positivity

(A) supports cardiomyocyte proliferation and terminal differentiation.

Binucleation of cardiomyocytes (B) is an index of terminal differentiation,

after which cells infrequently enter the cell cycle, and even less frequently

undergo cytokinesis. Consequent to myocyte proliferation, cell number (C)

increases rapidly in the fetus (and slowly in the neonatal RV). Cell attrition

reduces myocyte number prior to birth in both ventricles. Cardiomyocytes

typically grow more rapidly in width than length, decreasing their length-

to-width ratio (D), except after birth in the neonatal RV. Myocyte volume

(E) increases slowly in the fetus, but more rapidly after birth (much more so

in the LV). Most changes in cell growth and maturation rates occur before

birth. Data from Jonker et al. (2007b) and Jonker et al. (2015).
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(Olivetti et al. 1991), confirming the importance of

cardiomyocyte proliferation in the young heart.

Immature contractile cardiomyocytes that proliferate

in perinatal mammals are typically mononucleated and

diploid (2N; Clubb & Bishop 1984, Rumyantsev 1991,

Jonker et al. 2007a). This cardiomyocyte phenotype

predominates in the fetal human (Adler & Costabel

1980) and sheep (Burrell et al. 2003a, Jonker et al. 2007a,

Bensley et al. 2010, Jonker et al. 2015). In the large

mammal, it is unknown whether mononucleated, diploid

cardiomyocytes at a given age are all equally proliferative.

In the embryonic mouse heart, lineages of cells form

related clusters layered in epicardial-to-endocardial col-

umns (Pijnappels et al. 2010), implicating proliferative

contribution from many or most cardiomyocytes. Cell

culture experiments also suggest that most rat cardiomyo-

cytes proliferate at mid-gestation, but fewer do so at term

(Burton et al. 1999). This evidence suggests that many or

most mononucleated cardiomyocytes increase cell num-

ber by proliferation through at least mid-gestation, after

which fewer of these cells may carry out most of the

proliferative activity in the heart.
Terminal differentiation

Terminal differentiation involves permanent cell cycle

arrest, or senescence, after which DNA replication

followed by cytokinesis no longer occurs (Figs 1 and 2B).

The intracellular mechanisms regulating terminal differ-

entiation have not been conclusively determined, but

candidate genes have been described (Paradis et al. 2014).

Terminal differentiation of cardiomyocytes appears to be

tightly regulated, as evidenced by the exceeding rareness

of rhabdomyoma and rhabdomyosarcoma primary cardiac

tumors, which are found only in about 1 of 6000 human

autopsies (Lam et al. 1993). Supporting this conclusion is

a higher incidence of cardiac tumors found in fetuses, in

which cardiomyocyte proliferation is active (Holley et al.

1995, Uzun et al. 2007).

Cell cycle activity, as detected by Ki-67, phospho-

histone-3, proliferating cell nuclear antigen (PCNA) and

other markers of mitosis, leads to DNA replication

concluding in either cytokinesis or stable binucleation.

Because of this, and the observation that binucleated

cardiomyocytes are rarely noted to have reentered the cell

cycle, terminal differentiation has been synonymous with

binucleation in the sheep and rodent (Clubb & Bishop

1984, Soonpaa et al. 1996, Barbera et al. 2000, Burrell et al.

2003a, Jonker et al. 2015). In humans, failure of nuclear

division following DNA replication frequently results in
Published by Bioscientifica Ltd.
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polyploid nuclei (4N, 8N or greater; Brodsky et al. 1994,

Adler et al. 1996). Polyploidy of cardiomyocytes also

occurs in sheep and rodents, but to a much lesser extent

(Adler et al. 1996, Bensley et al. 2010). It is unknown if

polyploidy also indicates terminal differentiation.

Whether binucleation (and perhaps polyploidy) are

incidental or integral to terminal differentiation is also

unknown. Cell culture experiments suggest that the

majority of cardiomyocytes from term fetal mice have

very little proliferative potential and only a subset retain

the abundant potential of the mid-gestation heart (Burton

et al. 1999). This implies that many myocytes have

withdrawn from proliferative activity prior to binuclea-

tion (Burton et al. 1999). Further, cardiomyocyte prolif-

erative activity in mice is temporally separated from

binucleation, again suggesting that terminal differen-

tiation may precede binucleation or polyploidy (Soonpaa

et al. 1996).
Apoptosis

A counterpoint to cellular proliferation is the process of

programmed cell death, or apoptosis. Transitory cardio-

myocyte apoptosis has been described to prune the rodent

heart at birth (Kajstura et al. 1995, Fernandez et al. 2001).

This cell loss is described as especially heavy in the right

ventricle (RV), and is thought to play a role in remodeling

the heart in the context of postnatal hemodynamic

patterns. Indeed, rates of myocardial apoptosis are also

higher in week-old lambs than 6–8 week-old lambs (Karimi

et al. 2004), suggestive of higher perinatal receptiveness

to apoptotic signals. However, in normally-developing

sheep, the perinatal bulk attrition of cardiomyocytes may

occur immediately prior to birth (Fig. 2C; Jonker et al.

2015). Although the sheep heart is sensitive to pro-

apoptotic stimuli in late gestation and in the early

neonate, the ontogeny of apoptosis in the perinatal

heart (especially in the large mammal) and its relative

contribution to the changing cellular landscape during

this transitory period remains poorly understood (Bae et al.

2003, Hammel et al. 2003, Caldarone et al. 2004, Karimi

et al. 2004).
Cellular enlargement

Cellular enlargement, or hypertrophy, is the primary

growth mode of cardiomyocytes in the adult heart,

whether in response to exercise, cell loss with aging, or

as part of a disease process (White et al. 1987, Adler et al.

