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Abstract
Testis development from an indifferent gonad is a critical step in embryogenesis. A hallmark

of testis differentiation is sex-specific vascularization that occurs as endothelial cells migrate

from the adjacent mesonephros into the testis to surround Sertoli-germ cell aggregates and

induce seminiferous cord formation. Many in vitro experiments have demonstrated that

vascular endothelial growth factor A (VEGFA) is a critical regulator of this process. Both

inhibitors to VEGFA signal transduction and excess VEGFA isoforms in testis organ cultures

impaired vascular development and seminiferous cord formation. However, in vivo models

using mice which selectively eliminated all VEGFA isoforms: in Sertoli and germ cells

(pDmrt1-Cre;VegfaK/K); Sertoli and Leydig cells (Amhr2-Cre;VegfaK/K) or Sertoli cells (Amh-

Cre;VegfaK/K and Sry-Cre;VegfaK/K) displayed testes with observably normal cords and

vasculature at postnatal day 0 and onwards. Embryonic testis development may be delayed

in these mice; however, the postnatal data indicate that VEGFA isoforms secreted from

Sertoli, Leydig or germ cells are not required for testis morphogenesis within the mouse.

A Vegfa signal transduction array was employed on postnatal testes from Sry-Cre;VegfaK/K

versus controls. Ptgs1 (Cox1) was the only upregulated gene (fivefold). COX1 stimulates

angiogenesis and upregulates, VEGFA, Prostaglandin E2 (PGE2) and PGD2. Thus, other gene

pathways may compensate for VEGFA loss, similar to multiple independent mechanisms to

maintain SOX9 expression. Multiple independent mechanism that induce vascular

development in the testis may contribute to and safeguard the sex-specific vasculature

development responsible for inducing seminiferous cord formation, thus ensuring

appropriate testis morphogenesis in the male.
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Introduction
For years, many scientists have been investigating the

factors responsible for inducing endothelial cell migration

from the adjacent mesonephros into the developing

indifferent gonad. Endothelial cell migration and vascular
development has been demonstrated as one of the first

steps for directing seminiferous cord formation and

initiating the testis differentiation pathway (Tilmann &

Capel 1999, Albrecht et al. 2000). Within this review
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we will discuss the reasoning behind investigating

vascular endothelial growth factor A (VEGFA), its ever-

evolving complexity due to transcriptional and posttran-

slational regulation, and how it acts on cells through

multiple receptors and co-receptors as indicated mainly by

rodent models (Qiu et al. 2009, Vieira et al. 2010,

Dehghanian et al. 2014). Since infertility in the human

male has been on the rise for almost 50 years (Carlsen et al.

1992, 1993, 1995, Juul et al. 2014), more information into

gonadal development and how fertility is affected when

mutations arise is critical to developing therapies for male

related infertility issues. In the last decade, there have also

been interesting data to suggest that male infertility may

be associated with other health risks, since men with

subnormal sperm counts also had reduced lifespans when

evaluated between 1949 and 1985. This correlation

between infertility and shorter lifespans in men may be

due to lifestyle and behavior choices, conditions in utero or

their genetic composition (Groos et al. 2006). There have

been numerous incidences reported in the scientific

literature of prenatal exposure to compounds that alter

gene expression through epigenetic mechanisms and may

affect reproduction and a host of other critical functions

(e.g., immune). Thus, prenatal or inutero conditions may

be one avenue that can be altered to increase reproductive

function in men and also improve their lifelong health

status. Since an altered uterine environment may influ-

ence gene expression that is necessary for testis develop-

ment, any additional information on how testes develop

may also increase our ability to develop measures to

diagnose male infertility disorders that arise through

prenatal programming or epigenetic causes.
How does a testis develop from an
indifferent gonad?

The Sertoli cell expresses Sry (sex-determining region of

the Y chromosome, a gene that is on the short arm of the

Y chromosome) and is the first cell to differentiate in the

testis (Magre & Jost 1991). In the mouse, Sry is only briefly

expressed (E10.5 to 12.5) and its primary function is the

upregulation of Sox9 (SRY-box 9) (Harley et al. 2003).

Much of the fate of the developing testis appears to be

reliant on appropriate Sertoli cell differentiation and on

the ability of Sox9 expression to be maintained at high

levels (Fig. 1), thereby leading to the transcription of many

genes to initiate testis development (Harley et al. 2003).

Furthermore, expression of Sox9 upregulates other genes

such as fibroblast growth factor 9 (Fgf9) which, in addition

to cementing the testis differentiation pathway, may
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0342 Printed in Great Britain
antagonize genes such as wingless type MMTV integration

site family, member 4 (Wnt4), that if overexpressed or not

antagonized will enable the development of the female

pathway (Shan et al. 2009, Jameson et al. 2012) (Fig. 1).
What is the origin of the Sertoli cell .a cell
that is thought to direct testis development?

The precursors of the Sertoli cells are the early somatic

progenitor cells that develop from the coelomic epi-

thelium. The coelomic epithelium is derived from the

mesonephros and thickens as it differentiates, a phenom-

enon proposed to be due to gene expression of Sry. Many

different transcription factors are critical for the proper

development of the gonadal primordium that is enveloped

by the coelomic epithelium such as EMX2 (empty spiracles

homeobox 2), WT1, NR5A1 (nuclear receptor subfamily 5,

group A, member 1, formerly SF1), LHX9 (LIM homeobox

protein 9), GATA4 (GATA binding protein 4),

ZFPM2/FOG2 (zinc finger protein, multitype 2) and others

(Wilhelm et al. 2007, Munger & Capel 2012). Both the

thickening of the gonadal primordium to form the

coelomic epithelium and the expression of Sry are critical

to allow Sertoli cells to develop. At least 20% of the Sertoli

cells need to express Sry in order for a testis to arise from the

indifferent gonad (Patek et al. 1991, Burgoyne et al. 1995)

(Fig. 1). Furthermore, Sox9 has to be upregulated by E11.2

through the actions of Sry for testis development to

continue; if Sox9 is not upregulated, then the proliferation

of the Sertoli cells will arrest along with testis development

(Fig. 1). In other species such as domestic livestock, Sry

is maintained much longer and appears to have other

functions (Pelliniemi & Lauteala 1981, Daneau et al. 1996,

Payen et al. 1996, Parma et al. 1999).
Sox9

Originally, Sox9 is expressed in the indifferent gonad by

the pre-Sertoli/granulosa cells and is transcribed at a very

low copy number by SF1. When Sry is expressed, Sox9 is

upregulated in the testis and its expression is silenced in

the ovary (Kobayashi et al. 2005). Because Sry expression is

short-lived, it is critical that other factors continue to

upregulate and maintain Sox9 expression (Fig. 1). Sox9

induces the expression of Ffg9 and prostaglandin D2

synthase (Ptgds), in which the latter generates PGD2

(Wilhelm et al. 2007). One function of both of these

genes is to maintain upregulated Sox9 expression (Rossitto

et al. 2015). Furthermore, Sox9 also upregulates itself

through two mechanisms. It binds its own enhancer in
Published by Bioscientifica Ltd.
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Figure 1

Gene expression during testis morphogenesis. Depicted above the timeline

is a network pieced together based on gene and protein interactions in the

literature related to sex-specific vascular development and sexual

differentiation. The bottom of the figure depicts different stages of testis

development. PGC, primordial germ cell; SRY, sex determining region of

Chr Y; SOX9, SRY (sex determining region Y)-box 9; WNT4, wingless-type

MMTV integration site family; member 4; PGD2, prostaglandin D2; PDGFR,

platelet derived growth factor receptor; FGF9, fibroblast growth factor 9;

COX, cyclooxygenase 1/2; VEGFA, vascular endothelial growth factor A.
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a feed-forward fashion (Sekido & Lovell-Badge 2008) and

by maintaining upregulation of a transcription factor

ER71/ETV2 (ets variant 2) that is initially increased

through Sry expression (DiTacchio et al. 2012).
FGF9

Elimination of FGF9 or its receptor FGFR2 (fibroblast growth

factor receptor 2) can cause male-to-female sex reversal

given that FGF9 downregulates or suppresses the Wnt

pathway that would otherwise promote female gonadal

development (Vainio et al. 1999, Colvin et al. 2001,

Jeays-Ward et al. 2003, Bagheri-Fam et al. 2008, Jameson
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0342 Printed in Great Britain
et al. 2012, Siggers et al. 2014) (Fig. 1). Wnt4 knockout mice

are sex-reversed similarly to knockouts of FGF9 (Shan et al.

