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Abstract
Most hormones secreted from specific organs of the body in response to diverse stimuli

contribute to the homeostasis of the whole organism. Fibroblast growth factor 21 (FGF21),

a hormone induced by a variety of environmental or metabolic stimuli, plays a crucial role in

the adaptive response to these stressful conditions. In addition to its role as a stress hormone,

FGF21 appears to function as a mediator of the therapeutic effects of currently available

drugs and those under development for treatment of metabolic diseases. In this review, we

highlight molecular mechanisms and the functional importance of FGF21 induction in

response to diverse stress conditions such as changes of nutritional status, cold exposure,

and exercise. In addition, we describe recent findings regarding the role of FGF21 in the

pathogenesis and treatment of diabetes associated with obesity, liver diseases, pancreatitis,

muscle atrophy, atherosclerosis, cardiac hypertrophy, and diabetic nephropathy. Finally, we

discuss the current understanding of the actions of FGF21 as a crucial regulator mediating

beneficial metabolic effects of therapeutic agents such as metformin, glucagon/glucagon-

like peptide 1 analogues, thiazolidinedione, sirtuin 1 activators, and lipoic acid.
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Introduction
All known organisms have the capability to maintain

homeostasis in response to environmental challenges. The

ability to modify gene expression is a fundamental

organismal mechanism of adaptation to environmental

stimuli. In particular, hormones secreted from specific

organs are important mediators of these adaptive

responses through autocrine, paracrine, and endocrine

actions. For example, insulin and glucagon are well-

known adaptive hormones that control whole-body

glucose balance in response to changes in nutritional

status. Emerging evidence has suggested that fibroblast

growth factor 21 (FGF21) could also be an endocrine

hormone contributing to the metabolic homeostasis.
The FGF21 gene was cloned as the 21st member of the

FGF family by Dr Nobuyuki Itoh’s group in 2000

(Nishimura et al. 2000), and its biological function was

first identified as a potent enhancer of glucose uptake by

Dr Alexei Kharitonenkov’s group at Lilly Research Labora-

tories in 2005 (Kharitonenkov et al. 2005). After this

discovery, FGF21 has gained considerable attention as a

key regulator in the maintenance of energy homeostasis

and as a promising therapeutic molecule for the treatment

of obesity and type 2 diabetes (T2D).

Numerous studies have suggested that FGF21 plays

a crucial role in the control of glucose and lipid energy

balance in response to changes of nutritional status, such
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as starvation and feeding (Badman et al. 2007, Inagaki et al.

2007, Coskun et al. 2008, Potthoff et al. 2009). FGF21 is

also important in the maintenance of body temperature

by enhancing thermogenesis in response to cold exposure

(Fisher et al. 2012, Lee et al. 2014a). In addition, FGF21

participates in the pathogenesis and treatment of various

diseases such as diabetes associated with obesity, liver

diseases, muscle atrophy, cardiovascular diseases, and

kidney injury. Intriguingly, FGF21 can mediate the

therapeutic benefits of several anti-diabetic compounds

such as metformin, glucagon/glucagon-like peptide 1

(GLP1) analogues, thiazolidinedione (TZD), and sirtuin 1

(Sirt1) activators. Here, we highlight recent insights

regarding the role of FGF21 as an adaptive hormone in

response to various physiological or pathological con-

ditions and as a mediator of the beneficial metabolic

effects of several therapeutic agents (Fig. 1).
The role of stress-induced FGF21 in
physiological conditions

FGF21 and nutritional status

FGF21 expression is regulated by nutritional status, and

changes in the FGF21 level are important for adaption to

changes of the nutritional balance such as deprivation or

oversupply of macronutrients and changes of amino acid

composition (Kim & Lee 2014). Alteration of FGF21

expression in response to nutritional alteration was first

reported in 2007 (Badman et al. 2007, Inagaki et al. 2007).

In starved mice, FGF21 is induced in the liver, contribut-

ing to metabolic adaptation to the fasting state by

enhancing ketogenesis and b-oxidation in the liver. An

increase of serum FGF21 level after fasting has been also

observed in healthy human individuals (Galman et al.

2008). Fasting-induced hepatic FGF21 expression is

mediated by the peroxisome proliferator-activated

receptor alpha (PPARa; Badman et al. 2007, Inagaki et al.

2007), CREBH (Lee et al. 2011, Kim et al. 2014a), and Sirt1

(Li et al. 2014). Increased FGF21 also plays an important

role in the regulation of fasting glucose levels by

enhancing gluconeogenesis via upregulation of the

hepatic PPARg coactivator 1 alpha (PGC1a; Potthoff et al.