1996, Kramer et al. 1998). Fetal cardiomyocytes are small
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
DOI: 10.1530/JOE-15-0309 Printed in Great Britain
compared to those of the adult and, in the normally

growing fetus, change little in size until after birth (Fig. 2D

and E; Smolich et al. 1989, Burrell et al. 2003a, Jonker et al.

2015). However, when stimulated, cardiomyocytes can

increase both in length and width in the near-term fetus

(Barbera et al. 2000, Jonker et al. 2007b). Increasing the

width of cardiomyocytes requires development of the

t-tubule system for excitation-contraction coupling (Bers

2002, Seki et al. 2003). The narrow diameter of immature

cardiomyocytes allows them to function before develop-

ment of the t-tubule network, which matures in the

perinatal period (Legato 1979, Sheridan et al. 1979,

Forsgren & Thornell 1981, Maylie 1982).

Interestingly, postnatal cardiomyocyte hypertrophy

is typically associated with increased production of the

contractile elements so that the enlarged cell can perform

more work, but this is not necessarily the case in the fetus

(Barbera et al. 2000). The contractile elements in immature

cardiomyocytes are relatively less dense and organized

near the plasma membrane (Brook et al. 1983, Smolich

et al. 1989). Increasing cardiomyocyte width without

proportional synthesis of contractile proteins may confer

an immediate mechanical advantage by adjusting the

ventricular wall thickness-to-chamber radius ratio to

reduce wall stress. Most investigations that include fetal

cardiomyocyte hypertrophy have focused on changes in

gross cell dimensions rather than synthesis and organiz-

ation of contractile machinery. Differential regulation of

these processes remains to be investigated.
Non-cardiomyocyte growth

The heart is composed not only of cardiomyocytes, but

fibroblasts, endothelial cells, smooth muscle, pericytes,

other cell types and the matrix. Cardiomyocytes occupy

an increasing percentage of the myocardium with advan-

cing gestational age and in the neonate (Smolich et al.

1989). Simultaneously, the relative amount of matrix and

vasculature in the myocardium declines (Wearn 1941,

Smolich et al. 1989, Marijianowski et al. 1994). Factors that

regulate perinatal cardiomyocyte growth may also

regulate other components of the immature heart. These

changes may have profound implications for life-long

cardiac function, but are outside the scope of this review.
Regulatory signals associated with birth

The peripartum hormonal milieu is in a state of flux, with

gestational decreases in vasoactive hormones such as

angiotensin II (AII), increases in growth-promoting
Published by Bioscientifica Ltd.
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hormones such as insulin-like growth factors (IGF) and

maturational hormones such as cortisol and thyroid

hormones; most are magnitudes higher in the days after

birth. Each of these circulating factors have individual

effects on cardiomyocyte growth kinetics and, in concert

with physical and local factors, balance the cellular

processes that determine cardiomyocyte endowment in

the perinatal period. The transition from intra- to

extrauterine life is also met with the loss of the placenta

and immediate increases in oxygenation, cardiac afterload

and systemic arterial pressure. Changes in some factors

precede birth, reflecting their critical role in preparing the

fetus for the stress of parturition and extrauterine life.
Angiotensin II

The renin-angiotensin system is essential for the mainten-

ance of normal fetal systemic arterial pressure (Scroop et al.

1992, Anderson et al. 1994, Faber et al. 2011). Circulating

AII steadily decreases from 0.04–0.05 ng/ml in fetuses

!120 days gestational age (dGA; term w147d GA) to

0.02–0.03 ng/ml in the final week before term (Fig. 3;

Rosenfeld et al. 1995). In the first postnatal week, these

levels are more than 25 times higher than in the prepartum

period but then decline soon after (Velaphi et al. 2007).

Fetal hypoxia and cortisol can both increase circulating

plasma renin activity (PRA) and AII levels (Broughton

Pipkin et al. 1974, Forhead et al. 2000); thus, AII may play

a role in cardiomyocyte changes associated with hypoxia

and fetal stress.

AII receptor 1 (AT1), which is the most common

receptor subtype in the adult heart, is very low in mid-

gestation but increases abruptly around 120 days of
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Published ranges for (A) angiotensin II (AII) and (B) plasma renin activity

(PRA) in normal fetal (black) and newborn (grey) sheep. Owing to the short

half-life of AII, PRA is often measured instead of AII (renin converts

angiotensinogen to angiotensin I). Data from Broughton Pipkin et al.

(1974), Fleischman et al. (1975), Louey et al. (2000), Louey et al. (2007),

Rosenfeld et al. (1995), Siegel and Fisher (1980), Velaphi et al. (2007).
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gestation (Table 1; Burrell et al. 2001). In contrast, AT2

is highest in mid-gestation and declines towards term.

Angiotensin converting enzyme (ACE) mRNA levels,

which converts angiotensin I to AII, also increases

abruptly near term and remains high in the neonate

(Reini et al. 2009).

The outcome of AII signaling in fetal sheep cardio-

myocytes is complex, in part depending on whether the

experiment is conducted in isolated cells or in utero. AII

causes near-term fetal sheep cardiomyocytes to proliferate

in culture, contrary to its hypertrophic effect in cultured

neonatal rat cardiomyocytes (O’Tierney et al. 2010a,

Sundgren et al. 2003a). In contrast, AII infusion in utero

increases ovine heart growth via myocyte hypertrophy

and maturation (Segar et al. 2001, Norris et al. 2014,

Sandgren et al. 2015). Atrial natriuretic peptide (ANP)

inhibits AII-stimulated fetal cardiomyocyte proliferation

in culture (O’Tierney et al. 2010a); increased arterial

pressure resulting from in utero AII infusion may simul-

taneously inhibit proliferation by stimulating ANP release

while stimulating cellular enlargement and terminal

differentiation via increased wall stress. When the increase

in systemic pressure induced by exogenous AII is mitigated

by co-infusion with a nitric oxide donor, cardiac hyper-

trophy, cellular hypertrophy and accelerated terminal

differentiation are all eliminated (Sandgren et al. 2015).