2009). It was determined that FGF9 antagonizes the actions

of WNT4 and thus prevents the ovarian pathway and

allows for seminiferous cords to develop (Kim et al. 2006,

Jameson et al. 2012). FGF9 also is critical for Sertoli cell

proliferation necessary to provide enough Sertoli cells to

differentiate to form clusters with germ cells.
PGD2

The gene-encoding Ptgds (Lipocalin-type Ptgds), an

enzyme that produces PGD2, was identified in 2002 to
Published by Bioscientifica Ltd.
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Proposed pathway of prostaglandin synthesis and interaction with the

cyclooxygenase pathways and VEGFA. PLA2, phospholipase A2;

PG, prostaglandin; COX, cyclooxygenase; VEGFA, vascular endothelial

growth factor A.
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be initially expressed in the developing urogenital ridges

and later in Sertoli cells and prospermatogonia at around

E11.5 (Adams & McLaren 2002) (Fig. 1). Expression of the

Ptgds gene in the developing testis was noted to be in a

similar pattern as both Sry and Sox9 starting at the center

and moving to the anterior poles in the developing testis

(Wilhelm et al. 2007). Furthermore, expression of the

PTGS protein was present in E12.5 male gonads in both

Sertoli and germ cells (Moniot et al. 2009) that it is

regulated upstream through either COX1 (cyclooxygenase

1) or COX2 pathways (Rossitto et al. 2015). However,

neither male Cox2- nor Cox1-knockout mice are infertile;

thus, there may be multiple ways to promote the

production of PTGS in order to have a sufficient quantity

of PGD2 (Gerena et al. 2000a,b). PTGDS is upregulated by

Sox9 but not Sry (Wilhelm et al. 2007). PGD2 acts through

its receptor, DP1 (prostaglandin D2 receptor 1) in Sertoli

cells, to translocate the cytoplasmic SOX9 protein to the

nucleus to influence gene expression.
How is PGD2 regulated?

Many endocrine disruptors such as phthalates, bisphenol

and NSAIDS that inhibit COX activities also reduce PGD2

production as demonstrated in a mouse Sertoli cell line

and fetal testis cultures (Kristensen et al. 2011a,b, 2012).

Thus, it appears that the COX signaling pathway is
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0342 Printed in Great Britain
involved and potentially downstream of SOX9 to induce

expression of PGD2. In addition to PGD2, COX1 and 2 can

stimulate upregulation of other prostaglandins such as

PGE2, which is proangiogenic, and can further enhance

the expression of VEGFA (Cheng et al. 1998, Pai et al.

2001). Furthermore, there appears to be a positive feed-

back pathway between COX2 and VEGFA with each of

them increasing the other’s expression as well as VEGFA

upregulating upstream factors in the arachidonic pathway

to further enhance COX2 activity. COX1 is thought to be

constitutively expressed while most of the effects of

hypoxia and VEGFA may be through stimulation of the

inducible COX2 (Iniguez et al. 2003) (Fig. 2). Since,

angiogenic inhibitors do not appear to inhibit COX1;

it is possible that the constitutively-expressed COX1 may

safeguard some function of angiogenesis within the

developing testes.
Mesonephric cell migration directs testis
development: are the migrating mesonephric
cells peritubular myoid cells or endothelial
cells?

As Sertoli cells differentiate and establish intimate contact

with germ cells, they form clusters with germ cells aptly

named Sertoli-germ cell clusters (Tesarik et al. 2002). Germ

cells are of extragonadal origin and migrate to the

indifferent gonad prior to Sertoli cell differentiation

(Mintz & Russell 1957, Ozdzenski 1969). Germ cells do

not appear to induce seminiferous cord formation since

cord formation still occurs in the testis of Kit (kit

oncogene, also known as c-Kit) knockout despite a lack

of primordial germ cells migration to and colonization of

the indifferent gonad (Nocka et al. 1989, Runyan et al.

2006).

Very elegant studies have demonstrated that meso-

nephric cells migrating from the mesonephros are

necessary for cord formation and later that the developing

testis from an indifferent gonad directs mesonephric cell

migration (Buehr et al. 1993). This migration can even pass

through an ovary inserted between the mesonephros and

the developing testis (Tilmann & Capel 1999). Initially the

migrating cells were thought to be pre-peritubular myoid

cells since that cell type is what forms around seminiferous

cords and aids later in development of the blood-testis

barrier (Buehr et al. 1993). However, others have demon-

strated that all cells that migrated are endothelial cells

(Cool et al. 2008, Combes et al. 2009).

Since the Sertoli cells are the first cell to differentiate in

the testis (Magre & Jost 1991), they were thought to be the
Published by Bioscientifica Ltd.
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catalyst for induction of endothelial cell migration via

secretion of factors that serve as chemoattractants for

mesonephric cells. Later it was determined that meso-

nephric cell migration not only directs seminiferous cord

formation but also may induce proliferation of the

somatic cells up to a certain threshold to restrict their

number. Early studies identified factors that had receptors

within peritubular myoid (PTM) cells such as neurotro-

phins (NT) (Levine et al. 2000) and PDGFs (Puglianiello

et al. 2004). The low affinity receptor for the neurotro-

phins, NGFR (nerve growth factor receptor), is expressed

in cells which appear to migrate from the mesonephros

into the differentiating testis and by P0 it is only expressed

in a thin layer of cells which appear to have differentiated

into the PTM layer that surrounds each seminiferous cord

(Russo et al. 1999). Other experiments demonstrated that

NT3 may be involved in mesonephric cell migration and

TrkA and C (tyrosine receptor kinase) knockout mice

contained fewer cords within the testis than WT mice, in

addition to some fused or odd shaped cords (Cupp et al.

2002, Cupp et al. 2003).

The focus then became the endothelial cells because

most of the cells that migrate from the mesonephros

contained endothelial cell markers. In addition, sex-specific

vasculature develops in the testis and ovary with large

differences noted in vascular reorganization and origin in

the testis compared to the ovary (Cool et al. 2008, Combes

et al. 2009, Bott et al. 2010). It was postulated Sertoli cells

produced angiogenic or vascular-specific factors to induce

endothelial cell migration and cause sex-specific vascular

development and seminiferous cord formation (Tilmann &

Capel 1999, Bott et al. 2010). Again the question was what

angiogenic or vascular-specific factors were produced by the

Sertoli cells around the time of sex-specific vasculature

development and seminiferous cord formation?
What composes the VEGFA ligand receptor family

and how does VEGFA signal through its receptors and

co-receptors?

The VEGF family was a logical growth factor family to

evaluate its involvement in endothelial cell migration

within the developing testis due to its ability to stimulate

endothelial cell migration, survival, proliferation and

differentiation to initiate vasculogenesis and angiogenesis

within developing organs and tumors (Ferrara et al. 2003,

Lee et al. 2015). The VEGF family is composed of VEGFA,

VEGFB, VEGFC, VEGFD, and PGF (Placental Growth

Factor, previously known as PlGF). VEGFA is the most

studied family member and is critical for angiogenic
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0342 Printed in Great Britain
processes (Ferrara et al. 2003). Even the disruption of one

allele (heterozygotic deletion) causes embryonic lethality

between E11and E12. Since neovascularization does not

occur in these mice, this suggests that the embryonic

lethality is due to a lack of oxygen and nutrients delivery

to organs and that VEGFA is critical for most organ

functions (Ferrara et al. 1996).
What are the receptors to which VEGFA
binds?

VEGFA binds to two different tyrosine kinase receptors:

kinase insert domain protein receptor (KDR also known as

VEGFR2 and FLK1), and FMS-like tyrosine kinase 1 (FLT1,

also known as VEGFR1) (Ferrara et al. 2003). Both the KDR

and the FLT1 receptors contain an extracellular domain

comprised of seven immunoglobulin-like (Ig-like) folds

(Fig. 3). The function of the Ig-like folds were determined

through mutation experiments indicating the VEGFA

high affinity ligand binding domain is within the second

and third folds while the first and fourth Ig-like fold

regulate the ability for the ligand to bind and the receptor

to dimerize (Davis-Smyth et al. 1998, Fuh et al. 1998,

Shinkai et al. 1998, Vieira et al. 2010). The KDR receptor

is the primary receptor that VEGFA signals through

(Waltenberger et al. 1994, Seetharam et al. 1995, Kroll &

Waltenberger 1997, Wheeler-Jones et al. 1997, Cunning-

ham et al. 1999). This is mainly due to the observation that

the tyrosine phosphorylation sites on the FLT1 receptor

(in the regulatory juxtamembrane domain and five within

the C-terminus; Fig. 3) are never phosphorylated when the

VEGFA ligand binds endothelial cells.
FLT1 receptor – why is it called the decoy receptor?