2009). Indeed, a recent study has shown that FGF21,

produced in the fasted liver, enters into the brain and

activates hypothalamic–pituitary–adrenal axis, leading to

the enhancement of hepatic PGC1a expression and

gluconeogenesis (Liang et al. 2014). These results suggest

that FGF21 coordinates an adaptive response to fasting

via liver–brain axis.
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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In addition to its role in fasting, FGF21 has been

reported to enhance insulin-stimulated glucose uptake

under acute refeeding conditions (Markan et al. 2014). The

serum FGF21 level was increased during the early stage of

refeeding in mice, when the insulin level was also

elevated. Importantly, liver-specific Fgf21 knockout

(Fgf21Dhep) mice exhibited reduced serum FGF21 levels

in both fasting and early refeeding and displayed

aggravation of fasting-induced glucose intolerance,

whereas these findings were not observed in adipose

tissue-specific Fgf21 knockout (Fgf21DAd) mice (Markan

et al. 2014). These results suggest that the liver, but not

adipose tissue, is a primary organ producing FGF21 during

fasting and acute refeeding and that FGF21 acts as an

insulin sensitizer to enhance insulin-stimulated glucose

uptake during the early refeeding period. In addition to

complete nutrient deprivation, a 50% food restriction

causing malnutrition has been reported to increase serum

FGF21 levels in mice (Kubicky et al. 2012). Fgf21 knockout

(Fgf21K/K) mice were resistant to malnutrition-induced

reduction of bone growth (Kubicky et al. 2012), suggesting

that FGF21 is an important regulator of skeletal homeo-

stasis as well as liver and adipose tissue. In contrast to

malnutrition, caloric restriction without malnutrition did

not result in FGF21 induction in mouse or human subjects

(Zhang et al. 2012, Kim et al. 2013a, Lips et al. 2014).

Moreover, caloric restriction-induced metabolic changes

were not different between Fgf21K/K and Fgf21C/C mice

(Kim et al. 2013a), suggesting that FGF21 does not mediate

the effects of caloric restriction on energy metabolism.

An increasing body of evidence suggests that FGF21

expression is regulated by changes in specific macro-

nutrients. After feeding a ketogenic diet with low

carbohydrates and high fat, mimicking a fasting state,

FGF21 was induced in the liver of mice in an PPARa-

dependent manner; consequently, increased FGF21

contributes to the enhancement of b-oxidation and

ketogenesis caused by a ketogenic diet (Badman et al.

2007). In parallel, ketogenic diet-fed Fgf21K/K mice

showed impaired adaptation to ketosis (Badman et al.

2009). A protein-restricted (low protein) diet has been also

reported to increase hepatic FGF21 expression in mice

through general control nonderepressible 2- and PPARa-

dependent pathways. An increase in serum FGF21 levels

was also observed in human subjects after a low protein

diet (Laeger et al. 2014). The effects of a low protein diet on

the enhancement of energy expenditure and decrease of

fat mass were partially diminished in Fgf21K/K mice

compared to control mice, suggesting the importance of

FGF21 induction in whole-body adaption to low protein
Published by Bioscientifica Ltd.
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Figure 1

Functional role of fibroblast growth factor 21 (FGF21) secreted from

multiple organs in response to diverse stresses or stimuli. FGF21 expression

is induced in multiple major organs, including white/brown adipose tissue,

liver, pancreas, skeletal muscle, heart, and kidney, in various physiological

and pathological conditions. FGF21 levels are also increased by several anti-

diabetic drugs or compounds. Consequently, elevated FGF21 plays an

adaptive role in response to diverse stressful conditions and acts a mediator

of beneficial metabolic effects of anti-diabetic drugs through local and

systemic actions in target organs. NAFLD, nonalcoholic fatty liver disease;

NASH, nonalcoholic steatohepatitis; HCC, hepatocellular carcinoma; GLP1,

glucagon-like peptide 1.
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intake (Laeger et al. 2014). Intriguingly, the serum FGF21

level and hepatic FGF21 expression were not increased in

mice with a 50% reduction in food intake without changes

of protein intake (Laeger et al. 2014). Furthermore, FGF21

induction in mice fed a ketogenic diet was not attenuated

by carbohydrate supplements (Laeger et al. 2014),

implying that the increase in FGF21 during food restric-

tion and the ketogenic diet appears to be primarily

driven by low protein intake rather than by reduced

carbohydrate intake. A high-fat diet (HFD) has been also

reported to cause hepatic FGF21 induction in mice (Muise

et al. 2008, Fisher et al. 2010). In this process, free fatty
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0160 Printed in Great Britain
acids appear to stimulate FGF21 gene expression in

PPARa-dependent (Mai et al. 2009) or -independent

pathways (Tanaka et al. 2015). Collectively, these results

indicate that the induction of FGF21 in response to

changes in macronutrient ingestion is important for

metabolic adaption.