Interestingly, cardiomyocyte PCNA staining remains

elevated, suggesting cellular proliferation despite lack of

gross cardiac hypertrophy (Sandgren et al. 2015). Chronic

blockade of ACE inhibits fetal cardiac proliferative growth,

although interpretation of this effect is complicated by

dramatically lowered arterial pressure (O’Tierney et al.

2010b). The findings of these studies taken together

suggest that the primary effect of AII on cardiomyocyte

growth in utero is a result of altered systemic arterial

pressure load.
Insulin-like growth factors

IGF1 and IGF2 are required for normal fetal growth

(Fowden 2003, Brown 2014). Circulating IGF1 steadily

increases with gestation, while IGF2 levels remain rela-

tively high throughout gestation (Fig. 4; Carr et al. 1995).

After birth, high IGF1 levels are maintained (Crespi et al.

2006, Long et al. 2011). Interestingly, ontogenic trends in

the cardiac mRNA levels of IGF1 and IGF2 do not mirror

circulating levels, with expression decreasing towards

term for both genes (Table 1; Cheung et al. 1996, Reini

et al. 2009). IGF1 and IGF2 appear to be regulated by

oxygen and nutrition levels; thus, prenatal stresses such as
Published by Bioscientifica Ltd.
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Table 1 Cardiac receptors and factors and circulating binding proteins responsible for signal transduction and modulation in the

fetal sheep heart.

Growth

factor Pathway component Change from mid to late gestation Source

AII AT1 Very low, rapid increase from about 120 days of gestation Burrell et al. (2001)
AT2 High and decreasing Burrell et al. (2001)
ACE (cardiac mRNA) Low, increasing abruptly just before term Reini et al. (2009)

IGF IGF1 (cardiac mRNA) Increases slightly from second trimester, decreasing
through second half of gestation

Cheung et al. (1996)

IGF2 (cardiac mRNA) Decreasing continuously from second trimester Cheung et al. (1996)
IGF1R (cardiac mRNA) Slight decline with advancing gestational age Cheng et al. (1995), Reini et al. (2009)
IGF2R (cardiac mRNA) Decline with advancing gestational age Reini et al. (2009)
IGFBP-2 (circulating) Increasing throughout, peaking before birth Carr et al. (1995), Crespi et al. (2006)
IGFBP-2 (cardiac mRNA) Dramatic decline with advancing gestational age Reini et al. (2009)
IGFBP-3 (circulating) Unchanged throughout Carr et al. (1995), Crespi et al. (2006)

Cortisol GR (cardiac mRNA) Declining in the LV; unchanged in the RV Reini et al. (2009)
MR (cardiac mRNA) Declining in the LV; unchanged in the RV Reini et al. (2009)
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Figure 4

Circulating insulin-like growth factor 1 (IGF1; solid line, meanGS.E.M.) and

insulin-like growth factor 2 (IGF2; dashed line, mean) in normal fetal and

newborn sheep. Data from Carr et al. (1995) and Crespi et al. (2006).
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placental insufficiency and intrauterine growth restriction

are usually associated with decreased circulating IGFs

(Owens et al. 1994).

Developmental regulation of IGF receptors (IGFR)

probably modifies cardiomyocyte responses to circulating

IGF levels. IGFR1 mRNA in the left ventricle (LV) declines

with advancing gestational age (Table 1; similar to

maturational changes found in the rat heart), but changes

little in the RV (Cheng et al. 1995, Reini et al. 2009). The

mRNA for IGFR2, the clearance receptor, is highest in mid-

gestation and declines towards term and in the neonate

(Reini et al. 2009). Nutrient restriction increases fetal

cardiac IGF2R levels at a post-transcriptional level (Dong

et al. 2005), suggesting that our understanding of normal

cardiac IGFR levels in development may be incomplete

without knowing the protein levels. Further, insulin

receptor (IR) may share the pro-survival signaling of

IGFR1, and new data in the rodent heart suggests an

important role for insulin receptor substrates 1 and 2

downstream of both IR and IGFR1 for the regulation of

cardiomyocyte metabolism and survival (Qi et al. 2013).

IGF binding proteins (IGFBP) also substantially modify

IGF system signaling by sequestering IGF, modifying the

interaction of IGF with the cell, and through IGF-

independent cell signaling (Baxter 2014). IGFBP-2 can

potentiate IGF signaling and is the primary binding

protein in the fetus; serum levels progressively increase

throughout gestation and peak before birth (Carr et al.

1995, Crespi et al. 2006). In contrast, cardiac IGFBP-2

mRNA levels decline dramatically with advancing age

(Reini et al. 2009). IGFBP-3 is the primary form in the

adult, acting to stabilize IGF and prolong its circulating
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
DOI: 10.1530/JOE-15-0309 Printed in Great Britain
half-life. Serum levels are largely stable in utero (Carr et al.

1995, Crespi et al. 2006). Together, these data suggest a

complex in utero IGF regulatory environment.