FLT1 has higher affinity for VEGFA than KDR (Walten-

berger et al. 1994, Olofsson et al. 1998, Gille et al. 2001).

Since there was no phosphorylation of its tyrosine residues

the main function of this receptor was thought to be to

function as a decoy receptor for VEGFA and, thus, to

inhibit VEGFA-KDR ligand-receptor interactions and

subsequent signal transduction. Presumably this was to

allow for inhibition of vascularization of tissues (Ferrara

2000, Zachary & Gliki 2001). This is supported by a study

demonstrating that FLT1/VEGFR1 knockout mice that

die at E8 and E9 is due to a failure of endothelial cells

to assemble into a vasculature circuit (Fong et al. 1995).

Since most KDR-mediated VEGFA binding results in

vascularization of tissues, an increase in FLT1 production

to inhibit binding to KDR may be a method to regulate
Published by Bioscientifica Ltd.

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-15-0342


P

P P

P

P

P

P

VEGFAxxx

VEGFAxxxb

NRP1

KDR

TSAd

SRC

Permeability

Permeability

PI3K

Y951

Y1214

GRB2

CDC42

p38MAPK MAPK

Proliferation

PKC

SHB

SHC/SCKY1175

Y1059

Y1054 Y794

Y1169

Y1213

Y1242

Y1327

Y1333

SRC

PI3K

AKT

FAK

PLCγ

HSP27

Migration

Migration

SurvivaleNOS

Migration

FLT1

A

B

NRP1

KDR

Inhibits angiogenic

VEGFA?

Inhibits angiogenic

VEGFA?

FLT1

Figure 3

VEGF receptors critical to the actions of VEGFA. Pictured is the binding of

angiogenic VEGFA isoforms to either KDR (top right) or FLT1 (top left). Only

angiogenic isoforms of VEGFA bind to NRP1 (top). Antiangiogenic VEGFA

isoform binding to either KDR (bottom left) or FLT1 (bottom right) results

in less and different signal transduction than angiogenic. Antiangiogenic

VEGFA isoforms are unable to bind NRP1 (bottom). Phosphorylation sties

are depicted as ‘P’ within a circle. Y, tyrosine; VEGFA, vascular endothelial

growth factor A; KDR, kinase insert domain protein receptor; FLT1, fms-like

tyrosine kinase 1; NRP1, neuropilin 1; TSAd, T-cell specific adaptor;

SRC, Rous sarcoma oncogene; PI3K, phosphatidylinositol 3-kinase; GRB2,

growth factor receptor bound protein 2; CDC42, cell division cycle 42;

(p38)MAPK, mitogen-activated protein kinase; HSP27, heat shock protein

27; PLCgamma, phospholipase C gamma; PKC, protein kinase C; SHC/SCK,

src homology 2 domain-containing transforming protein; SHB, src

homology 2 domain-containing transforming protein B; AKT, thymoma

viral proto-oncogene; eNOS, nitric oxide synthase 3; endothelial cell;

FAK, focal adhesion kinase.
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vascularization. Recent reports have also suggested that

FLT1 may prevent endothelial cell apoptosis and thus is a

potential survival factor (Vieira et al. 2010). This may be

due to FLT1 but not KDR being regulated by hypoxia.

Within the promoter region of the FLT1 receptor is a

binding site for hypoxia inducible factor 1, alpha subunit

(HIF1A) (Gerber et al. 1997). Thus, FLT1 expression along

with upregulation of VEGFA through hypoxia (since there

is a HIF1A promoter site in the VEGFA promoter, as well)

may allow for survival of these cells and stimulation of

some sort of vascular growth to provide oxygen to the

tissue. Due to alternative splicing, FLT1 is not only present

in a membrane-bound form but also has a soluble form

(sFLT1) that acts similarly to binding proteins. Thus this

soluble form may also act as a decoy receptor to sequester

VEGFA away from KDR (Kearney et al. 2004). An increase

in sFLT1 has been demonstrated to occur in pathological

states such as preeclampsia (Hiratsuka et al. 2001, Autiero

et al. 2003). Thus, regulation of the soluble as well as

membrane forms of FLT1 are critical to allow for

appropriate vascularization of tissues.
FLT1 signaling pathways

FLT1 contains several potential tyrosine autophosphoryla-

tion sites in the c-terminus and also juxtamembrane

transmembrane domain. These sites are suppressed by a

repressor element located in the juxtamembrane domain,

which inhibits the phosphorylation of these tyrosine

residues after VEGFA binding (Gille et al. 2000). However,

in monocytes and macrophages this repression is not

present and there is no information to suggest how this

occurs other than the secretion of factors that relieve this

inhibition. Thus, in these particular cell types, FLT1 can
Table 1 Signal transduction inhibitors of VEGFA signaling and th

development in vitro (data from Bott et al. (2006))

Signal transduction

pathway Inhibitor

Effect on c

formation

Inhibits KDR SU1498 (Calbiochem,
#572888)

No cord fo

Inhibits KDR and FLT1 VEGF-TKI (Calbiochem,
#676475)

No cord fo

Inhibits NRP1 Je11 (Calbiochem,
#676494)

No cords/p
formatio

Inhibits PI3K LY294002 (Calbiochem,
#440202)

Cords pert
swollen

VEGFA, vascular endothelial growth factor A; KDR, kinase insert domain pro
phosphatidylinositol 3-kinase; PECAM1, platelet/endothelial cell adhesion mole

http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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recruit several different accessory proteins such as protein

kinases related to SRC (Rous sarcoma oncogene), FYN (fyn

proto-oncogene) and YES1 (Yamaguchi sarcoma viral

(v-yes) oncogene homolog 1) (Chou et al. 2002).
Does FLT1 signal in the somatic cells of the testis or is

it repressed similarly to endothelial cells?

Caires et al. (2012) demonstrated that there was increased

phosphorylation of tyrosine (Y) 1333 within the FLT1

receptor in somatic cells at postnatal day 3 (P3) in mice

compared to activation in gonocytes, Sertoli and Leydig

cells at P1 (Caires et al. 2012). Also, inhibitors that blocked

both FLT1 and KDR simultaneously were effective in testis

organ cultures in inhibiting both sex-specific vascular

development as well as seminiferous cord formation (Bott

et al. 2006) (Table 1). To our knowledge, no experiments

have been conducted to determine if FLT1 signals in the

somatic or germ cells of the testis early in development,

but it is possible that this occurs. Since FLT1 is not present

until after seminiferous cord formation in the testis (Bott

et al. 2006), it may not be critical. However, since FLT1 can

be upregulated by hypoxia, it may be a failsafe mechanism

to initiate neovascularization in some tissues outside the

testis where VEGFA or KDR are limiting and vasculariza-

tion of the tissue is critical for survival.
Why is KDR thought to be the primary receptor through

which VEGFA signals?

In contrast to FLT1, the KDR receptor is autophosphory-

lated on several tyrosine residues after ligand binding and

receptor dimerization that have been depicted in the

human in the kinase insert domain (Fig. 3): Y951 (Y949
eir effects on rat embryonic testis cord formation and vascular

ord

Effects on vasculature

PECAM1

staining (%)

rmation Little vasculature,
no coelomic vessel

10

rmation No vasculature dividing,
no coelomic vessel

10

erturbed cord
n

Coelomic vessel, some
microvessels, but
reduced density

58

urbed or Weak coelomic vessel,
less dense vasculature

54

tein receptor; FLT1, FMS-like tyrosine kinase 1; NRP1, neuropilin 1; PI3K,
cule 1.
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mouse); in the tyrosine kinase domain: Y1054 and Y1059

(Y1053, Y1057 mouse); and in the C-terminal domain

Y1175 and Y1214 (Y1173, Y1212 mouse) (Eliceiri et al.

