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Abstract
Anti-Müllerian hormone (AMH) is a multi-faceted gonadal cytokine. It is present in all

vertebrates with its original function in phylogeny being as a regulator of germ cells in both

sexes, and as a prime inducer of the male phenotype. Its ancient functions appear to be

broadly conserved in mammals, but with this being obscured by its overt role in triggering

the regression of the Müllerian ducts in male embryos. Sertoli and ovarian follicular cells

primarily release AMH as a prohormone (proAMH), which forms a stable complex (AMHN,C)

after cleavage by subtilisin/kexin-type proprotein convertases or serine proteinases.

Circulating AMH is a mixture of proAMH and AMHN,C, suggesting that proAMH is activated

within the gonads and putatively by its endocrine target-cells. The gonadal expression of the

cleavage enzymes is subject to complex regulation, and the preliminary data suggest that

this influences the relative proportions of proAMH and AMHN,C in the circulation. AMH

shares an intracellular pathway with the bone morphogenetic protein (BMP) and growth

differentiation factor (GDF) ligands. AMH is male specific during the initial stage of

development, and theoretically should produce male biases throughout the body by adding

a male-specific amplification of BMP/GDF signalling. Consistent with this, some of the male

biases in neuron number and the non-sexual behaviours of mice are dependent on AMH.

After puberty, circulating levels of AMH are similar in men and women. Putatively, the

function of AMH in adulthood maybe to add a gonadal influence to BMP/GDF-regulated

homeostasis.
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Introduction
Anti-Müllerian hormone (AMH, Müllerian inhibiting

substance) is part of the classical pathway for the

induction of the male phenotype. It is the testicular

secretion that triggers the degeneration of the uterine

precursor (Müllerian duct) in male embryos (MacLaughlin

& Donahoe 2004, Josso et al. 2005). When AMH is absent,

the Müllerian duct is retained, but XY AMHK/K indivi-

duals are otherwise unambiguously male in appearance.
This created the impression that AMH had recently

evolved to mediate limited male-specific functions. This

perception of AMH has been rapidly changing. AMH has

multiple faces. It appears to have both local (paracrine/

autocrine) and circulatory (endocrine) roles in both sexes.

The classical actions of AMH are paracrine (van Niekerk &

Retief 1981, Mishina et al. 1996, Visser et al. 2007;

Supplementary File, see section on supplementary data
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given at the end of this article), but the identification of its

actions outside of the reproductive tract is in its infancy.

This review discusses AMH as a hormone and argues that

the importance of AMH in the circulation has been

overlooked, as it may primarily signal in concert with

other members of the TGFb superfamily (TGFb-S). When

operating in this mode, AMH may produce subtle

variation in anatomical and physiological settings,

which are only detectable by quantitative studies.
AMH is a gonadal cytokine

AMH is synthesised in the gonads of all vertebrate species

examined to date, including fish (Western et al. 1999,

Halm et al. 2007), amphibians (Kodama et al. 2015), birds

(Smith et al. 1999, Nishikimi et al. 2000), reptiles (Western

et al. 1999, Shoemaker et al. 2007), marsupials (Juengel

et al. 2002, Pask et al. 2004, 2010) and eutherian mammals

(Josso 1973, Meyers-Wallen et al. 1987, Kuroda et al. 1990,

Josso et al. 1993). In fish that do not have Müllerian ducts,

AMH regulates the proliferation of germ cells in both sexes

(Morinaga et al. 2007). In all vertebrates, the production of

AMH is from the cells that nourish, protect and regulate

the germ cells: the Sertoli cells of the testes and the ovarian

granulosa cells. This suggests that AMH has ancient roles

in phylogeny as a regulator of germ cells (Morinaga et al.

2007). AMH’s role as an essential inducer of male sexual

differentiation also predates the Müllerian duct. In some

species of fish, AMH regulates the differentiation of the

gonads into testes, and putatively determines testicular

differentiation in birds (Smith & Sinclair 2004, Morinaga

et al. 2007, Wu et al. 2010, Cutting et al. 2013). In

mammals, AMH does not affect gonad determination as

XY AMHK/K individuals have testes (Behringer et al. 1994,

Josso et al. 2012), although AMH is required for the normal

cellular and biochemical development of the mammalian

testis (Mishina et al. 1996, Wu et al. 2005).