In addition to changes in the quantities of macro-

nutrients, changes of amino acid composition in proteins

and monosaccharide composition in carbohydrates influ-

ence FGF21 expression. Methionine restriction (approxi-

mately a 75–80% decrease of methionine intake) has been

reported to extend the lifespan and lead to decreased
Published by Bioscientifica Ltd.
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fat mass and improved insulin sensitivity in rodents,

probably by enhancing b-oxidation (Orentreich et al.

1993, Hasek et al. 2010). Importantly, methionine-

restricted mice showed increases in the hepatic FGF21

expression and serum FGF21 level, accompanied by

attenuation of obesity- or age-related insulin resistance

(Ables et al. 2012, Lees et al. 2014). These results suggest

that FGF21 may mediate beneficial metabolic effects of

methionine restriction. However, metabolic effects of

methionine restriction in Fgf21K/K mice remain to be

determined. Complete deprivation of a specific amino acid

also affects FGF21 gene expression. Several studies have

suggested that FGF21 was induced by the eukaryotic

translation initiation factor 2 alpha (eIF2a)–activating

transcription factor 4 (ATF4)-dependent pathway in the

liver but not in adipose tissue or skeletal muscle of mice

fed a leucine-deficient diet (De Sousa-Coelho et al. 2013,

Kim et al. 2013a). Importantly, the enhanced glucose

tolerance and reduced fat mass observed in WT mice fed a

leucine-deficient diet were not shown in Fgf21K/K mice,

suggesting that hepatic FGF21 acts as a critical mediator of

the changes in whole-body energy metabolism in response

to amino acid deficiency (De Sousa-Coelho et al. 2013, Kim

et al. 2013a). Saccharides also influence FGF21 gene

expression. In line with FGF21 induction in the livers

during refeeding of mice (Markan et al. 2014), glucose was

shown to directly induce FGF21 gene expression in

hepatocytes in vitro through activation of the carbo-

hydrate response element binding protein (Iizuka et al.

2009, Uebanso et al. 2011). A recent study has shown that

fructose ingestion also acutely increased circulating FGF21

levels in humans (Dushay et al. 2015), suggesting that

FGF21 may play a role in the metabolism of fructose or

other monosaccharides, as well as glucose. A fundamental

physiological role of FGF21 in individual carbohydrate

metabolism remains to be clarified.
FGF21, cold exposure, and exercise

Heat production is important in the maintenance of body

temperature in response to cold exposure. Thermogenesis

in brown adipose tissue (BAT) is a critical component of

heat production. Emerging evidence has suggested that

white adipose tissue (WAT) browning, conversion of WAT-

to BAT-like tissues, participates in the regulation of the

body temperature (Harms & Seale 2013). It has been

reported that FGF21 is induced in BAT and WAT of mice

and humans in an adaptive response to cold exposure

(Fisher et al. 2012, Lee et al. 2014a), and thermogenic

stimuli such as norepinephrine induce FGF21 gene
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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expression in BAT via activation of the p38a–ATF2 axis

(Hondares et al. 2011). Importantly, Fgf21K/K mice had

decreased core temperatures after cold exposure compared

to control mice, due to an impaired browning (Fisher et al.

2012). Thyroid hormones (THs), another thermogenic

inducer, have been also reported to increase FGF21 gene

expression in adipose tissue (Adams et al. 2010). However,

the effect of TH on energy expenditure was not different

between Fgf21K/K and Fgf21C/C mice (Domouzoglou et al.

2014), suggesting that FGF21 regulates adaptive thermo-

genesis in cold environments but not that after TH

treatment.

In addition to cold exposure, acute or chronic exercise

has been reported to increase circulating FGF21 levels in

mice and humans (Cuevas-Ramos et al. 2012, Kim et al.

2013b). While contradictory data have been reported (Lee

et al. 2014a), FGF21 might act as a mediator of the

metabolic improvement by exercise. Consistently, recent

data showed that enhancement of glucose tolerance by

exercise was diminished in Fgf21K/K mice. Furthermore,

exercise-induced AMP-activated protein kinase (AMPK)

activation was markedly reduced in the skeletal muscle of

Fgf21K/K mice compared to control mice, suggesting that

FGF21 mediates the beneficial effects of exercise on

glucose intolerance (Loyd et al. 2014). Thus, all of these

studies indicate that FGF21 is a crucial player in the

physiological adaption to cold and exercise.
The role of stress-induced FGF21 in
pathological conditions

FGF21 and diabetes associated with obesity

FGF21 levels are paradoxically increased in the serum of

obese diabetic mice or human subjects with T2D and

obesity (Chavez et al. 2009, Fisher et al. 2010). This

increase of serum FGF21 in obesity is probably due to

the upregulation of FGF21 gene expression in the liver and

adipose tissue (Fisher et al. 2010). While the liver rather

than adipose tissue primarily produces FGF21 during

fasting (Markan et al. 2014), it is unclear which of the

liver or adipose tissue is the main producer of FGF21 in

obesity. Considering the pharmacotherapeutic effects of

FGF21, obesity-mediated FGF21 induction may be an

adaptive mechanism to metabolic derangement associated

with obesity. In line with this notion, HFD-fed Fgf21K/K

mice showed aggravated glucose intolerance compared

to HFD-fed Fgf21C/C mice (Assini et al. 2015), although

other investigators reported no difference of glucose

intolerance between in Fgf21K/K mice and Fgf21C/C
Published by Bioscientifica Ltd.
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mice fed HFD (Fisher et al. 2010, Adams et al. 2013a).