Overall, studies support the pro-mitogenic role of

IGF1 in the fetal sheep heart. IGF1 stimulates proliferation

in cardiomyocytes cultured from both mid-gestation and

near-term fetal sheep (Sundgren et al. 2003b, Chattergoon

et al. 2014), although whether it also causes cellular

enlargement at term is debated (Sundgren et al. 2003b,

Wang et al. 2012). When chronically infused into the fetal

circulation, IGF1 causes massive cardiac enlargement by

the stimulation of cellular proliferation without increased

cellular enlargement or terminal differentiation (Sundgren

et al. 2003b). After a short, transient exposure, gross

cardiac hypertrophy was not evident, although there was
Published by Bioscientifica Ltd.
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a suggestion of sex-specific regulation of cellular enlarge-

ment (Lumbers et al. 2009). Transient exposures compli-

cate interpretation because the fetal heart will

subsequently adjust growth to normalize heart weight,

probably to match heart size to somatic circulatory

demand (Jonker et al. 2011a).
Cortisol

Circulating levels of cortisol are negligible in the sheep

(!10 ng/ml) until the last 10 days before term, when

levels rapidly increase (Fig. 5). The surge in the final days

of gestation is believed to be a push to mature key organ

systems in preparation for the transition to extrauterine

life. Increased fetal cortisol is essential to initiating

parturition at least in the sheep (Liggins 1968), it can be

seen that the prepartum surge consistently commences

7–10 days before birth (Magyar et al. 1980). Prenatal

stresses such as placental insufficiency are known to

increase fetal cortisol levels (Joyce et al. 2001, Morrison

et al. 2007), and may be sufficient to induce preterm birth

in subsets of growth-restricted fetuses (Cock et al. 2001a),

whereas those with normal cortisol levels will be born at

term (Louey et al. 2000). Exogenous cortisol elevates

arterial pressure (Wood et al. 1987, Tangalakis et al.

1992), renin and AII (Forhead et al. 2000), and triiodothyr-

onine (T3; see next section), thus these other factors must

be taken into consideration when designing and inter-

preting experiments.

Glucocorticoid receptor (GR) and mineralocorticoid

receptor (MR) mRNA levels (encoded by NR3C1 and

NR3C2 respectively) in the LV decline from mid- to late

gestation, but change relatively little thereafter (Table 1;

Reini et al. 2009). In contrast, neither mRNA changes in

the RV, save for a transient depression of MR at 100 days of

gestation. There can be post-transcriptional regulation
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Figure 5

Circulating cortisol levels in normal fetal and newborn sheep expressed

relative to (A) gestational age, or (B) the time of birth. Data from Louey

et al. (2000), Magyar et al. (1980).
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levels for both receptors, as for example in the developing

sheep kidney (Hantzis et al. 2002); therefore, caution is

urged in interpreting this data in the absence of receptor

binding or protein levels.

Although clearly a critical hormone for the initiation

of parturition and maturation of organs such as the lungs,

the direct role of cortisol in regulating perinatal cardio-

myocyte growth and maturation remains unclear. Infu-

sion of sub-pressor levels of cortisol into the near-term

fetal sheep coronary artery leads to cardiomyocyte

proliferation, but not maturation or hypertrophy (Giraud

et al. 2006). In contrast, intact adrenal hormone signaling

inhibits anemia-induced cardiomyocyte proliferation

(Jonker et al. 2011b). The key to whether cortisol has a

maturational effect on the heart may depend on the dose

and resulting circulating levels. At higher levels that

increase arterial pressure, and mimicking levels that

would induce labor, exogenous cortisol induces cardio-

myocyte enlargement (Lumbers et al. 2005). Maternal

cortisol administration also causes cardiac enlargement in

fetal sheep with minimal changes in fetal cortisol levels

(Reini et al. 2008). This growth occurs via cellular

proliferation, and can be blocked by intrapericardial

administration of an MR blocker (Feng et al. 2013).

Cortisol also induced apoptosis of cells of the cardiac

conduction system through the GR. This picture of

glucocorticoids inducing fetal cardiomyocyte prolifer-

ation through MR, and hypertrophy via increased arterial

pressure, contrasts with findings in other mammals. In

fetal mice, lack of cardiac glucocorticoid receptor leads to

small hearts with small myocytes that are structurally

immature (Rog-Zielinska et al. 2013), and in the pig at 80%

of gestation, maternal betamethasone administration

reduces fetal cardiomyocyte proliferation while increasing

terminal differentiation and apoptosis (Kim et al. 2014).
Thyroid hormones

Thyroid hormones are essential for normal fetal growth

and maturation (Forhead & Fowden 2014). Circulating

thyroxine (T4) continuously increases over the latter two-

thirds of gestation, reaching a peak and maintaining high

levels (10–12 mg/dl) after birth (Polk 1995). The prepartum

cortisol surge stimulates a similar surge in T3 by

stimulating deiodination of T4 while inhibiting placental

clearance of T3 (Liggins 1994, Forhead et al. 2006); T3 levels

remain high (O300 ng/dl) after birth (Fig. 6; Polk 1995).

Ontogenetic changes in cardiac thyroid receptor

(THR) concentrations have not been studied, to our

knowledge, in the developing sheep heart. In rats, fetal
Published by Bioscientifica Ltd.
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T3 binding is similar in the nuclear extract of heart and

liver (Perez-Castillo et al. 1985), and developmental liver

and brain T3 binding profiles are similar between the rat

and sheep (Polk et al. 1989). We hypothesize that, in the

fetal sheep, cardiac THR follows the same developmental

profile as liver THR: increasing slowly from mid-gestation

and much more rapidly near term to levels maintained

in the neonate and adult (Polk et al. 1989). Differential

regulation of the isoforms is unclear; in rats, THRA mRNA

expression is less than THRB (Strait et al. 1990), but THRA

actively represses transcription of THRB via aporeceptor

action in the fetal mouse heart (Mai et al. 2004).

Exogenous T3 reduces proliferation and increases

terminal differentiation of near-term sheep cardiomyo-

cytes in utero (Chattergoon et al. 2012a) and in culture

(Chattergoon et al. 2007). Interestingly, thyroidectomy

also reduces cell cycle activity (Chattergoon et al. 2012a,

Segar et al. 2013); however, this reduction in cell cycle

activity may not be solely due to reduced proliferation,

because binucleation, which requires at least one last

round of cell cycle activity for DNA replication, was also

reduced. The proliferation-suppressing actions of T3 can

be observed in cardiomyocytes cultured from mid-

gestation sheep, long before endogenous thyroid hor-

mones increase and proliferation slows, but this effect in

younger cardiomyocytes is not present in the rodent

(Burton et al. 1999, Chattergoon et al. 2012b). Both T3

supplementation and thyroidectomy cause a small

increase in cardiomyocyte size (Chattergoon et al.