The study of AMH in lower vertebrates has centred on

its role in gonadal differentiation, and there is little

information available regarding the evolution of AMH as

a hormone. In fish, the expression of the AMH-specific

receptor (AMHR2) appears to be specific to the gonads

(Morinaga et al. 2007, Kamiya et al. 2012), suggesting

that AMH did not originally have hormonal action.

However, AMH is in the blood of chicken embryos

(Hutson & Donahoe 1983) as well as mammals

(see below), suggesting that the endocrine functions of

AMH are ancient.

Non-gonadal sites of AMH production have also been

reported in fish and mammals (Wang et al. 2005, 2009a,
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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Halm et al. 2007, Ricci et al. 2010, Poonlaphdecha et al.

2011). No function has been ascribed to these sources of

AMH, and the form of the AMH produced by non-gonadal

cells has not been examined. In mammals at least,

circulating AMH appears to be entirely derived from the

gonads, as boys with anorchia lack AMH (Aksglaede et al.

2010) and because serum AMH is undetectable after either

orchidectomy (Vigier et al. 1982) or oophorectomy

(La Marca et al. 2005, Griesinger et al. 2012).
Circulating levels of AMH are dimorphic

The levels of AMH in the circulation are broadly conserved

between species, with the human pattern summarised in

Fig. 1. In most, if not all, vertebrate species the secretion of

AMH from the testis precedes the synthesis of testosterone

and other gonadal hormones (Tran et al. 1987, Xavier &

Allard 2003). The levels of AMH in immature males are

high relative to those of adult males, and typically extend

beyond the regression of the Müllerian duct (in species

which have the duct). In mammals, the decrease in

circulating AMH levels in males is associated with the

pubertal transition. Ovarian production of AMH typically

begins later in development, and the levels of AMH in the

circulation of females never approach those of immature

males. The levels of circulating AMH diminish as females

age, and fall to very low levels during reproductive

senescence. In post-menopausal women, AMH is typically

undetectable. Consequently, AMH is variably male

specific, strongly dimorphic with a male bias, or not

dimorphic, depending on the stage of the life cycle (Fig. 1).
Two forms of AMH exist in the circulation

The AMH gene encodes a theoretical 560 amino acid

preproprotein, which is a member of the TGFb-S (Cate

et al. 1986). Cleavage of the amino signal peptide is

thought to occur during protein synthesis, giving rise to

proAMH (AMH25–560). ProAMH can be cleaved at position

451/452 to generate N- and C-terminus fragments (AMHN

and AMHC; Cate et al. 1986), which remain associated as

a stable non-covalently linked complex (AMHN,C) (Fig. 2;

MacLaughlin et al. 1992, Wilson et al. 1993, Pankhurst &

McLennan 2013). Circulating AMH has recently been

discovered to contain a mixture of proAMH, which does

not appear to activate AMHR2, and AMHN,C, which does

(Pankhurst & McLennan 2013; see MacLaughlin et al.

(1992) and di Clemente et al. (2010) for information

relating to receptor binding). The implications of this are

outlined in the paragraphs below.
Published by Bioscientifica Ltd.
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Figure 1

The levels of AMH in the human circulation vary during the life cycle, with a

sexually dimorphic pattern. Boys (top panel) and men (middle panel) are

presented separately, as the mean levels are so divergent. Females produce

little or no AMH in utero. The thick lines illustrate the mean levels, and the

thin lines the 95% CI. The illustration is based on the following references:

Josso et al. (1993), Lee et al. (1996), Schwindt et al. (1997), Rajpert-De Meyts

et al. (1999), Rey et al. (1999), Guibourdenche et al. (2003), Oppelt et al.

(2005), Aksglaede et al. (2010), Hagen et al. (2010), Grinspon et al. (2011)

and Chong et al. (2013). See also Tran et al. (1987), Munsterberg &

Lovell-Badge (1991), Hirobe et al. (1992), Taketo et al. (1993) and

Al-Attar et al. (1997) for information on mice and rats.
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Figure 2

Multiple forms of AMH are generated by post-translational cleavage. The

amino acid sequence is numbered from the N-terminus of the preproAMH

in this figure and in the text of this paper. Some sources number AMH from

the N-terminus of the proAMH. When this numbering system is used, the

alternatively cleaved AMH25–254 will be numbered 1–230 and the putative

forms will be numbered 1–170 and 171–427.
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The C-terminal fragments of TGFb-S ligands are

receptor binding, but they tend to be relatively insoluble

in physiological solutions. The formation of N- and C-

terminal complexes increases solubility and facilitates the

diffusion of TGFb-S ligands through biological structures

(Mueller & Nickel 2012). AMH conforms to this pattern

with AMHC being receptor competent, with the presence

of AMHN increasing its bioactivity (di Clemente et al.