In parallel, leptin-deficient ob/ob mice exhibited aggra-

vated glucose intolerance and insulin resistance when

Fgf21 was genetically disrupted (Kim et al. 2015). Thus,

FGF21 may act as a compensatory signal to mitigate

metabolic stresses due to obesity.

In obesity, FGF21 signaling has been reported to be

impaired in major metabolic organs, including pancreatic

islets, liver, and WAT (Fisher et al. 2010, So et al. 2013).

Based on these findings, we speculate that obesity-related

endogenous FGF21 induction alone is not sufficient to

overcome impaired FGF21 signaling or FGF21 resistance.

Administration of exogenous FGF21 and FGF21 mimetics

improves glucose tolerance or insulin sensitivity in

diabetic rodents and monkeys (Coskun et al. 2008, Xu

et al. 2009, Wu et al. 2011, Foltz et al. 2012). Two recent

papers have shown that an engineered FGF21 variant

(LY2405319) ameliorates metabolic parameters in obese

human subjects with T2D as well as diabetic monkeys

(Adams et al. 2013b, Gaich et al. 2013). Especially,

LY2405319-received T2D subjects showed a significant

decrease of body weight and fasting insulin levels and the

improvement of dyslipidemia including reduced LDL

cholesterol and increased HDL cholesterol levels

compared to placebo-treated subjects (Gaich et al. 2013).

The glucose lowering effect of LY2405319 was also

observed, while statistical significance was marginal

(Gaich et al. 2013).

These pharmacological effects of FGF21 and its

mimetics are attributable to the action on various

metabolic target organs, such as adipose tissue, brain,

liver, and pancreatic b cells (Owen et al. 2015). Several

studies have shown that FGF21 enhances insulin-induced

glucose uptake and thermogenesis in adipose tissue

(Kharitonenkov et al. 2005, Xu et al. 2009). In obese mice

with whole-body deletion of b-klotho, a co-receptor for

FGF21, the metabolic effects of FGF21 such as enhance-

ment of energy expenditure or glucose tolerance and

decrease of fat mass were diminished (Adams et al. 2012).

Notably, these beneficial effects of FGF21 were also

reduced in obese mice lacking b-klotho in adipose tissue

or the brain (Ding et al. 2012, Owen et al. 2014).

Furthermore, hepatic FGF21 actions such as alleviation

of steatosis and suppression of hepatic glucose production

were less pronounced in these mice, suggesting indirect

FGF21 action on the liver. These findings suggest that both

adipose tissue and the brain are major targets of systemic

actions of FGF21 in metabolic improvement, although

direct repressive effects of FGF21 on gluconeogenesis and

lipogenesis in the liver have also been reported (Zhang
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0160 Printed in Great Britain
et al. 2011, Kong et al. 2013). The importance of FGF21

action in adipose tissue has been also inferred from

reduction of FGF21-mediated metabolic improvement in

adiponectin knockout (AdipoqK/K) mice (Holland et al.

2013, Lin et al. 2013).

Additionally, FGF21 increases insulin content in

pancreatic b cells and partially protects islets from

glucolipotoxicity and cytokine-induced apoptosis

(Wente et al. 2006). Chow-fed Fgf21K/K mice showed

impaired glucose-stimulated insulin secretion (GSIS),

probably due to a lack of FGF21 action-inhibiting growth

hormone (GH) signaling in b cells, and also displayed

insulin resistance due to the increased GH signaling in

insulin target tissues (So et al. 2015). Given that GH

reportedly induces FGF21 gene expression (Chen et al.

2011, Yu et al. 2012), endogenous FGF21 induction may be

a compensatory mechanism to alleviate insulin resistance

induced by chronic GH treatment. In contrast, we have

observed no difference in GSIS or insulin levels in the

Fgf21K/K mouse strain (Kim et al. 2015). Further study is

needed to evaluate the effect of endogenous FGF21 on the

pancreatic islet function. Taken together, these results

suggest that FGF21 acts as a therapeutic agent for the

treatment of T2D associated with obesity via its pleiotropic

actions in diverse metabolic organs.