1999, Werdich & Penn 2005, Vieira et al. 2010). Most

phosphorylation experiments have been conducted in

endothelial cells; however, these tyrosine residues recruit

different downstream signaling molecules when phos-

phorylated to induce different events (Eliceiri et al. 1999,

Werdich & Penn 2005, Vieira et al. 2010). This autopho-

sphorylation is actually a form of trans-phosphorylation

that is prevented until the conformation of KDR changes

following VEGFA binding and the receptor monomers

come into close juxtaposition (Tao et al. 2001).

KDR phosphotyrosines such as Y951 and Y1175 are

recognized by SRC family kinases, which have been shown

to modulate endothelial proliferation and migration

(Eliceiri et al. 1999, Werdich & Penn 2005, Vieira et al.

2010). Many different knockout mouse models have been

developed that mutate or eliminate these tyrosine residues

in order to determine their function (Fig. 3). The Y951

phosphotyrosine works through TSAd (T Cell-Specific

Adapter) and Src and is involved in endothelial cell

permeability and migration, while both Y1175 and

Y1214 are also involved in endothelial cell proliferation

or migration as indicated through mutation experiments

(Rajagopal et al. 1999). The tyrosine residue Y1214 works

through growth factor receptor bound protein 2 (GRB2)

and has been implicated to be in control of actin

reorganization and cell migration, which is thought to

occur through CDC42 (cell division cycle 42) and MAPK

(mitogen-activated protein kinase) cascades (Lamalice

et al. 2004) (Fig. 3). Many different signal transduction

pathways occur through Y1175: activation of phospho-

lipase C (PLC) gamma, protein kinase C (PKC) and MAPK

to cause proliferation. Src is recruited to this residue as well

as SHB (src homology 2 domain-containing transforming

protein B) which will allow for migration, survival and

permeability of endothelial cells (Aouadi et al. 2006). SHB

controls endothelial cell migration through focal

adhesion kinase (FAK) in a PI3 (phosphoinositide-3)

kinase-mediated pathway (Kriz et al. 2006) (Fig. 3). Caires

et al. (2012) demonstrated that during early postnatal

periods, the 1054 phosphotyrosine is autophosphorylated

(1053 in the mouse), and VEGFA signaling through KDR is

clearly present in both Sertoli, Leydig and germ cells at

different stages of early postnatal development (Caires

et al. 2012). Thus, these pathways should be explored to

determine which phosphotyrosines are specifically necess-

ary for VEGFA’s function within the developing testis

during sex-specific vascularization.
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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KDR is critical to embryogenesis, since KDR knockout

mice die at E8.5–E9.5 (Shalaby et al. 1995). These embryos

lack blood island formation in the yolk sac and experience

a dramatic reduction in hematopoietic precursors,

suggesting KDR is necessary for vasculogenesis. Further-

more, since they mark the early hemangioblast that

differentiates into endothelial cells as well as hemato-

poietic progenitors, it is possible that KDR is also involved

in hematopoiesis as well as vascularization of tissues

through endothelial cells (Murray 1932, Jaffredo et al.

2005, Medvinsky et al. 2011, Ciau-Uitz et al. 2013).

Interestingly, mice carrying only a single amino acid

mutation that prevents KDR activation of ERK 1/2 die

inutero due to vascular defects, suggesting that phos-

phorylation of this receptor is critical to multiple

vasculature functions within the developing embryo

(Sakurai et al. 2005).
What is the expression pattern of the KDR,
FLT1 receptors during testis development?

Expression of KDR occurs relatively early and marks sex-

specific vascular development in both the testis and ovary

as indicated in KDR-LacZ transgenic mice (Bott et al. 2010).

Expression of KDR is apparent in cells that appear to be

migrating into the testis at the time of sex-specific

migration. Later as seminiferous cords form and are

apparent, these KDR-LacZ marked cells are present around

the seminiferous cords (Bott et al. 2006, Bott et al. 2010).

Since the KDR receptor signals through tyrosine kinase

autophosphorylation, several different tyrosine kinase

inhibitors were utilized to determine how this may affect

seminiferous cord formation and sex-specific vascular

development in testis organ cultures. In rat testis organ

cultures, VEGFR-TKI (a tyrosine kinase inhibitor specific to

KDR and FLT1) inhibited sex-specific vascular develop-

ment (reduction by 90% in all vascular development in

the testis; Table 1) and seminiferous cord formation (Bott

et al. 2006). In addition, a KDR-specific inhibitor, SU1498,

reduced vascular development by 90% and perturbed cord

formation (Bott et al. 2006) (Table 1). Furthermore, KDR-

LacZ-positive staining in mouse testis organ cultures was

reduced at day 1, 2 and 3 of culture by 66, 90 and 99%

respectively when they were treated with VEGFR-TKI.

These data suggest that endothelial cell migration,

proliferation and survival may have been blocked, which

prevented the testis from being vascularized (Bott et al.

2010). Thus, it does appear that KDR-LacZ-marked cells

migrate into the testis and can be inhibited by a specific

VEGFR inhibitor. Other inhibitors to PI3 kinase have also
Published by Bioscientifica Ltd.
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been demonstrated to impair sex-specific vascular

development but only reduce vascular development by

56% (Bott et al. 2006) despite perturbing seminiferous cord

formation (Uzumcu et al. 2002b, Bott et al. 2006) (Table 1).

Inhibition of the MAPK pathway also alters cord formation

(Uzumcu et al. 2002b), but vascular development was not

evaluated. Since VEGFA signals through KDR to stimulate

both MAPK and PI3 kinase, these data support evidence of

a role for VEGFA in regulating sex-specific vascular

development within the developing rodent testis.

FLT1, however, is not expressed in the rodent until

after cord formation in the male (Bott et al. 2006), while

both KDR and FLT1 are expressed early in the ovary

(McFee et al. 2009). KDR, FLT1 and VEGFA are expressed by

oocyte cysts, oocytes and pre-granulosa/granulosa cells of

all stage follicles at P0, P3 and P10, as well as in theca cells

of late antral follicles (McFee et al. 2009). There is a

possibility that FLT1 expression in the ovary sequesters the

VEGFA ligand and prevents it from binding to KDR and to

block endothelial cell migration within the ovary at the

time sex-specific vascular development occurs in the testis.
What are the alternatively spliced products of
VEGFA and what are their function(s)?

Of the 25 000 genes in the human genome, at least 70%

are alternatively spliced, and abnormal alternative splicing

can be correlated with a large number of human genetic

deficiencies (Black 2003, Matlin et al. 2005). VEGFA is

transcribed from a single gene that is alternatively spliced

into many different isoforms depending on the cell type of

interest. Many VEGFA isoforms have been identified

(VEGFA111, 121, 165, 148, 145, 183, 189, 206), and the

most common VEGFA isoforms that have been studied are

human angiogenic VEGFA206, VEGFA189, VEGFA165,

VEGFA145 and VEGFA121 (Fig. 4). The numbers on the

isoforms denote the number of amino acids, and in the

rodent there is one less amino acid for each isoform:

VEGFA205, VEGFA188, VEGFA164, VEGFA144,

VEGFA120 (Fig. 4). For this review, we will utilize the

rodent VEGFA isoforms, since much of the research

discussed will be in the rodent (Hoeben et al. 2004, Giacca

2010, Kajdaniuk et al. 2011).

Within the Vegfa gene, there are eight exons, and all

VEGFA isoforms contain exons 1–5 except for a newly

identified isoform, VEGFA111, which contains only 1–4

and exon 8. A signal peptide is located within exons 1 and

2 and, upon cleavage, produces a mature peptide. In exon

5, there are cleavage sites for plasmin and matrix

metalloproteinases. Since VEGFA111 does not contain
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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exon 5, this isoform is resistant to their cleavage and is a

critical compound utilized in therapies for different cell

ischemia (Houck et al. 1991, Mineur et al. 2007). Exons 6a

and 7 encode heparin binding domains and isoforms

containing these exons bind to cell surfaces and are not as

diffusible as isoforms that do not contain these exons. Also

contained within exons 6a and 7 are a neuropilin binding

site (Keyt et al. 1996, Lee et al. 2005). The 5 0 untranslated

region (UTR) of Vegfa is w1038 nucleotides in humans and

consists of three CUG start codons, an AUG initiation

codon and two internal ribosome entry sites (IRESes) that

can control VEGFA translation. The 3 0UTR consists of

polyadenylation signals and AU-rich response element,

which allows for response to stabilizing and destabilizing

mRNAs (Konopatskaya et al. 2006, Seifi et al. 2012) (Fig. 4).