1992, MacLaughlin et al. 1992, Wilson et al. 1993).

Furthermore, the majority of loss-of-function mutations

in human AMH are in the N-terminal domain,
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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emphasising that the non-receptor binding component

of AMH has function (Josso et al. 2005). Free AMHC has yet

to be detected in serum (Pankhurst & McLennan 2013),

suggesting that AMHN,C only dissociates at or near

the sites of AMH action (see also di Clemente et al.

(2010)). Experimental studies of AMH have typically used

rAMHC, which may not precisely or invariably mimic

AMHN,C. Moving forward, we suggest that rAMHN,C

should be preferentially used for the experimental

analysis of AMH function.

AMH cleavage variants (AMH25–254 and AMH255–560)

occur in vitro when proAMH is cleaved with a serine

protease, such as plasmin (Pepinsky et al. 1988; Fig. 2).

AMH25–254 and AMH255–560 are not present at detectable

levels in the blood of normal individuals (Pankhurst &

McLennan 2013), but AMH fragments with these charac-

teristics have been observed in the blood of a patient with

a sex chord tumour (Ragin et al. 1992) and in equine

granulosa cell tumours (Almeida et al. 2011). A putative

cleavage site between amino acids 194/195 has been

theorised based on sequence similarity with a cleavage

site in Glass bottom boat, a Drosophilla TGFb-S protein

(Akiyama et al. 2012). AMH25–194 has not been detected
Published by Bioscientifica Ltd.
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in physiological solutions, but naturally occurring

mutations of the putative cleavage site in human AMH

leads to persistent Müllerian duct syndrome (Imbeaud

et al. 1994, Akiyama et al. 2012), the hallmark phenotype

of XY AMHK/K individuals (Josso et al. 2012). This

serves to emphasise that the form of AMH in the

embryonic testes and in the circulation of prenatal males

is unknown.
ProAMH levels in the circulation vary

AMH ELISAs do not discriminate between proAMH and

AMHN,C (Pankhurst et al. 2014). The historic information

on circulating AMH is therefore an aggregate measure of

two biologically distinct forms of AMH, one of which

(proAMH) does not directly activate the canonical AMH

receptors. We refer to this aggregate measure as total AMH.

When a prototype proAMH-specific ELISA is used, the

ratio between proAMH and AMHN,C in the circulation

varies between population groups. ProAMH is most

abundant in boys, whereas AMHN,C is the predominant

form in men and women. In all age groups, the ratio of

proAMH to total AMH varies between individuals

(McLennan & Pankhurst 2014). This raises questions

about the physiological meaning of total AMH, as it has

an uncertain relationship to the strength of receptor

activation. In particular, we note that the pro- and mature

forms of some cytokines activate different receptors (e.g.

proNGF and NGF: Nykjaer et al. 2004, Hempstead 2014).

Furthermore, some cytokine precursors can give rise to

multiple distinct hormones through differential cleavage:

for example, proopiomelanocortin is variably cleaved

to ACTH, a-, b-, g-MSH, b-endorphin, CLIP, b- and

g-lipotropin (Takahashi & Mizusawa 2013). We therefore
p
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Figure 3

The route between AMH synthesis and receptor activation. The confirmed

(solid arrows) and putative (dotted arrows) pathway for proAMH transport

and cleavage (side arrows) are illustrated in red. The flow of AMHN,C is

illustrated with brown arrows. The figure only illustrates the pathways for

http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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argue against any presumption that proAMH has no

biological activity, unless it is cleaved to AMHN,C.

A priori, the relevant physiological measures of AMH

may include the concentration of proAMH, the concen-

tration of AMHN,C and/or the relative levels of proAMH

and AMHN,C. The latter can be defined as the AMH

prohormone index (API)Z((proAMH)/(total AMH)!100).

As the API decreases, the AMH in the circulation will have

a greater ability to activate the canonical AMH pathway,

without further processing (see below).
Enzymatic cleavage of proAMH

Multiple enzymes cleave proAMH in vitro at position

254/255. These include proprotein convertases of the

subtilisin/kexin-type 3 (PCSK3) (furin), PCSK5 (PC5 and

PC6) and PCSK6 (PACE4) (Nachtigal & Ingraham 1996),

which are PCSK. ProAMH is also cleaved by serine

proteinases, most notably plasmin (Ragin et al. 1992).