Several studies have suggested that FGF21 exerts its

metabolic beneficial effects through the regulation of

other hormones. As previously described, FGF21 increases

the production of insulin and adiponectin in pancreatic

b cells and adipose tissue respectively (Wente et al. 2006,

Holland et al. 2013, Lin et al. 2013). It has been also

reported that FGF21 reduces circulating glucagon levels in

obese mice (Kharitonenkov et al. 2005). Given the role of

glucagon in the aggravation of hyperglycemia through

enhancing hepatic glucose production, glucagon could be

a mediator for in vivo effect of FGF21. In addition, FGF21

is able to exert therapeutic effects in an insulin-dependent

manner. While the effect of FGF21 on glucose lowering

was still preserved in liver-specific insulin receptor knock-

out mice, the suppressive effects of FGF21 on circulating

cholesterol and hepatic triglycerides were diminished in

these mice (Emanuelli et al. 2014). These results suggest

that FGF21 ameliorates hyperglycemia independent of

insulin action in the liver of obese mice but affects hepatic

lipid metabolism in an insulin-dependent manner. Given

the metabolic action of insulin in various tissues,

investigations on the relationship between FGF21 and

insulin signaling in adipose tissue and the brain will also

be of interest.
Published by Bioscientifica Ltd.
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FGF21 and liver disease

FGF21 is implicated in various liver diseases such as

nonalcoholic fatty liver disease (NAFLD), nonalcoholic

steatohepatitis (NASH), and liver cancer. Several studies

have suggested that FGF21 was increased in the serum and

liver of human subjects with NAFLD, and its level was

correlated with hepatic triacylglycerol (TG) content

(Dushay et al. 2010, Li et al. 2010). Molecular mechanisms

underlying FGF21 induction in NAFLD have been recently

identified (Jiang et al. 2014, Kim et al. 2015). Endoplasmic

reticulum (ER) stress, which is implicated in the develop-

ment and progression of NAFLD, appears to be responsible

for FGF21 induction. Increased gene expression of both ER

stress markers and FGF21 was observed in the livers of mice

with steatosis or in those of human subjects with NAFLD

(Jiang et al. 2014, Kim et al. 2015). Moreover, ER stressors are

able to directly induce FGF21 gene expression in hepato-

cytes in vitro and in mouse livers in vivo. Consistently, ER

stress-induced hepatic FGF21 expression was diminished in

mice with the deletion of the inositol-requiring 1 alpha

(Ire1a) gene (Jiang et al. 2014) or with Ser51Ala mutation of

the Eif2a gene in the liver (Kim et al. 2015). These results

suggest that the IRE1a-X-box binding protein 1 axis or the

eIF2a–ATF4 axis is an important signaling pathway in ER

stress-induced FGF21 expression. Furthermore, chemical-

induced increases of ER stress marker gene expression and

lipid accumulation in the livers of mice were reduced by

recombinant FGF21 administration (Jiang et al. 2014) and

in the livers of tetracycline-inducible Fgf21 transgenic mice

(Kim et al. 2015). Fgf21K/K ob/ob mice also had an increased

expression of ER stress marker genes and aggravated liver

injury compared to Fgf21C/C ob/ob mice (Kim et al. 2015).

Taken together, these results suggest that FGF21 plays a role

in the adaptive response to ER stress induced by a

pharmacological ER stressor or NAFLD.

In addition to NAFLD, FGF21 participates in the

development and progression of NASH induced by a

methionine–choline deficient (MCD) diet (Fisher et al.

2014). In mice fed an MCD diet, the serum FGF21 level was

elevated, probably due to an increase in FGF21 expression

in the liver but not in other organs. Fgf21K/K mice fed the

MCD diet showed increased progressive steatohepatitis

and hepatic fibrosis compared to control mice. Further-

more, Fgf21K/K mice showed aggravated hepatic perox-

idative damage, probably due to the elevation of free fatty

acids caused by reduced activity of acyl CoA synthetases,

which convert long-chain fatty acids to acyl CoAs.

Another Fgf21K/K mouse strain also displayed increased

lipid accumulation and ER stress response after an MCD
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0160 Printed in Great Britain
diet (Tanaka et al. 2015). Indeed, FGF21 administration or

FGF21 overexpression ameliorated MCD diet-induced

metabolic derangements (Fisher et al. 2014). Thus, FGF21

induction in NASH may be a physiologic adaptation to

hepatic stress responses, and FGF21 may be a promising

therapeutic agent for the treatment of NAFLD or NASH.

NAFLD and NASH are risk factors for the development

and progression of hepatocellular carcinoma (HCC;

Michelotti et al. 2013). It has been reported that hepatic

FGF21 expression was increased in diethylnitrosamine

(DEN)-induced liver tumors and in livers of humans with

HCC (Yang et al. 2013). Furthermore, Fgf21 transgenic

mice showed a delayed appearance of DEN-induced liver

tumors, although the incidence and burden of HCC were

similar between Fgf21 transgenic and control mice (Huang

et al. 2006). These findings suggest that FGF21 induction

may be an adaptive mechanism to protect or delay the

development and progression of liver cancer. Notably, an

Fgf21 transgenic mouse strain in this study did not show

reduced body weight, in contrast to other Fgf21 transgenic

mouse strains. This discrepancy is probably due to a

difference in mouse background (FVB vs C57BL/6) or a

difference in serum FGF21 concentration between mouse

strains. Further studies are needed to evaluate the

fundamental role of FGF21 in hepatic carcinogenesis.