2012a). Interestingly, T3 is required for the fetal sheep

cardiac growth response to increased systolic

stress imposed by pulmonary artery banding (Segar et al.

2013). This may be mediated by a lower heart

rate reducing cardiac workload in the context of
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
DOI: 10.1530/JOE-15-0309 Printed in Great Britain
thyroidectomy, or T3 may be required in a permissive

capacity. Adrenergic signaling may play a role, as T3

regulates b-adrenergic receptors in fetal sheep (Padbury

et al. 1986, Birk et al. 1992).

T3 clearly has the capacity to be a major regulator of

terminal differentiation, but the timing of its rise (5 days

prepartum; Fig. 6) in relation to terminal differentiation

(initiated as early as 40 days prepartum, most rapid at

20 days prepartum; Fig. 2B; Jonker et al. 2015) calls into

question its role in the normally-developing sheep heart.

Its effect may be enhanced by a simultaneous rise in

receptor levels, and the relief from aporeceptor actions

provided with ligand binding. The in vivo regulation of

terminal differentiation may be more nuanced. An

intrinsic cell cycle timer ends proliferation of fetal

cardiomyocytes in culture (Burton et al. 1999, Ball &

Levine 2005), but this arrest is reversible without addition

of T3 (Burton et al. 1999). If also true in the sheep heart,

this may imply that binucleation first appears during the

reversible cell cycle arrest preceding true terminal differ-

entiation. Further, one might wonder how exogenous T3

can bring proliferation to an early conclusion if it depends

on the cessation of proliferation via an intrinsic timer. The

answer may be found in differences in cell cycle behavior

in vitro versus in utero, or it may be the result of interspecies

differences, with sheep cardiomyocytes more frequently

withdrawing into G0 between proliferative cycles. Further

experiments are required to determine the endogenous

biological mechanisms, including T3, regulating terminal

differentiation in the heart of the large mammal.
Oxygen and metabolic substrates

All metabolic substrates required for fetal growth and

development must be obtained from the mother via the

placenta. The placenta itself is a metabolic organ and thus

disruptions in maternal supply or placental function

impact the supply of oxygen, glucose and amino acids to

the fetus. After birth, the supply of these substrates is no

longer dependent on the placenta or (to an extent) the

mother. Birth is associated with an immediate increase in

partial pressure of oxygen in arterial blood from w25 mm

Hg to more than 60 mm Hg (Comline & Silver 1972).

Plasma glucose increases from w20 mg/dl (1.1 mmol/l) to

40–60 mg/dl within minutes of birth; plasma free fatty

acids increase fivefold in this same time (!0.2–1.0 mEq/l;

Comline & Silver 1972). These substrates are made

available through the actions of catecholamines, cortisol,

and thyroid hormone (Jones & Ritchie 1978, Polk et al.

1987, Carstens et al. 1997, Fowden et al. 1998, Fowden
Published by Bioscientifica Ltd.
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et al. 2001). Circulating levels of epinephrine and

norepinephrine (Jones et al. 1983, Fowden et al. 1998),

cortisol (Fig. 5), and thyroid hormone (Fig. 6) increase

rapidly in the last 5–10 days before birth and remain high

in the newborn period.

Most in utero studies on the regulatory role of oxygen

on cardiomyocyte growth are achieved by experimental

placental insufficiency and are complicated (or comple-

mented) by simultaneous reductions in other metabolic

substrates. Placental insufficiency induced by placental

embolization is typically associated with only a transient

increase in fetal arterial pressure, and leads to asymme-

trical intrauterine growth restriction, with cardiac mass

growth restriction that is nonetheless appropriate for body

size. Proliferation and terminal differentiation are retarded

in these hearts (Bubb et al. 2007, Louey et al. 2007). In

some cases, intrauterine growth restriction may be

associated with sustained fetal hypertension and cardiac

hypertrophy (Murotsuki et al. 1997), although the mode of

heart growth has not been studied. Hypoxia stimulates

ANP synthesis and release (Chen 2005), which can inhibit

fetal cardiomyocyte proliferation (O’Tierney et al. 2010a).

This is potentially one mechanism of growth inhibition

in the hypoxic fetal heart.

Fetal anemia is another method that has been used to

study the role of oxygen on fetal cardiomyocyte growth.

Although anemia reduces the oxygen carrying capacity

but not oxygen partial pressure of the blood, it does

stabilize HIF-1-a in the myocardium (Martin et al. 1998).

The effect of fetal anemia is unlike that of intrauterine

growth restriction associated with placental insufficiency.

Chronically anemic fetuses have grossly enlarged hearts as

a result of cardiomyocyte proliferation, maturation and

cellular enlargement (Jonker et al. 2010).

Maternal nutrition has also been manipulated in order

to determine what nutrient deprivation or excess does to

fetal growth, although cardiomyocyte-specific measures

have not been reported. In fetuses of nutrient-restricted

ewes, somatic and heart growth are proportionally slowed

(Dong et al. 2005, Dong et al. 2008). In fetuses of over-fed

ewes, heart growth is proportional or accelerated relative

to somatic growth (Dong et al. 2008, George et al. 2010,

Fan et al. 2011). Although the cellular basis for these

changes have not been reported, we speculate that the

primary mechanism is through proliferation, because

circulating fetal IGF1 levels are regulated by maternal

feeding (Dong et al. 2005, Dong et al. 2008). It is

noteworthy that over-nutrition is also associated with

disturbed placental hemodynamics (Frias et al. 2011).