Plasmin dissolves fibrin blood clots, but it also has a

proven role in the cleavage of the proforms of cytokines.

Plasmin is synthesised as a larger precursor, plasminogen,

which is activated by various proteases (plasminogen

activators), whose activities in turn are regulated via

activators and inhibitors (Ferraris & Sidenius 2013, Miles

& Parmer 2013). The cleavage of proAMH may therefore be

subject to complex regulation in vivo, although this

remains to be proven.
Gonadal cleavage of proAMH

The API may reflect multiple gonadal influences (Fig. 3).

Sertoli and granulosa cells express enzymes that cleave

proAMH, with the levels of the enzymes and/or their
Target organ
extracellular fluid Target cells

AMHR2

Receptor ??

endocrine signaling. Sertoli cells release additional AMH into the lumen of

the seminiferous tubules, with this AMH being incorporated into seminal

plasma. A proportion of the AMH in the ovarian follicular fluids may be

released into the uterine tube during ovulation.

Published by Bioscientifica Ltd.
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regulators varying during testicular (Nachtigal & Ingra-

ham 1996, Guo et al. 2007, Le Magueresse-Battistoni 2007,

Uhrin et al. 2007) and ovarian (Bae et al. 2008)

development, the seminiferous cycle (Guo et al. 2007, Le

Magueresse-Battistoni 2007, Uhrin et al. 2007), the ovarian

cycle (Bae et al. 2008, Wang et al. 2014), the stage of

ovarian follicular development (Ohnishi et al. 2005, Bae

et al. 2008, Antenos et al. 2011) and during pregnancy

(Kwok et al. 2013). However, the AMH in ovine follicular

fluid is predominantly proAMH with little AMHN,C

(Campbell et al. 2012), suggesting that AMH can be

synthesised and released with little or no prior cleavage.

The enzymes that cleave proAMH have extracellular

forms (Seidah et al. 2006). The form of AMH within the

gonads and within the circulation may therefore depend

on the route AMH has taken to reach its current location.

For example, the thecal cells of ovarian follicles usually

have higher levels of PCSK3 and PCSK5 than do the

adjacent granulosa cells, with these levels under gonado-

trophin regulation (Bae et al. 2008, Kelty & Curry 2010).

This may alter the form of AMH if the AMH diffuses

through the thecal layer. Similarly, AMH produced at one

site of the seminiferous tubules or by one ovarian follicle

may be cleaved by other parts of the gonad. A key issue

here is whether or not the AMH in the circulation is

distinct from the AMH that acts as a paracrine regulator

of the gonads. Similarly, AMH is present in semen

(Fallat et al. 1996, Fenichel et al. 1999), but it is also

unclear whether seminal and circulating AMH are from

a common pool.
Extra-gonadal cleavage of proAMH

Recombinant proAMH induces regression of the Müllerian

duct in organ culture, leading to speculation last century

that target tissues can process proAMH (Cate et al. 1986,

Wilson et al. 1993). This idea has been in abeyance, but has

substantial merit as the putative cleavage enzymes are

widely expressed (Villeneuve et al. 1999, Stawowy et al.

2001, Cain et al. 2003, Veinot et al. 2004), under the

influence of various physiological and pathological

stimuli (Stawowy et al. 2001, Veinot et al. 2004, Marchesi

et al. 2011). Under this circumstance, the AMHN,C in

circulation defines a basal level of activation, which can be

amplified by the local cleavage of proAMH to AMHN,C.