Liver is a primary organ to detoxify diverse toxic

chemicals. It has been reported that FGF21 expression is

increased depending on the aryl hydrocarbon receptor in

the liver of mice after administration of 2,3,7,8-tetrachlor-

odibenzo-p-dioxin (TCDD), a highly toxic and carcino-

genic chemical (Cheng et al. 2014). Fgf21K/K mice were

susceptible to TCDD-induced mortality compared to

control mice (Cheng et al. 2014), suggesting that FGF21

induction may be a protective signal against toxin-induced

injury. It remains to be determined whether FGF21

regulates activity and expression of the detoxification

enzyme or whether this action exerts a protective effect

against toxin-induced injury.
FGF21 and pancreatitis

It has been reported that FGF21 is expressed in pancreatic

acinar and islet cells (Wente et al. 2006, Johnson et al.

2009). Several studies have shown that FGF21 modulates

the development and progression of pancreatitis, a known

risk factor for pancreatic cancer (Johnson et al. 2009, 2014).

In mice with cerulein-induced acute pancreatitis, FGF21

expression was increased in acinar cells but not in islet

cells. Importantly, pancreatic inflammation and fibrosis

were increased in Fgf21K/K mice compared to control mice
Published by Bioscientifica Ltd.
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and, conversely, were decreased in Fgf21 transgenic mice

(Johnson et al. 2009). Furthermore, FGF21 expression was

markedly reduced in acinar cells of Mist1 knockout mice

showing early events of pancreatitis such as the premature

activation of digestive enzymes and acinar disorganization

(Johnson et al. 2014). These results suggest that FGF21

induction may be an adaptive mechanism to protect the

development and progression of pancreatitis. Given the

protective role of FGF21 in pancreatitis, it will be of interest

to study whether FGF21 exerts anti-cancer activity in the

progression of pancreatic cancer.
FGF21 and muscle disease

Emerging evidence has suggested that FGF21 is expressed

in skeletal muscle and that its expression is upregulated

under muscle stress conditions, such as atrophy or

myopathy (Izumiya et al. 2008, Tyynismaa et al. 2010).

In transgenic mice expressing a mutant form of mito-

chondrial helicase Twinkle or muscle-specific cytochrome c

oxidase 10 (Cox10) knockout mice showing impairment of

the mitochondrial respiratory chain and myopathy,

skeletal muscle FGF21 expression was upregulated

along with serum FGF21 levels (Tyynismaa et al. 2010).

Moreover, serum FGF21 levels were increased in human

subjects with mitochondrial respiratory chain deficiencies

(Suomalainen et al. 2011), suggesting that FGF21 is a

biomarker of muscle-manifesting mitochondrial respir-

atory chain disorders. Skeletal muscle-specific autophagy

knockout mice showing muscle atrophy also exhibited

increased muscular FGF21 induction, probably due to

aggravated mitochondrial stress caused by autophagy

deficiency (Kim et al. 2013a). Furthermore, it has been

reported that several mitochondrial stressors, such as

mitochondrial complex inhibitors, directly induce FGF21

expression via the eIF2a–ATF4 pathway (Kim et al. 2013a).

Notably, all of thesemicehadreducedfatmass,probablydue

to increased energy expenditure and fatty acid catabolism

induced by FGF21. Based on a report showing the beneficial

effect of FGF21 on mitochondrial respiratory capacity

(Chau et al. 2010), we speculate that FGF21 acts as an adaptive

regulator counteracting muscle stress imposed by mito-

chondrial dysfunction or autophagy deficiency. Further

studies are necessary to prove the protective role of FGF21

in the diseases associated with mitochondrial dysfunction.
FGF21 and cardiovascular disease

Accumulating evidence has suggested that FGF21 can

modulate the development of coronary artery disease
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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(CAD) and atherosclerosis. It has been reported that FGF21

was increased in the serum of human subjects with CAD

and carotid artery plaques, and increased FGF21 levels

were associated with adverse lipid profiles in CAD subjects

(Lin et al. 2010, Chow et al. 2013). A recent study has

shown that the serum FGF21 level was also increased

in atherosclerosis-prone apolipoprotein E knockout

(ApoeK/K) mice fed an atherogenic diet (Wu et al. 2014).