The VEGFA205 isoform contains all exons and is

proposed to bind more tightly to extracellular matrix

proteins in addition to being greater in amino acid

number than other isoforms. The VEGFA188 isoform has

two heparin binding domains, remains relatively close to

the cell in which it was secreted, and acts locally to support

branching of vasculature. The VEGFA164 isoform contains

only one heparin-binding domain and has intermediate

diffusibility, and has a prominent role in the formation of

large blood vessels. The VEGFA120 isoforms lacks a

heparin-binding domain, is the most diffusible and can

migrate the farthest from the secreted cells. The

differences in diffusibility of these different VEGFA iso-

forms allow for the development of a chemoattractant

gradient that induces endothelial cells to migrate toward

cells that produce VEGFA (Carmeliet & Collen 1999,

Veikkola & Alitalo 1999, Grunstein et al. 2000, Simons

2007, Krilleke et al. 2009, Ferrara 2010).
What is the expression and potential actions of
VEGFA isoforms in the developing testis?

The presence of multiple VEGFA isoforms differing in

number of amino acids was identified in the developing

rat testis: VEGFA120, 164 and 188 (Bott et al. 2006) (Fig. 4).

Using a pan antibody to all VEGFA isoforms, it was

demonstrated that the protein for the pan-VEGFA (which

detects both angiogenic and antiangiogenic isoforms) was

lower at E13 and increased by P4. Sertoli cells had the

greatest abundance of pan-VEGFA expression around the

time of cord formation (Bott et al. 2006).

It does not appear that a chemoattractant gradient for

VEGFA exists in the ovary around the time of seminiferous

cord formation in the rat testis, because the only VEGFA

isoforms that are present are VEGFA164 and VEGFA120.
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VEGFA164/165 Exons 1–5 6a 7 8a VEGFA164b/165b Exons 1–5 6a 7 8b

VEGFA188/189 Exons 1–5 7 8a VEGFA188b/189b Exons 1–5 7 8b

VEGFA120/121 Exons 1–5 8a VEGFA120b/121b Exons 1–5 8b

Figure 4

VEGFA gene containing all exons and both heparin- and NRP1-binding sites

as well as the canonical stop codons targeted for alternative splicing

between either angiogenic or antiangiogenic isoforms (A). Various rodent

angiogenic VEGFA isoforms (B, left) and antiangiogenic isoforms (B, right)

have been identified following alternative splicing. In the human and

bovine, the amino acids numbers differ from those found in the rodent.

Pictured are the most well-known/studied angiogenic VEGFA isoforms (left,

C) and antiangiogenic isoforms (top right, C). Also depicted is the recently

identified VEGFAx that possesses antiangiogenic properties in humans and

bovines (bottom right, C).
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The two higher-molecular-weight VEGFA isoforms

VEGFA188 and VEGFA205 have not been detected

(McFee et al. 2009); thus, we hypothesize that there is no

viable chemoattractant gradient to allow for endothelial

cell migration from the mesonephros into the ovary.
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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Furthermore, treatment of E13 rat testis organ cultures

with VEGFA120 and VEGFA164 causes formation of

altered (absent, swollen and misshaped) seminiferous

cords as well as dramatically increased vascular density

(160 and 157% that of controls; Table 2). Thus, excess
Published by Bioscientifica Ltd.
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Table 2 Effects of recombinant VEGFA protein or VEGFAxxxb antibody on Rat embrynic testis cord formation and vascular

development in vitro (data from Baltes-Breitwisch et al. (2010))

Recombinant VEGFA protein Effect on cord formation Effects on vasculature PECAM staining (%)

VEGFA120 Swollen cords with some perturbed
(R&D Systems, #494-VE)

Thickened coelomic vessel, more
vasculature between cords

157

VEGFA164 Some cords misshapen or perturbed
(R&D Systems, #564-RV)

Thickened coelomic vessel, more
vasculature between cords that
formed

160

VEGFAxxxb antibody
(5 ng/ml)

Swollen or perturbed cords, misshapen
cords (Abcam, #ab14994)

Increased vasculature all
throughout testis

195

VEGFAxxxb antibody
(50 ng/ml)

Swollen or perturbed cords, misshapen
cords (Abcam, #ab14994)

Increased vasculature all
throughout testis

195

VEGFA, vascular endothelial growth factor A.
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VEGFA angiogenic isoforms 164 and 120 can elicit

detrimental effects on testis development and potentially

have as dramatic effects as inhibition of VEGFA signal

transduction discussed earlier (Bott et al. 2006) (Table 1).

All of these VEGFA angiogenic isoforms have been shown

to bind both KDR and NRP1, but even though there may

be binding of VEGFA120 (which does not have a heparin

and thus NRP1-binding domain) to NRP-1, the bridging

to KDR does not appear to occur. This may affect the

amplification of the VEGFA120 signal transduction as

well as the recycling of the KDR receptor within the cell

(Pan et al. 2007).
VEGFA antiangiogenic isoforms

In 2002, a second set of sister isoforms was identified

through alternative splicing and replacement of exon 8a

with 8b (Bates et al. 2002) (Fig. 4). These sister VEGFA

isoforms were considered inhibitory to angiogenic func-

tions and were labeled antiangiogenic VEGFA isoforms.

Several antiangiogenic isoforms have been identified:

VEGFA212b, VEGFA145b, 183b, 189b, 165b and 121b

(Bates et al. 2002, Woolard et al. 2004, Dehghanian et al.

2014) (Fig. 3). VEGF165b is normally expressed in tissues

but is downregulated in prostate and renal tumors,

suggesting a role in inhibiting the vasculogenic and

angiogenic actions of other VEGF isoforms (Bates et al.

2002, Woolard et al. 2004). Several reports have suggested

that these antiangiogenic VEGFA isoforms may function

to antagonize angiogenic VEGFA isoform functions

through binding of the receptors and preventing angio-

genic isoforms from binding (Qiu et al. 2009).

Much controversy has ensued over whether these ‘b’

isoforms exist or whether they are artifacts of alternative

splicing (Harris et al. 2012). While it is true that

determining the difference in the angiogenic vs the
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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antiangiogenic isoforms has been a challenge, data from

our laboratory and others using either recombinant

angiogenic or antiangiogenic VEGFA isoforms has resulted

in very different outcomes that demonstrate the existence

of divergent VEGFA isoforms (Artac et al. 2009, McFee et al.

2009, Baltes-Breitwisch et al. 2010, Caires et al. 2012, Bates

et al. 2013).

For instance, the VEGFAxxxb antibody (detects all

antiangiogenic isoforms but sold as antiVEGFA165b)

detected antiangiogenic isoforms in germ cells from E14

to E16 with expression in the interstitium by P0

(Baltes-Breitwisch et al. 2010). This result in expression

was very different from the panVEGFA antibody, which

detects all VEGFA isoforms where expression was detected

in Sertoli cells and potentially some germ and Leydig cells

(Bott et al. 2006). When we used this antibody to the exon

8b (which will neutralize antiangiogenic isoforms and

allow endogenous VEGFA angiogenic isoforms to bind) on

E13 rat testis organ cultures we had similar results as

treating with recombinant VEGFA120 or VEGFA164

(Table 2). Either dose of VEGFAxxxb antibody, dramati-

cally increased vascular density (195%) versus control

testes compared to increases in vascular density of 160%

(VEGFA164) or 157% (VEGFA120) (Table 2). In addition,

the seminiferous cords were swollen, perturbed, or

misshapen, which was very similar to what was seen

with the recombinant angiogenic VEGFA isoforms treat-

ment (Baltes-Breitwisch et al. 2010). Thus, it appears that

the removal of the antiangiogenic isoforms increases the

amount of endogenous angiogenic VEGFA isoforms that

can bind to the VEGFA receptors and elicit similar effects

to treatments with recombinant angiogenic VEGFA iso-

forms. Thus, from our data and others we would suggest

that the antiangiogenic isoforms do exist, whether they

are produced from alternative splicing or through other

recently identified means.
Published by Bioscientifica Ltd.
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Whole testis western blots conducted with the

antiangiogenic VEGFAxxxb antibody did not demonstrate

major differences in the levels of antiangiogenic VEGFA

isoform abundance during early testis development, but

the immunohistochemistry clearly indicated that VEG-

FAxxxb isoforms were not expressed in somatic cells and

only in germ cells during early testis development

(Baltes-Breitwisch et al. 2010). Quantitative PCR demon-

strated a fivefold greater abundance of antiangiogenic

VEGFA165b in the ovary vs the testis at E13, which

indicated that antiangiogenic isoforms may be inhibiting

angiogenic VEGFA isoform functions related to endo-

thelial cell migration or development of chemoattractant

gradients.