This is mechanistically similar to testosterone signalling,

where activation of the androgen receptor is influenced

by circulating levels of testosterone, and by the local

conversion of testosterone to the more potent

dihydrotestosterone.
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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Recombinant proAMH is not readily cleaved in

human serum in vitro (Pankhurst et al. 2014). However,

proAMH-cleaving enzymes are found in vascular tissues

(Stawowy et al. 2001, Veinot et al. 2004), and it is therefore

possible that proAMH is cleaved to AMHN,C whilst in the

circulation. Equally, the cardiovascular system is a

putative target for circulating AMH (Appt et al. 2012,

Dennis et al. 2013, Yarde et al. 2014), and any cleavage by

vascular sources may only have a local effect.
The hallmark function of AMH may be atypical

AMH is a phylogenetically ancient protein, whose levels in

the circulation are subject to complex regulation during

the life cycle in a sexually dimorphic manner (reviewed

above). The forms of AMH in the circulation are regulated,

with the regulation potentially being very complex

(reviewed above). The existence of AMH was detected

99 years ago (Lillie 1916). Despite this, the endocrine

functions of AMH are largely unknown. This suggests

that the endocrine actions of AMH are cryptic and are

being obscured by a misconception(s) about the biology of

AMH. Canonically, AMH is an atypical TGFb-S ligand,

which signals in isolation of other members of its family.

We alternatively suggest that AMH may be a typical

TGFb-S ligand, with the regression of the Müllerian duct

being an atypical action for AMH.
TGFb-S ligands signal interactively

The TGFb-S ligands signal through complexes consisting

of type 1 and type 2 receptors. There are over 30

mammalian TGFb-S ligands, which share five type 2

receptors and seven type 1 receptors. Consequently,

TGFb-S signalling typically arises from the interactions

between multiple ligands and multiple receptors (Shi &

Massague 2003, Moustakas & Heldin 2009). One of the five

type 2 receptors (AMHR2) is AMH specific, which is in

stark contrast to the superfamily as a whole, which shares

the other four receptors. This argument is supported by

the observation that AMHK/K and AMHR2K/K XY

individuals have the same overt phenotype, the persist-

ence of the Müllerian duct (Behringer et al. 1994, Jamin

et al. 2002, Josso et al. 2005). This is very strong evidence

that AMH induces regression of the Müllerian duct via

AMHR2, independently of other TGFb-S ligands. However,

this does not prove that AMH invariably signals as an

isolated regulator, or that AMHR2 is essential for AMH

(AMHN,C or proAM) signalling elsewhere in the body. As

argued below, AMH may primarily signal in co-operation
Published by Bioscientifica Ltd.
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with other TGFb-S ligands. Similarly, this evidence does

not exclude the possibility that proAMH is able to signal

via an unidentified receptor. For example, NGF has a one-

to-one relationship with TrkA and the phenotypes of

NGFK/K and TrkAK/K mice were thought to be identical

(Carroll et al. 1992, Smeyne et al. 1994) before Sortilin was

identified as a proNGF receptor (Nykjaer et al. 2004).

The canonical function of the type 2 receptors is to

activate type 1 receptors, which initiate the downstream

signalling (Shi & Massague 2003, Moustakas & Heldin

2009). AMH does not have a unique type 1 receptor, and

to date, there is no evidence for the existence of an

AMH-specific intracellular pathway. The AMH-induced

regression of the Müllerian duct is mediated by two type 1

receptors (BMPR1A/ALK3 and ACVR1/ALK2), with

functional redundancy between the receptors (Orvis

et al. 2008). The bone morphogenetic proteins (BMPs)

and growth differentiation factors (GDFs) also use these

receptors, with the BMP/GDFs constituting more than half

of the TGFb-S (Shi & Massague 2003, Mueller & Nickel

2012). The three BMP/GDF type 1 receptors activate the

SMAD1/5/8 intracellular pathway, which also transduces a

proportion of the TGFb subfamily (Shi & Massague 2003,

Moustakas & Heldin 2009; Fig. 4).

Mice with null-mutations of TGFb-S ligands freque-

ntly exhibit limited overt phenotypes (Kingsley et al. 1992,

Shull et al. 1992, Kaartinen et al. 1995, Settle et al. 2003),
SMAD1/5/8

BMPR2

AMHR2

AMH

ALK2/3

ACVR2A

ACVR2B

P

BMPs
GDFs

BMPs
GDFs

BMPs
GDFs

P

Nucleus

TβR2

ALK1/2/3
TGFβ

Figure 4

AMH signaling involves elements that are common to other TGFb-S ligands.

The type 1 receptors used by AMH are shared with the BMP and GDF

ligands via two type 2 receptors. AMH, BMP and GDF ligands activate

the SMAD1/5/8 pathway, along with a minor portion of TGFb signalling

(based on Shi & Massague (2003) and Moustakas & Heldin (2009)).
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with the full spectrum of their biology only emerging

when multiple ligands (Settle et al. 2003, Tilleman et al.