FGF21 administration improved atherogenic diet-induced

dyslipidemia and vascular atherosclerotic lesions in

ApoeK/K mice, probably by mitigating ER stress, a

contributing factor in the pathogenesis of atherosclerosis

(Wu et al. 2014). In addition, FGF21 treatment improved

aggravated lipid profiles in atherosclerotic rats through its

antioxidant effects (Zhu et al. 2014). The enhancement of

cellular cholesterol efflux from macrophage-derived foam

cells by FGF21 may also contribute to the improvement of

atherosclerosis (Lin et al. 2014). Taken together, these

findings suggest that FGF21 plays an adaptive and

protective role in response to atherogenic stress, although

further studies are needed to validate these findings.

Cardiokines, which are secreted from the heart in

response to various cardiac stresses, play an important role

in the maintenance of normal cardiac function through

autocrine, paracrine, or endocrine mechanisms (Shimano

et al. 2012). It has been reported that FGF21 expression was

induced through a Sirt1–PPARa-dependent mechanism in

the hearts of mice under various cardiac stress conditions

such as isoproterenol/phenylephrine infusion, coronary

artery ligation-induced myocardial infarction (ischemia),

or transverse aortic constriction (Planavila et al. 2013). In

addition, FGF21 expression was increased in the hearts of

human subjects with dilated cardiomyopathy or advanced

heart failure (Planavila et al. 2015). However, the source of

FGF21 in these conditions is controversial, because

another study showed FGF21 induction in the liver and

adipose tissue but not in the ischemic myocardium of

mice (Liu et al. 2013). Importantly, stress-induced cardiac

hypertrophy was increased in Fgf21K/K mice, while

exogenous FGF21 administration ameliorated cardiac

hypertrophy in these mice (Liu et al. 2013, Planavila

et al. 2013). These results suggest that cardiac stress-

induced FGF21 expression is a compensatory signal to

protect against cardiac failure or cardiac dysfunction.

Several mechanisms of improved stress-induced cardiac

hypertrophy by FGF21 have been suggested. A role for the

FGF receptor 1/b-klotho/protein kinase B (PKB/AKT)

pathway in this process has been suggested in an in vivo

study employing the strategy of siRNA administration to

the anterior ventricular wall (Liu et al. 2013). In addition,
Published by Bioscientifica Ltd.
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i.m. injection of the adenovirus expressing FGF21

increased serum adiponectin levels and attenuated cardiac

hypertrophy in mice with experimental myocardial

infarction (Joki et al. 2015). Notably, FGF21-mediated

cardiac protection was diminished in AdipoqK/K mice,

indicating that adiponectin mediates the beneficial effects

of FGF21 on cardiac function. Enhancement of the

antioxidant capacity via upregulation of antioxidant

enzyme gene expression may contribute to the protective

effects of FGF21 (Planavila et al. 2015). These results

collectively suggest that FGF21 may be a pharmacological

agent for treatment of myocardial injury.
FGF21 and kidney disease

It has been reported that serum FGF21 levels were

increased in subjects with acute or chronic kidney diseases

(Stein et al. 2009, Hindricks et al. 2014), and circulating

FGF21 was elevated in proportion to the severity of kidney

diseases (Lin et al. 2011). Increasingly, studies have

suggested that FGF21 elicits protective effects against the

progression of diabetic nephropathy, a leading cause of

chronic renal failure (Kim et al. 2013c, Zhang et al. 2013a).

FGF21 administration prevented renal lipid accumulation,

oxidative stress, inflammation, and fibrosis in mice after

treatment of excessive fatty acids or streptozotocin (Zhang

et al. 2013a) and in leptin receptor-deficient db/db mice

with diabetic nephropathy (Kim et al. 2013c). Conversely,

Fgf21K/K mice exhibited more aggravated lipotoxicity and

renal damage compared to the control mice (Zhang et al.

2013a). These findings suggest that FGF21 induction is an

adaptive mechanism to protect against renal injury in

diabetic conditions and that FGF21 is a potential

therapeutic agent for the treatment of diabetic

nephropathy.
The role of FGF21 in pharmacologic
agent-induced metabolic benefits

A growing body of evidence suggests that several

pharmacologic agents that are currently available or are

being developed for the treatment of metabolic diseases

have a potential to induce FGF21. Here, we will review the

functional role and molecular mechanisms of FGF21

induction by anti-diabetic drugs.
Metformin and FGF21

Metformin is a first-line agent for patients with T2D,

according to the guidelines of the European Association
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0160 Printed in Great Britain
for the Study of Diabetes and the American Diabetes