Recently, a paper was published in Cell (Eswarappa

et al. 2014) that identified yet another antiangiogenic

VEGFA isoform in human and bovine endothelial cell

lines that is produced by programmed translational

readthrough, which has a cis-acting element in the Vegfa

3 0UTR that serves a dual function (Fig. 4). It can encode the

shortened peptide but can also direct the programmed

readthrough by decoding the UGA stop codon (Fig. 4). A

heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1

binds this element and promotes readthrough, producing

a product that has exon 8a and 8b. This product acts

similarly to antiangiogenic isoforms and is downregulated

in certain cancers (Eswarappa et al. 2014). The authors of

this paper have named this isoform VEGFAx. The Ax is

named for the Ax element, which is a 62-nucleotide

extension inserted between the two stop codons that

normally would confer either angiogenic (with exon 8a) or

antiangiogenic isoforms (with exon 8b; Fig. 4). Thus, the

binding protein hnRNP A2/B1 binds the A2/B1 response

element (A2RE) in the Ax element and positively regulates

VEGFA readthrough. This finding is exciting, since this is

the first time that a trans factor has been identified that

regulates translational readthrough. Furthermore, most

translational readthrough was only thought to occur in

evolutionarily lower-ordered species such as Drosophila,

viruses, etc. Since the VEGFAx protein acts like an

antiangiogenic isoform, more experiments are needed to

determine if this protein is present only in certain cell

types that produce this trans-factor hnRNP A2/B1 or

whether they are ubiquitous (Eswarappa et al. 2014).

In experiments where VEGFA isoforms have been sub-

cloned from primary bovine granulosa cells, some VEGFA

isoform PCR sub-cloned products contained both exon 8a

and 8b suggesting that there is a readthrough product

in the bovine (McFee, Spuri Gomes, Artac, Summers,

Pohlmeier, Brauer, Kurz, Cushman, Wood and Cupp,
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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unpublished observations) (Fig. 4). This was not the case

for sub-cloned VEGFA from rat granulosa or Sertoli cells.

In addition, there were sub-cloned products that only

contained either the 8a or 8b in the bovine and rat

without the Ax product. Thus, within each cell, the

necessary machinery – whether it is splicing proteins or

proteins that allow for programmed read through – may be

present at critical physiological states to ensure the

appropriate balance of VEGFA angiogenic and antiangio-

genic isoforms. More experiments are needed to ensure

the VEGFAx product exists; however, if these data are

confirmed, there could be an evolutionary change in

insertion of the Ax sequence (62 nucleotides) that may

provide different functions in higher evolved mammals.
Are there differences in VEGFA angiogenic
and antiangiogenic isoform actions on
their receptors?

Neuropilin 1 (NRP1) was originally identified as a receptor

in the nervous system and was found to modulate

semaphorin signals (He & Tessier-Lavigne 1997, Takahashi

et al. 1998) and direct neuronal axon guidance. However,

NRP1 has also been found to be critical for vascular

development in cooperation with the VEGFA angiogenic

isoforms in many different angiogenic processes (Kawasaki

et al. 1999). NRP1 knockout mice die between 10.5 and

12.5 and have vasculature development defects as well as

heart and neural defects suggesting that NRP1 is critical for

both vascular and neuronal development (Kawasaki et al.

1999). NRP1 can bind to semaphorins instead of VEGFA,

and this impairs endothelial cell migration (Miao

et al. 1999). Semaphorins are present within the testis

and appear to be secreted by Sertoli cells (Perala et al.

2005). Whether semaphorins are antagonistic to

vascular development within the testis is still unknown.

Alternatively, NRP/VEGFA complexes binding to FLT1 can

also prevent endothelial cell migration and vascular

development (Miao et al. 1999), so there are potentially

many checkpoints present within the testis to prevent

over-vascularization to ensure development of the

seminiferous cords.

NRP1 is a co-receptor to VEGFA but it does not bind

either KDR or FLT1 but instead binds to a region on the

VEGFA ligand (Fig. 4). Because KDR lacks a PDZ-binding

domain it cannot interact with a PDZ protein synectin

(which is also called GIPC1 or NIP). NRP1 has a SEA motif,

which allows for PDZ protein synectin binding. KDR can

utilize NRP1 bound to VEGFA angiogenic isoforms as a

bridge to enhance signal transduction and also allow for
Published by Bioscientifica Ltd.
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appropriate trafficking of NRP1 within the cell to allow for

receptor recycling (Cai & Reed 1999, Wang et al. 2006).

Due to the presence of exon 8b rather than 8a, the

VEGFA antiangiogenic isoforms cannot bind NRP1, since

much of their binding region is within the exon 8a region.

Thus, elimination of NRP1 or overexpression will only

affect angiogenic VEGFA isoform functions (Kawamura

et al. 2008). When NRP1 is bound to VEGFA164 and then

bound and signaled through KDR, it causes the KDR

receptor to be recycled through Rab5, Rab4 and Rab11

vesicles. However, antiangiogenic VEGFA cannot bind

NRP1. Therefore, when VEGFA164b binds to KDR, KDR

bypasses the Rab11 vesicles in cells and is routed to the Rab7

vesicles, which moves KDR to the degradation pathway.

Also, if the SEA-binding motif for synectin is deleted from

NRP1, this will attenuate the receptor-ligand signal

amplification since the SEA carboxy-terminal domain of

NRP1 mediates the events to allow for KDR recycling via

Rab11 positive endosomes (Ballmer-Hofer et al. 2011).
How are NRP1 receptors expressed and
regulated within the gonad?

NRP1 receptors are present early in both the testis and

ovary (Walker, Lu, Clopton, and Cupp, unpublished

observations) and have the potential to interact with

VEGFA and present both to KDR and FLT1. Because FLT1 is

present during gonadal development, it is possible that

FLT1 is sequestering NRP1 and VEGFA away from KDR and

limiting signal transduction and subsequent endothelial

cell migration in the ovary (Baltes-Breitwisch et al. 2010).

An inhibitor to the NRP1 co-receptor, Je-11, was utilized to

determine its effects on E13 rat testis organ cultures.

Initially, this inhibitor was thought to be specific only to

KDR but later was found to inhibit only NRP1. This

inhibitor caused a 42% reduction in vascular development

with a less defined coelomic vessel and cords that were

either not present or perturbed (Bott et al. 2006) (Table 1).

This inhibitor was not as effective as the inhibitors either

to KDR alone or to KDR and FLT1 simultaneously,

suggesting that KDR can signal and cause vascular

development independent of NRP1, which has been

demonstrated in many different endothelial cells and

systems with vascularization (Vieira et al. 2010). However,

these results do demonstrate its role in enhancement of

KDR signaling. Through altered receptor recycling, we can

envision a function for NRP1 in development of endo-

thelial cell migration, arteriogenesis – mainly the coelomic

vessel – and induction of cord formation within the

developing testis.
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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What happens in vivo when VEGFA isoforms
are eliminated in somatic and germ cells
during testis development?

In order to determine whether VEGFA was critical for testis

development, multiple conditional knockout mouse lines

were developed to eliminate all VEGFA isoforms in Sertoli

and some germ cells (pDmrt1-Cre;VegfaK/K), Sertoli and

Leydig cells (Amhr2-Cre;VegfaK/K), and Sertoli cells only

(Amh-Cre;VegfaK/K and Sry-Cre;VegfaK/K). To date, testes

formed normally in these male mice by P0, and there do

not appear to be differences in vasculature based on

published work from our laboratory (Lu et al. 2013) as well

as on unpublished results (Sargent, Spuri Gomes, Essink,

Kurz, Pohlmeier, Ferrara, Bouma, McLean, and Cupp;

Sargent, Essink, Bremer, Pohlmeier, and Cupp, unpub-

lished observations) in VEGFA or NRP1 knockout versus

the control testes. Instead of effects on vasculature, our

laboratory has demonstrated effects on male fertility

through altered spermatogonial stem cell maintenance

(Lu et al. 2013). Furthermore, using different VEGFA

angiogenic and antiangiogenic isoforms, we have also

demonstrated different effects on the number of sperma-

togonial stem cells in endogenously depleted recipients

(Caires et al. 2012). It is possible that vascular development

in these males is delayed embryonically; however, what

we can state is that VEGFA does not appear to be required

for testis development, since these testes contain a

coelomic vessel and seminiferous cords that form into

seminiferous tubules. Furthermore, from the P0 time

period, the only phenotype that appears to be abnormal

is the number of germ cells at different stages and the

number of undifferentiated spermatogonia leading to

differences in number of sperm (Lu et al. 2013). These

findings were echoed by measurement of VEGFA in roe

deer, where expression correlated more with the transition

of germ cell stages than with testis microvasculature

(Wagener et al. 2010). When Vegfa was in control of and

overexpressed by the MMTV promoter in mice, the

animals were infertile. This infertility was thought to

result, in part, from testicular spermatogenic cell arrest,

which further demonstrates non-endothelial effects of

VEGFA in the testis (Korpelainen et al. 1998).