2010) and/or receptors are absent (Oshima et al. 1996,

Beppu et al. 2000). Non-redundant signalling appears to

occur when a single TGFb-S ligand is predominantly or

totally activating the common downstream cascade,

although non-canonical signalling (Massague 2012)

and/or other mechanisms may also contribute to this

phenomenon (Mueller & Nickel 2012). The BMP/GDF

ligands bind promiscuously and can activate one or

more of three type 2 receptors: BMPR2, ACVR2A and

ACVR2b (Shi & Massague 2003, Mueller & Nickel 2012).

The BMP/GDF ligands and their type 2 receptors are

very broadly expressed (Feijen et al. 1994, Lowery & de

Caestecker 2010, Miyazono et al. 2010). The full pattern of

AMHR2 expression is still only partially elucidated (see

below), but it is possible that the only place where the

combination of AMH and AMHR2 is solely activating the

SMAD1/5/8 pathway is the Müllerian duct.
AMH may generate sex biases during
mammalian development

When a developing cell expresses AMHR2 and BMPR2, the

SMAD1/5/8 pathway would be activated in both sexes via

BMPR2, with AMH inducing a male-specific augmentation

of this pathway (Fig. 5). A priori, the extent of the sex bias

should relate to the relative levels of AMH, BMPs, AMHR2,

BMPR2 and associated signalling molecules. If so, AMH

may generate a small male bias at one site and large bias at

a different location, depending on the local concen-

trations of BMPs and BMPR2. A similar argument can be

made with respect to the other type 2 receptors (Act2R and

Act2RB) and ligands which contribute to the activation

of the SMAD1/5/8 pathway.

The BMPs, GDFs and the activins contribute to the

generation of the basic body plan during embryogenesis,

after which they influence the development of most

organs, including the brain (Liu & Niswander 2005,

Miyazono et al. 2005, Park et al. 2006, Moustakas & Heldin

2009, Lowery & de Caestecker 2010). Consequently, AMH

would be expected to produce a male-specific augmenta-

tion to numerous developmental processes. This would be

expected to induce sex biases, but would not be expected

to induce sex-specific biology. Sex biases primarily relate

to reproductive fitness.

The biology of sex differences has historically been

concerned with the ability to procreate, which requires

appropriate sex organs and an ability to recognise the

opposite sex. Reproductive fitness extends beyond this.
Published by Bioscientifica Ltd.
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It includes subtle quantitative variations in physical and

behavioural traits that enhance an individual’s ability to

compete with other members of their sex. Quantitative

sex biases are present in most organs and are common

in behaviour, but the bias is typically sufficiently

small for the female and male ranges to overlap.

Consequently, non-reproductive tissues do not have

distinct male or female form, with their characteristics

only being sexually dimorphic at the level of the

population (when groups of women and men are

compared). For example, women on average are shorter

than men on average, but the sex of tall women and short

men is unambiguous. That is, any deficiency in sex biases

would be expected to affect fitness, but is unlikely to alter

the perception of the person’s sex.
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The phenotype of XY AMHK/K and AMHR2K/K mice

is consistent with the above mechanism. For example,

spinal motor neurons express BMPR2 and AMHR2, with

AMH and BMP6 promoting the survival of motor neurons

in vitro (Wang et al. 2005, 2007). The number of neurons in

the brain is regulated through the control of programmed

cell death (Oppenheim 1991). Hence, AMH should induce

a male bias in the number of motor neurons. Consistent

with this, WT male mice have 16% more spinal motor

neurons than their WT sisters, with this sexual dimor-

phism being absent in AMHK/K and AMHR2K/K mice

(Wang et al. 2009b). AMHC/K mice exhibit a male bias

which is half that of their WT brothers (Wang et al. 2009b).

Similar AMH-dependent sex biases have been detected in

the numbers of cerebella Purkinje cells (Wittmann &

McLennan 2011) and in the calbindinCve neurons of the

sexually dimorphic nucleus of the preoptic area

(Wittmann & McLennan 2013a) and the bed nucleus of

stria terminalis (Wittmann & McLennan 2013b). The latter

two brain nuclei are highly dimorphic in adults, with

AMH being only responsible for the sex differences that

develop before the onset of puberty (Wittmann &

McLennan 2013a,b). This serves to emphasise that the

differences between the sexes is a product of multiple

mechanisms (Arnold 2004), of which AMH is but one.