Thus, the picture that emerges with regards to regulation
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
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of cardiac growth by oxygen and metabolic substrates

in the fetus is complex.
Arterial and venous pressure

In the fetus, the ductus arteriosus permits the RV to eject

blood into the aorta while the foramen ovale enables blood

entering the right atrium to bypass the pulmonary

circulation and directly fill the left atrium (Anderson

et al. 1985). Because the placenta is responsible for fetal

nutrient transfer and the lungs are unventilated, fetal

pulmonary resistance is high and receives little of the RV

output. After birth, the fetal vascular shunts close, leaving

the RV to eject into the pulmonary circulation and the LV

to eject into the systemic circulation. Fetal systemic

arterial pressure increases slowly and heart rate decreases

slowly with advancing gestation. The greatest change to

perinatal hemodynamics occurs at birth, when systemic

arterial pressure and heart rate suddenly rise and pulmon-

ary artery pressure plummets (Fig. 7). These changes are

driven by the closure of fetal vascular shunts, loss of the

placenta (a large, low-resistance vascular bed), decreased

pulmonary vascular resistance secondary to pulmonary

ventilation, loss of lung water and oxygenation (Iwamoto

et al. 1987), and resetting of the baroreflex.

Proliferation increases the cardiomyocyte number to

an estimated 1.5–2.5 billion in the sheep LV just prior to

birth (Fig. 2C; Burrell et al. 2003b, Jonker et al. 2015).

Despite the higher wall stress of the RV in the fetus (due to

a larger radius of curvature and thinner wall; Pinson et al.

1987), myocyte number in the RV free wall at the same age

is only 1–1.5 billion (Fig. 2C; Jonker et al. 2015). The

fibrous skeleton of the myocardium modifies its experi-

ence of wall stress, but although the collagen content of

the immature heart is high relative to that of the adult

(Marijianowski et al. 1994), there is no notable difference

between the fetal ventricles (Jackson et al. 1993). It is

interesting that the RV does not grow or remodel to

normalize this relatively higher wall stress, although it

does respond to experimentally elevated loads. Despite

this apparent tolerance to higher wall stress, fetal RV

myocytes are larger (Burrell et al. 2003b, Jonker et al. 2015),

likely as a result of relatively increased load in either

systole or diastole. No differences are noted in cell cycle

activity or timing of terminal differentiation between the

two ventricles.

Experimentally increased cardiac load stimulates

growth of both the fetal LV and RV (Fishman et al. 1978,

Segar et al. 1997, Barbera et al. 2000, Samson et al. 2000,

Olson et al. 2006, Eghtesady et al. 2007, Jonker et al.
Published by Bioscientifica Ltd.
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(A) Resting mean arterial pressure (MAP), (B) pulmonary arterial pressure

(PAP), and (C) heart rate in normal fetal (118-142d GA, black) and newborn

(2–28 days old, grey) sheep. Data from Black et al. (2002), Dawes et al.

(1980), Fineman et al. (1994), Iwamoto et al. (1987), Jaillard et al. (2001),

Louey et al. (2000), Morin and Egan (1992) and Stahlman et al. (1967), data

are meanGS.E.M.
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2007b). Excessive LV systolic load from banding of the

ascending aorta (fetal ventricular outflow banding restricts

renal perfusion and is a high-AII model), initiated early in

the second trimester, leads to either dilated ventricles with

poor cardiac function and fetal hydrops or to very high LV

systolic pressure generated by a grossly hypertrophic LV

(Eghtesady et al. 2007). Third trimester aortic banding

leads to compensated LV hypertrophy (Fishman et al.

1978, Samson et al. 2000). The immediate cardiomyocyte

growth response to increased cardiac load (in a low-AII

model) in the near-term fetus is increased cell cycle

activity to increase the cell number (Jonker et al. 2007b).

After about a week of aortic occlusion or plasma protein

infusion (leading to fetal hypertension), however, robust

cellular hypertrophy and terminal differentiation have

become the predominant modes of growth (Barbera et al.

2000, Jonker et al. 2007b, Norris et al. 2014).

In contrast, reduced ventricular filling inhibits free

wall growth, leading to dramatically smaller chamber

volumes (Fishman et al. 1978). Reduced near-term fetal

systemic arterial pressure similarly inhibits cardiomyocyte

proliferation and cardiac growth (O’Tierney et al. 2010b,

Norris et al. 2014). Increased preload in chronic fetal

anemia may contribute to the increased cardiomyocyte

proliferation, terminal differentiation and enlargement

that lead to ventricular dilation and compensatory wall

thickening (Jonker et al. 2010).

Many hormones can alter fetal hemodynamics, which

must be considered when studying the influence of the

hormone on fetal cardiac growth. For instance, AII-

induced fetal cardiac growth is dependent on its

hypertensive effect (Sandgren et al. 2015), despite causing

fetal sheep cardiomyocyte proliferation in culture

(Sundgren et al. 2003c). Similarly, the effects of cortisol

depend on the site of administration and fetal
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
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hemodynamic effects (Lumbers et al. 2005, Giraud et al.

2006, Reini et al. 2008). Oddly, in one experiment

phenylephrine increased blood pressure but did not

cause heart growth (Segar et al. 2001). It is clear that fetal

and postnatal cardiomyocytes are very sensitive to

changes in ventricular wall stress and many endocrine

perturbations alter cardiac load.
Integration of experimental evidence

Fetal cardiac growth patterns can be altered by in utero

manipulation of endocrine, hemodynamic or nutritional

factors (including oxygen), providing clues to underlying

regulatory processes. These experiments have brought us

to understand how in utero signals interact and establish

precedence to regulate cardiomyocyte growth and

maturation.