Due to our conditional knockout mouse data, it does

not appear that VEGFA is absolutely required for normal

testis development. In many ways, this makes sense,

because throughout testis development there are multiple

factors that upregulate expression of genes to ensure

proper differentiation of a testis. NR5A1 induces initial

expression of Sox9, which is then upregulated by SRY and
Published by Bioscientifica Ltd.
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SOX9 (Sekido & Lovell-Badge 2008), and SOX9 not only

upregulates FGF9 and PTGS but also upregulates itself

(DiTacchio et al. 2012). One role of both PTGS and FGF9

is to continually provide sustained expression of SOX9

(Rossitto et al. 2015) (Fig. 1). Thus, since sex-specific

vascular development drives seminiferous cord formation,

it would logically follow that there are multiple

mechanism that allow for this to happen, potentially in

the absence of one, such as VEGFA.
What are some potential alternative pathways
to initiate endothelial cell migration and
sex-specific vascularization that do not
utilize VEGFA?

Cox1/2 pathway

VEGFA is regulated through increased hypoxia inducible

factor 1, alpha subunit (HIF1A) upregulation during

hypoxia. It is possible that the COX pathway through

PGE2 upregulates VEGFA as well as direct upregulation

through COX2 (Fig. 2). Postnatal day 30 whole testes were

collected from Sry-Cre;VegfaK/K conditional knockout

mice and compared to controls for differences in genes

within the VEGFA signal transduction pathway using a

VEGFA signal transduction array plate. When the data were

analyzed with Ingenuity Pathway Analysis (IPA), the COX1

(PTGS1) constitutively expressed gene was upregulated

fivefold (Sargent KM, Spuri Gomes R, Essink JR, Kurz SG,

Pohlmeier WE, Ferrara N, Bouma GJ, McLean DJ, and Cupp

AS; Sargent KM, Bremer ML, Pohlmeier WE and Cupp AS,

unpublished observations). These data indicate that the

elimination of VEGFA (in this case in Sertoli cells) may

allow for compensatory mechanisms that regulate other

angiogenic factors to allow for normal tissue development.
Other VEGF ligands

VEGFB knockout mice are fertile and viable with no

apparent phenotype; however, they do exhibit a subtle

cardiac phenotype (Aase et al. 1999). Transcription of the

Vegfb gene is not stimulated by hypoxia or other growth

factors, cytokines, etc. VEGFB binds to FLT1 and NRP1,

while VEGFC binds to VEGFR3 and KDR and enhances

vasculature within the lymphatic system. VEGFC is

expressed in the heart, placenta, ovary, small intestine

and thyroid gland (Olofsson et al. 1999). In the embryo,

it is expressed in regions where lymphatic vessels sprout

from embryonic veins. Similar to VEGFB, this gene is not

regulated by hypoxia but interleukin 1 (IL1) and tumor
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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necrosis factor (TNF) can increase VEGFC (Kukk et al.

1996). VEGFD is expressed in the lung, heart, skeletal

muscle, colon and small intestine. In embryos, VEGFD is

most abundant in the lung. Like VEGFC, it binds to both

VEGFR3 and KDR (Olofsson et al. 1999). There have been

no reports of VEGFB or VEGFC present in or involved with

testis development, but due to their potential actions

through VEGF receptors, these could be two potential

candidates that may function in VEGFA’s absence to

initiate sex-specific vascular development.
What about other growth factors that have
similar functions to VEGFA that could
compensate for sex-specific vascular
development?

Platelet-derived growth factor

Platelet-derived growth factor receptor alpha (PDGFRa)

and PDGFRb are receptors for PDGF-AA, PDGF-BB, PDGF-

CC and PDGF-DD and are structurally similar to VEGFRs

receptors (Heldin 2013). PDGFB is expressed in endo-

thelial cells and Pdgfb and Pdgfrb knockout mice are

embryonic lethal during late gestation due to widespread

hemorrhaging and capillary dilation (Leveen et al. 1994,

Soriano 1994, Lindahl et al. 1997, Hellstrom et al. 1999).

Fetuses appear normal, but the absence of vascular smooth

muscle cells and/or pericytes leads to cardiovascular

complications. In the rat, PDGF-AA, PDGF-BB and their

receptors are expressed in human fetuses (Basciani et al.

2002), and PDGF-BB, when inhibited, has been demon-

strated to affect vascular development and perturb or

totally inhibit seminiferous cord formation in the mouse

(Puglianiello et al. 2004). Inhibitors to the PDGF-BB signal

transduction pathway (PGFR-specific inhibitor Tyrophos-

tin) have also inhibited seminiferous cord formation in

the rat (Uzumcu et al. 2002a). Furthermore, PDGF has also

been identified to work cooperatively with VEGFA in

vascular events and remodeling within the testis (Cool

et al. 2011) during the process of sex-specific vascular

development. Thus, PDGF and its receptors may comprise

a mechanism where endothelial migration and seminifer-

ous cord formation occur in the absence of VEGFA

isoforms.
R-spondin homolog

Recently, RSPO1 (R-spondin homolog), which is necessary

for ovarian development, has been shown to induce

angiogenesis within the developing testis and to inhibit
Published by Bioscientifica Ltd.

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-15-0342


Jo
u

rn
a
l

o
f

E
n

d
o

cr
in

o
lo

g
y

Review K M SARGENT and others VEGFA and testicular vascular
development

227 :2 R45
actions of the dickkopf homolog 1 (Dkk1) gene, which

perturbs endothelial branching by inhibiting PDGFB

(Caruso et al. 2015). Interestingly, RSPO1 can rescue

DKK1 inhibition of angiogenesis, indicating that perhaps

RSPO1 is critical for necessary availability of PDGFB for

endothelial cell branching during testis development.

These actions of RSPO1 are thought to be mediated

through beta catenin (CTNNB1), since testes treated

in vitro with RSPO1 exhibit enhanced nuclear transloca-

tion of CTNNB1, which will affect gene expression within

the nucleus (Caruso et al. 2015).
VEGF receptors that bind other ligands

It is possible that the receptors that VEGFA signals through

may elicit effects following binding by other ligands

within the VEGF family to induce endothelial cell

migration. An example of this is the potential for FLT1

to be induced through hypoxia and cooperate with PGF

(placental growth factor to promote pathological angio-

genesis that occurs during diseases and disorder such as

pre-eclampsia (Hiratsuka et al. 2001, Autiero et al. 2003).

FLT1 upregulation can be stimulated by hypoxia (Gerber

et al. 1997) and has been shown to activate PGF in VEGF-

responsive monocytes that release proangiogenic factors.