Male AMHK/K mice prefer to sniff female rather than

male bedding, suggesting that they are heterosexual

(Wittmann & McLennan 2013b). However, AMHK/K

male pups exhibit female-like exploration of novel objects

(Morgan et al. 2011a), and AMHK/K adult mice exhibit

female-like behaviours when exploring a chamber

(Wang et al. 2009b). Both of these behaviours are thought

to relate to the propensity of male mice to hold larger

territories than female mice, which is a component of

reproductive fitness.

Null mutations of AMH and AMHR2 are very rare in

humans, and detailed studies of their characteristics are

not available. However, putative functions for AMH in

humans can be detected by correlating the traits of boys

with their levels of AMH. This approach is based on the

observations that AMH levels of age-matched boys show

high inter-person variation, with this variation being

stable over time (Aksglaede et al. 2010, Morgan et al.

2011b). When this approach is used, the level of a boy’s

AMH negatively correlates with indexes of his physical

(Morgan et al. 2011b) and cognitive development (Morgan

et al. 2011c). Boys tend to be less mature than age-matched

girls across many traits, and the observed correlations

suggest that testicular AMH contributes to this by slowing

the speed at which males develop. It is not currently
Published by Bioscientifica Ltd.
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possible to directly test causality here. However, if AMH

does slow the rate of human development, then biological

theory suggests that boys with high levels of AMH

should be less affected by developmental disorders than

boys with lower levels of AMH. Consistent with this a priori

prediction, the severity of symptoms of boys with an

autistic spectrum disorder negatively correlates with their

levels of circulating AMH (Pankhurst & McLennan 2012).

In summary, AMH is an ancient inducer of the male

phenotype. It can induce male-specific biology (absence

of a uterus), but in mammals the overt male-specific

features are mainly the province of testosterone. The

predominant role of AMH may be to interact with other

TGFb-S ligands to produce numerous sex biases through-

out the body. The initial murine and human data are

consistent with this hypothesis, but the available data are

very limited. The role of AMH in shaping the charac-

teristics of boys, and the resulting men, remains largely

unexplored.
AMH can signal at adult circulatory levels

AMH, like other TGFb-S ligands, has context-dependent

dose–response curves. Consequently, the fact that adult

men have an order-of-magnitude less circulating AMH

than boys do (Fig. 1) is not an a priori reason to presume

that AMH is not a hormone in adults. Embryonic neurons

in vitro exhibit a log-linear dose curve, with adult-like

levels of AMH producing biologically significant effects

(Wang et al. 2005). Embryonic neurons are an order-of-

magnitude more sensitive to AMH than some cell lines

(compare Wang et al. (2005) and Masiakos et al. (1999) and

Pieretti-Vanmarcke et al. (2006)). The determinants of the

dose–response curve for AMH are unknown, but may

include the ability of the target cells to cleave proAMH

adjacent to the receptor, as the recombinant AMH used in

most experiments is a mixture of proAMH and AMHN,C.

The specificity and dose–response curves of the

TGFb-S are a product of binding proteins as well as

receptors. The ligand-specificities of the binding proteins

can be distinct from those of the receptors, creating

interactions between the various TGFb subfamilies (Shi &

Massague 2003, Massague 2012). The AMH-induced

regression of the Müllerian duct does not require a binding

protein, and the influence of binding proteins on AMH

signalling has therefore not been thoroughly examined.

Preliminary results indicate that the follistatins increase

the response of reporter cells to AMHN,C (Kawagishi et al.

2014). Follistatins are classical inhibitors of the activins

(de Kretser et al. 2004, Hedger & de Kretser 2013), which
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activate the SMAD2/3 intracellular pathway (Shi &

Massague 2003). Consequently, when follistatins are

present, the balance between AMH-induced activation of

SMAD1/5/8 and activin-induced activation of SMAD2/3

may be altered, although in vivo work is needed to

prove this. Most importantly, the preliminary observation

with follistatin re-enforces the notion that AMH is a

typical TGFb-S ligand, and its signalling is therefore

context-dependent.

The context dependency of TGFb-S signalling has

multiple causes, one of which is competition between

ligands and receptors (Massague 2000, 2012). Conse-

quently, the relative levels of receptors can be important,

which leads to yet another unresolved paradox of AMH.