In experimental models, sustained increased systemic

or pulmonary arterial pressure initially increases cellular

proliferation, but leads ultimately to cardiomyocyte

maturation and cellular hypertrophy (Barbera et al. 2000,

Jonker et al. 2007b). This growth response, including gross

cardiac hypertrophy and the maturational effect, is

dependent on intact thyroid hormone signaling, despite

low circulating levels (Sandgren et al. 2015). The curtail-

ment of the proliferative response may be effected by the

hypertension-induced rise in circulating ANP (Rosenfeld

et al. 1992). In models in which increased cardiac load is

imposed by placement of a constricting band on the main

pulmonary artery or aorta, the renin-angiotensin system

is activated. However, AII does not mediate the growth-

stimulating effects of fetal cardiac load (Segar et al. 1997,

Segar et al. 2001, Jonker et al. 2007b, Sandgren et al. 2015).

In fact, the growth-stimulating effects of AII in utero are

mediated by AII-induced cardiac load (Sandgren et al.
Published by Bioscientifica Ltd.
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2015). Indeed, the cardiomyocyte enlargement and

maturational response to cardiac load predominates in

fetal sheep models in which arterial pressure is increased

(Murotsuki et al. 1997, Lumbers et al. 2005).

The nutritional environment may trump endocrine

regulators of cardiomyocyte growth. Increased circulating

cortisol is a stereotypic response in oxygen- and nutrient-

restricted fetuses. However, this is driven by a premature

activation of the hypothalamic-pituitary-adrenal axis

(Braems et al. 1996, Murotsuki et al. 1996), often resulting

in preterm birth (Cock et al. 2001a), rather than elevation of

baseline levels of cortisol. Regardless of when the placental

insufficiency was initiated, elevated levels of cortisol are

not routinely observed prior to 128dGA in placentally-

restricted fetuses (Gagnon et al. 1994, Murotsuki et al. 1996,

Cock et al. 2001b, Louey et al. 2007). Cortisol is associated

with the opposite effect in a low-nutrient versus normal

intrauterine environment: proliferative growth, hyper-

trophic growth and maturation are all delayed or inhibited

in placental insufficiency (although growth effects are

manifest prior to differences in cortisol; Bubb et al. 2007,

Louey et al. 2007, Morrison et al. 2007). Low IGF levels may

mediate placental restriction’s effects, but nutrients as

substrate for growth may also be limiting. Alternatively,

ANP is increased by acute and chronic anemic hypoxia

(Silberbach et al. 1995, Chen 2005) and may mediate

reduced proliferation, but it is unknown if ANP levels are

sustained in chronic hypoxia stemming from placental

insufficiency. Further, the inhibitory effect of ANP has only

been shown to occur in the presence of exogenous

stimulation of proliferation (O’Tierney et al. 2010a).

Cortisol is at the center of a web of interconnecting

physiologic signals.At sub-pressor elevationsof cortisol that

resemble the levels from the early phase of the prepartum

cortisol surge, cortisol stimulates cardiomyocyte prolifer-

ation (Giraud et al. 2006); these levels may not be sufficient

to significantly increase T3, but proliferation may be

mediated via another effector such as AII (Forhead et al.

2000). Cortisol can increase fetal systemic arterial pressure

via AII (Forhead et al. 2000), in which case the typical

cardiomyocyte enlargement and maturation growth

response to elevated cardiac load ensues (Lumbers et al.

2005). This higher level of cortisol also increases fetal T3

levels (Sensky et al. 1994), which may suppress cardiomyo-

cyte proliferation in the context of elevated pressure.
Integration of normal development

While experimental studies have helped us understand

cardiomyocytes in stressed and suboptimal pregnancies,
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
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this knowledge has not translated easily into an under-

standing of how normal perinatal heart growth and

maturation is regulated. Ontogenetically normal changes

in endocrine, hemodynamic and nutritional factors are

not necessarily correlated with cardiomyocyte growth and

maturation outcomes that would be predicted by experi-

mental studies (Fig. 8).

Altered fetal cortisol, T3, oxygen and nutrients all

modulate cardiac growth and maturation in utero.

However, their roles (beyond permissive at normal levels)

in normal perinatal cardiomyocyte growth and matura-

tion remain unclear. The prepartum timing of the cortisol

surge coincides with mass cardiomyocyte attrition (Fig. 8;

Jonker et al. 2015). Cortisol administration to pregnant

ewes leads to apoptosis of cardiomyocytes of the conduc-

tion system (Feng et al. 2013). Glucocorticoids have been

shown to augment apoptosis in myocardial infarction

(Mihailidou et al. 2009), and to cause calcium-mediated

apoptosis in other cell types (Harr & Distelhorst 2010), but

little is known about this potential effect in fetal or

neonatal cardiomyocytes. Cardiomyocyte enlargement

accelerates 10 days before birth (Fig. 2E), also coinciding

with the cortisol surge (Fig. 5). However, there is no

experimental evidence that cortisol drives cardiomyocyte

hypertrophy in the absence of simultaneous hyperten-

sion. T3 clearly has a regulatory role in the immature

cardiomyocyte. Both too little and excess hormone

decrease cardiomyocyte cell cycle activity, but have

differential effects on terminal differentiation depending

on gestational age (Chattergoon et al. 2012a). The role in

normal maturation may be more subtle; the steepest

increase in binucleation rate is largely completed prior to

the prepartum T3 surge. On the other hand, although the

number of mononucleated myocytes in the neonatal heart

is very low (in both absolute number and relative

proportion), this population generates relatively more

binucleated cells than in the fetus, consistent with

increased neonatal T3 levels (Fig. 8). In the fetus, oxygen

and nutrient restriction limits cardiac growth and matu-

ration. There is no evidence, however, to suggest that

increases in oxygen with ventilation and changes in

circulating nutrients following birth and with oral feeding

drive increased cardiac growth in the neonate.