Further, FLT1 tyrosine kinase signaling mediates chemo-

tactive macrophage migration in response to PGF and

both VEGF, and PGF promotes macrophage survival

during tumor angiogenesis (Barleon et al. 1996, Clauss

et al. 1996, Hiratsuka et al. 1998, Adini et al. 2002, Selvaraj

et al. 2003). Recently, macrophage migration was demon-

strated to occur during testis development and the authors

implicated that VEGFA was expressed by macrophages and

that vascular development may thus be directed by these

macrophages (DeFalco et al. 2014). These are intriguing

data and may suggest that macrophages derived from the

yolk sac (which are extraembryonic along with primordial

germ cells) are critical for sex-specific vascular develop-

ment. So the possibility of macrophages directing endo-

thelial cell migration is a potential mechanism that should

be further evaluated.
Summary

While there is overwhelming in vitro evidence to support

the theory that VEGFA and its receptors, FLT1, KDR and

NRP1, are critical for sex-specific vascular development

that can allow for seminiferous cord formation, con-

ditional knockout data in mice where VEGFA was

eliminated in Sertoli, Leydig and germ cells do not support
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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this theory. Because the development of the testis is so

critical to the propagation of the species, suggesting that

VEGFA can only be the critical regulator of this process

may be somewhat simplistic. Just as SOX9 has multiple

regulators that sustain its expression, there are potentially

many independent angiogenic pathways that contribute

to the migration of endothelial cells to initiate seminifer-

ous cord formation. In this review article, we have

suggested several other pathways that may independently

mimic the actions of VEGFA in supporting endothelial cell

migration and development of this quite extraordinary

vascular development within the testis. We, along with

others investigating this area will have many more years to

work on unraveling the complexities of this pathway, to

gain a better understanding of how the testis develops,

and paving new avenues for treating infertility, which may

be a predictor of male health and lifespan.
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Wagener A, Blottner S, Göritz F, Streich WJ & Fickel J 2010 Circannual

changes in the expression of vascular endothelial growth factor in the
Published by Bioscientifica Ltd.

http://dx.doi.org/10.1016/S0958-1669(99)00024-5
http://dx.doi.org/10.1006/bbrc.2001.5494
http://dx.doi.org/10.1074/jbc.M703554200
http://dx.doi.org/10.1095/biolreprod61.3.741
http://dx.doi.org/10.1095/biolreprod61.3.741
http://dx.doi.org/10.1007/BF00284151
http://dx.doi.org/10.1007/BF00284151
http://dx.doi.org/10.1016/j.modgep.2004.10.001
http://dx.doi.org/10.1242/jcs.00981
http://dx.doi.org/10.1042/BST0371207
http://dx.doi.org/10.1084/jem.190.11.1657
http://dx.doi.org/10.1084/jem.190.11.1657
http://dx.doi.org/10.1242/dev.02688
http://dx.doi.org/10.1095/biolreprod61.4.1123
http://dx.doi.org/10.1095/biolreprod61.4.1123
http://dx.doi.org/10.1073/pnas.0404984102
http://dx.doi.org/10.1038/nature06944
http://dx.doi.org/10.1182/blood-2002-11-3423
http://dx.doi.org/10.1038/376062a0
http://dx.doi.org/10.1002/dvg.20566
http://dx.doi.org/10.1074/jbc.273.47.31283
http://dx.doi.org/10.1371/journal.pone.0100447
http://dx.doi.org/10.1161/01.RES.0000269333.10849.9e
http://dx.doi.org/10.1161/01.RES.0000269333.10849.9e
http://dx.doi.org/10.1101/gad.8.16.1888
http://dx.doi.org/10.1038/2203
http://dx.doi.org/10.1038/2203
http://dx.doi.org/10.1074/jbc.M100763200
http://dx.doi.org/10.1093/humrep/17.7.1811
http://dx.doi.org/10.1095/biolreprod66.3.745
http://dx.doi.org/10.1095/biolreprod.102.006254
http://dx.doi.org/10.1038/17068
http://dx.doi.org/10.1006/scbi.1998.0091
http://dx.doi.org/10.4161/org.6.2.11686
http://dx.doi.org/10.4161/org.6.2.11686
http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-15-0342


Jo
u

rn
a
l

o
f

E
n

d
o

cr
in

o
lo

g
y

Review K M SARGENT and others VEGFA and testicular vascular
development

227 :2 R50
testis of roe deer (Capreolus capreolus). Animal Reproduction Science 117

275–278. (doi:10.1016/j.anireprosci.2009.05.006)

Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M & Heldin CH

1994 Different signal transduction properties of KDR and Flt1, two

receptors for vascular endothelial growth factor. Journal of Biological

Chemistry 269 26988–26995.

Wang L, Mukhopadhyay D & Xu X 2006 C terminus of RGS-GAIP-

interacting protein conveys neuropilin-1-mediated signaling

during angiogenesis. FASEB Journal 20 1513–1515. (doi:10.1096/fj.

05-5504fje)

Werdich XQ & Penn JS 2005 Src, Fyn and Yes play differential roles in

VEGF-mediated endothelial cell events. Angiogenesis 8 315–326.

(doi:10.1007/s10456-005-9021-x)

Wheeler-Jones C, Abu-Ghazaleh R, Cospedal R, Houliston RA, Martin J &

Zachary I 1997 Vascular endothelial growth factor stimulates prosta-

cyclin production and activation of cytosolic phospholipase A2 in
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0342 Printed in Great Britain
endothelial cells via p42/p44 mitogen-activated protein kinase. FEBS

Letters 420 28–32. (doi:10.1016/S0014-5793(97)01481-6)

Wilhelm D, Hiramatsu R, Mizusaki H, Widjaja L, Combes AN, Kanai Y &

Koopman P 2007 SOX9 regulates prostaglandin D synthase gene

transcription in vivo to ensure testis development. Journal of Biological

Chemistry 282 10553–10560. (doi:10.1074/jbc.M609578200)

Woolard J, Wang WY, Bevan HS, Qui Y, Morbidelli L, Pritchard-Jones RO,

Cui TG, Sugiono M, Waine E, Perrin R et al. 2004 VEGF165b, an

inhibitory vascular endothelial growth factor splice variant:

mechanism of action, in vivo effect on angiogenesis and endogenous

protein expression. Cancer Research 64 7822–7835. (doi:10.1158/0008-

5472.CAN-04-0934)

Zachary I & Gliki G 2001 Signaling transduction mechanisms mediating

biological actions of the vascular endothelial growth factor family.

Cardiovascular Research 49 568–581. (doi:10.1016/S0008-

6363(00)00268-6)
Received in final form 10 September 2015
Accepted 16 September 2015
Published by Bioscientifica Ltd.

http://dx.doi.org/10.1016/j.anireprosci.2009.05.006
http://dx.doi.org/10.1096/fj.05-5504fje
http://dx.doi.org/10.1096/fj.05-5504fje
http://dx.doi.org/10.1007/s10456-005-9021-x
http://dx.doi.org/10.1016/S0014-5793(97)01481-6
http://dx.doi.org/10.1074/jbc.M609578200
http://dx.doi.org/10.1158/0008-5472.CAN-04-0934
http://dx.doi.org/10.1158/0008-5472.CAN-04-0934
http://dx.doi.org/10.1016/S0008-6363(00)00268-6
http://dx.doi.org/10.1016/S0008-6363(00)00268-6
http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-15-0342

	Introduction
	How does a testis develop from an indifferent gonad?
	What is the origin of the Sertoli cell a cell that is thought to direct testis development?
	Outline placeholder
	Sox9
	FGF9
	PGD2
	How is PGD2 regulated?


	Mesonephric cell migration directs testis development: are the migrating mesonephric cells peritubular myoid cells or endothelial cells?
	Outline placeholder
	What composes the VEGFA ligand receptor family and how does VEGFA signal through its receptors and co-receptors?


	What are the receptors to which VEGFA binds?
	Outline placeholder
	FLT1 receptor - why is it called the decoy receptor?
	FLT1 signaling pathways
	Does FLT1 signal in the somatic cells of the testis or is it repressed similarly to endothelial cells?
	Why is KDR thought to be the primary receptor through which VEGFA signals?


	What is the expression pattern of the KDR, FLT1 receptors during testis development?
	What are the alternatively spliced products of VEGFA and what are their function(s)?
	What is the expression and potential actions of VEGFA isoforms in the developing testis?
	Outline placeholder
	VEGFA antiangiogenic isoforms


	Are there differences in VEGFA angiogenic and antiangiogenic isoform actions on their receptors?
	How are NRP1 receptors expressed and regulated within the gonad?
	What happens in vivo when VEGFA isoforms are eliminated in somatic and germ cells during testis development?
	What are some potential alternative pathways to initiate endothelial cell migration and sex-specific vascularization that do not utilize VEGFA?
	Outline placeholder
	Cox1/2 pathway
	Other VEGF ligands


	What about other growth factors that have similar functions to VEGFA that could compensate for sex-specific vascular development?
	Outline placeholder
	Platelet-derived growth factor
	R-spondin homolog
	VEGF receptors that bind other ligands


	Summary
	Declaration of interest
	Funding
	References