The AMH-specific receptor (AMHR2) is the most abundant

cytokine receptor in motor neurons, with levels that are

much higher than other type 2 receptors and the type 1

receptors. Despite this, the neuronal-levels of AMHR2 are

orders-of-magnitude less than occurs in the testes, ovary

and Müllerian duct (Wang et al. 2005). The physiological

significance of this observation is unclear.

The original studies of the distribution of AMHR2

were set to detect gonad-like levels of AMHR2. This created

the false impression that AMH only signalled in the

gonads and its associated tissues. The presence of AMHR2

has been rigorously proven in multiple sites, including the

nervous system, lungs, mammary glands, uterus and

prostate (Catlin et al. 1997, Segev et al. 2000, 2001, 2002,

Hoshiya et al. 2003, Renaud et al. 2005, Wang et al. 2005,

2009a,b, Lebeurrier et al. 2008). Similarly, broad

expression is detected in mice with a reporter gene driven

by the endogenous Amhr2 promoter (AMHR2-Cre-lacZ:

Wang et al. 2009b) (IS McLennan & Dennis NA,

unpublished observations). However, the rigorous detec-

tion of the cellular location of AMHR2 is currently a

limiting problem, as the available anti-AMHR2 antibodies

show cross-reactivity in some but not all tissues.
Circulatory AMH may signal reproductive
status in adults

The physiology of circulating AMH in adults is an

unwritten book, for which there is not even the briefest

outline of the plot. As outlined above, the historic

evidence suggested that circulating AMH levels in adults

could not signal. The current evidence reverses this

situation: AMH is present in the circulation of adults, at

levels sufficient to activate its receptors, and its receptors

appear to be broadly expressed. One thing is certain:

AMH is not vital in the way that classical hormones are, as
Published by Bioscientifica Ltd.
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AMHK/K individuals do not show any gross symptoms.

However, if AMH signals in the way described above, then

symptoms would not be expected. In adults, the TGFb-S

regulates multiple aspects of homeostasis, through a

process that integrates multiple signals. By doing so, the

TGFb-S helps to ensure that the functions of cells reflect

both their immediate environment and the status of the

body as a whole. The function of AMH in adults may be

to add a gonadal influence to this integrative process.

The gonads release multiple hormones in both sexes,

which in general signal through different intracellular

cascades. The activins and the inhibins are TGFb-S ligands,

which predominantly signal through the SMAD2/3

pathway, whereas the sex steroids and INSL3 signal

through other pathways. A priori, it is therefore possible

that each of these hormones transmits the same biological

information but to different parts of the intracellular

cascade. However, the levels of circulating AMH in men

show almost no concordance with the levels of the other

testicular hormones. This suggests that AMH may transmit

different information about the gonads than testosterone

and the other testicular protein hormones. The number

and state of the germ cells in the gonads is the major

determinant of the level of AMH in the circulation. This is

most clearly established for females (Visser et al. 2012), but

it may also be the case for males, as germ cells regulate

Sertoli cells (O’Shaughnessy et al. 2008, Cool et al. 2012,

Dabaja et al. 2015). Consequently, AMH is uniquely and

ideally placed to convey information about the current

and future reproductive capacity of an individual. At this

stage, it is difficult to predict how this translates into AMH-

mediated changes in the properties of cells.

If AMH is part of BMP signalling, then one way

forward is to examine sites of proven BMP regulation. The

BMPs are broad regulators of the cardiovascular system,

with some BMP ligands being putative cardiovascular

hormones (Lowery & de Caestecker 2010). Initial evidence

is consistent with the cardiovascular systems as being a

target tissue for AMH. The levels of circulating AMH in

men associate with the size of their aorta (Dennis et al.

2013). AMH levels on average differ between men with

defined cardiovascular conditions (Dennis et al. 2013),

with AMH also being linked to pregnancy-associated

hypertension (Shand et al. 2014). In female rhesus

monkeys, premenopausal AMH levels associate with

subsequent atherosclerosis (Appt et al. 2012). However,

to date, there has been no experimental examination of

whether AMH can directly influence any cardiovascular

parameter.
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Conclusion

AMH is a hormone/cytokine that has been trapped by its

name and the history of its discovery. If AMH is viewed

as the gonadal BMP, it changes from being an atypical

cytokine with a few specialised functions to a broad

pleiotropic regulator which changes with the stage of life.

Initially it may create diversity within the male lineage. As

mammals transition into adulthood, AMH may become a

signal to the body about the capacity/characteristics of the

gonads, with this signal being of relevance to both sexes.
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