Better evidence, perhaps, supports the roles of IGF1,

AII and arterial pressure in normal cardiac growth and

maturation in utero. Changed cardiac load drives the type

of cardiomyocyte growth in both fetuses (summarized

above) and adults (Carabello 2002). This is so much so,

that endocrine influences on prenatal cardiac growth can

be predicted by their effect on arterial pressure. In the
Published by Bioscientifica Ltd.
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Figure 8

Overview of growth-regulating factors (red) and cardiomyocyte growth

kinetics (blue) in the perinatal sheep heart. Proliferation and maturation

are expressed to emphasize changing rates of growth processes in the LV

and RV, rather than the accumulated outcome of these processes, and how

these kinetics might relate to changing endocrine and other physiological

modulators of growth. Daily number of new mononucleated and

binucleated myocytes are shown normalized to mononucleated cell

number (because these are the cells that enter the cell cycle to proliferate

or terminally differentiate). Myocyte volume enlargement is expressed

relative to nuclear number because DNA content appears to critically

mediate magnitude of hypertrophic response in cardiomyocytes. Each

parameter is expressed as a monochrome heat map (lightZlow, darkZ

high) and is derived from data described in this manuscript. Related data

sets (bracketed) share a saturation scale and are comparable across rows.

The values within the hatched area cannot be estimated because, while

proliferation and terminal differentiation almost certainly continue,

cell number declines in this period.
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fetus, systemic and pulmonary arterial are similar. It is

notable that, after birth, there are dramatic but opposite

changes in arterial pressures of the systemic circulation

(rises) and pulmonary circulation (decreases), but the rate

of cardiomyocyte enlargement is accelerated in both

ventricles compared to before birth (Fig. 8). Continued

proliferation in the RV may be explained if low pulmonary

arterial pressure is permissive, while sustained elevation

in systemic arterial pressure inhibits LV cardiomyocyte

proliferation. Increasing levels of IGF1 may support

cardiomyocyte proliferation through birth. Increased

systemic arterial pressure may inhibit IGF1-stimulated

proliferation in the neonatal LV, while lower pulmonary

arterial pressure permits proliferation in the RV (Fig. 8).

Alternatively, it is unknown in sheep whether IGF1 is a

mitogen or stimulates cardiomyocyte enlargement after

birth, as occurs for IGF2 in the developing rat (Liu et al.

1996). The prepartum decline in AII correlates with the

increase in cardiomyocyte terminal differentiation (Fig. 8),

although the maturational effect of AII appears

experimentally to be mediated through increased arterial

pressure. Similar to IGF1, the tremendous increase in AII at
http://joe.endocrinology-journals.org � 2016 Society for Endocrinology
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birth is concomitant with a doubling of systemic arterial

pressure and dramatic decline in pulmonary arterial

pressure, which may explain dimorphic ventricular

growth patterns in this same period (Fig. 8). Thus, AII

may (alternatively to IGF1) drive proliferation in the

low-load RV, but be inhibited from similar action in the

high-load LV.
Intracellular integration of regulatory signals

The intracellular signaling pathways activated by endo-

crine and physiologic signals in the fetal ovine heart are

beyond the scope of this review. Many intracellular

proteins have been identified as contributing to regulation

of cardiomyocyte growth and maturation (some topics

reviewed in Heineke & Molkentin (2006) and Oyama et al.

(2014)); much of this work has been accomplished in the

rodent. It is clear that stable withdrawal from the cell cycle

can be overcome by over-expression or knockout of many

genes (Poolman et al. 1999, Chaudhry et al. 2004,

Heber-Katz et al. 2004, Li et al. 2008). These regulatory

elements, and those contributing to other aspects of
Published by Bioscientifica Ltd.
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cardiomyocyte growth, are legitimately identified as

regulating cardiomyocyte endowment and morphology,

and thus lifelong health. However, current approaches

have failed to yield an understanding of how these

elements are integrated and prioritized to generate specific

cellular outcomes. Perhaps new approaches, such as

interactome network analysis, will lead to a more

comprehensive understanding (Menche et al. 2015).

Indeed, transcriptomic modeling has recently identified

discrete regulatory patterns in the ovine heart between

130 days of gestation, term and 14 days after birth, which

may shed light on how intracellular processes interact to

determine cardiomyocyte growth and maturation

(Richards et al. 2015).
Conclusion

There are substantial disparities between perinatal

changes in endocrine factors and the timing of cardio-

myocyte growth and maturation. A number of gaps

remain in our knowledge about the regulation of growth

and maturation in perinatal ovine cardiomyocytes. First,

what is the stimulus for and consequence of mass

cardiomyocyte attrition in the perinatal heart? It could

be deliberate remodeling, as previously proposed, or

perhaps its role is to eliminate most proliferative cardio-

myocytes as part of the tight cell cycle control evidenced

in the postnatal heart. Secondly, can neonatal cardiomyo-

cytes be stimulated to proliferate? Myocyte number

continues to increase slowly in the neonatal RV,

suggesting that if ventricular load is minimized, prolifer-

ation may be permitted. On the other hand, new evidence

suggests a burst of cardiomyocyte generation in adoles-

cence: which cells participate and what regulates their

proliferation? Thirdly, what drives accelerated RV cardio-

myocyte enlargement in the neonate, given low pulmon-

ary arterial pressure? All experimental evidence suggests

that cardiac load is the strongest growth modulator in the

heart. Fourthly, whether terminal differentiation occurs

and can be detected prior to binucleation is a problem

limiting current research. Finally, our understanding of

the intrinsic differences between fetal LV and RV

cardiomyocytes is lacking. There are clear divergences in

growth trajectories that begin in utero and set the stage for

cardiac function after birth.
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