Association. Metformin likely exerts its glucose-lowering

effect through inhibition of glucose absorption in the

intestine, suppression of gluconeogenesis in the liver, and

enhancement of insulin actions in the liver, adipose

tissue, or skeletal muscle (Foretz et al. 2014). The changes

of composition or alterations of microbial metabolism in

the gut microbiota are also involved in the beneficial

metabolic effects of metformin (Cabreiro et al. 2013, Shin

et al. 2014). The effect of metformin on suppression of

gluconeogenesis has been reported to be dependent on

AMPK, which functions as a conserved cellular energy

sensor in an adaptive response to diverse energy stress

conditions (Shaw et al. 2005, He et al. 2009). Metformin-

induced AMPK activation causes a decrease in the

transcription of hepatic gluconeogenic enzyme genes,

which depends on diverse factors such as CREB-regulated

transcription coactivator 2 (He et al. 2009) and the small

heterodimer partner (Kim et al. 2008). Metformin also

improves hepatic lipid homeostasis by enhancing

b-oxidation and suppressing lipogenesis in the liver via

AMPK-mediated phosphorylation of acetyl CoA carboxy-

lase (Fullerton et al. 2013). However, metformin is also

able to suppress hepatic glucose production by altering the

energy charge in an AMPK-independent manner without

affecting gluconeogenic gene expression (Foretz et al.

2010). These effects are mediated by a reduced ATP level

or an increased AMP/ATP ratio via partial inhibition of

mitochondrial respiratory-chain complex I (Foretz et al.

2010, Miller et al. 2013).

Secretory proteins (or hormones) derived from major

metabolic organs such as adipose tissue, muscle, and liver

play a key role in the maintenance of energy homeostasis

(Ouchi et al. 2011, Pedersen & Febbraio 2012, Stefan &

Haring 2013). These secretory proteins may be involved

in beneficial metabolic effects of metformin. Metformin

treatment increased serum GLP1 levels in human subjects

with or without T2D (Mannucci et al. 2004), as well as

in obese diabetic mice (Kim et al. 2014b). In addition,

metformin has been reported to induce FGF21 expression

in hepatocytes through an AMPK-dependent pathway

(Nygaard et al. 2012). We have observed that metformin

causes FGF21 upregulation, which is dependent on the

eIF2a–ATF4 axis but not on AMPK (Kim et al. 2013d).

Moreover, serum FGF21 levels in human subjects with

T2D were shown to increase after 6 months of metformin

treatment (Kim et al. 2013d). Hence, FGF21 induction by

metformin may contribute to its metabolic effects.

However, it has been also reported that the administration

of metformin to human subjects with T2D for 1 week led
Published by Bioscientifica Ltd.
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to decreased serum FGF21 levels (Zhang et al. 2013b).

Serum FGF21 levels in HIV-infected subjects treated with

metformin for 12 months were not significantly different

from those in the placebo group (Srinivasa et al. 2015).

These discrepancies could be attributable to differences

in patient selection, experimental analyses, or duration of

metformin treatment. Since the numbers of human

subjects studied were small, large-scale studies are needed

to evaluate the role of FGF21 induction in the therapeutic

effects of metformin.
Glucagon, GLP1, and FGF21

Glucagon secreted from pancreatic islet a cells is a

well-known counterregulatory hormone that maintains

glucose homeostasis by increasing gluconeogenesis and

glycogenolysis in response to fasting or hypoglycemia.

Hyperglucagonemia is observed in the early phase of

insulin resistance/T2D and contributes to hyperglycemia

by increasing the rate of hepatic glucose output and

enhancing glycogen breakdown (Unger & Cherrington

2012). Lipid metabolism and energy expenditure are also

regulated by glucagon or glucagon agonism. Some studies

have shown that glucagon decreased the levels of plasma

TG and cholesterol in rats with or without hyperlipidemia

(Eaton 1973). Glucagon also promotes lipolysis by

activating hormone-sensitive lipase in white adipocytes

(Slavin et al. 1994), enhances b oxidation, and suppresses

lipogenesis in hepatocytes (Prip-Buus et al. 1990). In

addition, glucagon has been reported to increase energy

expenditure in mice or human subjects, probably by

stimulating oxygen consumption and heat production in

BAT (Doi & Kuroshima 1982, Tan et al. 2013). Thus,

glucagon-induced beneficial effects on dyslipidemia and

obesity make it an attractive therapeutic agent for

treatment of metabolic disease, despite its potential ability

to increase blood glucose level.

Intriguingly, glucagon and glucagonagonists have been

reported to induce hepatic FGF21 gene expression, leading

to the increase of serum FGF21 levels in mice and healthy

human volunteers (Arafat et al. 2013, Habegger et al. 2013).

The effects of glucagon agonism inducing body weight loss,

hypocholesterolemia, and increased energy expenditure

were lower in Fgf21K/K mice than in control mice (Habegger

et al. 2013). Given that FGF21 reduces fat mass or serum

cholesterol levels and enhances thermogenesis, FGF21 may

act as a mediator of metabolic improvement by glucagon.

A recent paper has shown that glucagon stimulates

hepatic FGF21 secretion via PKA and Epac (exchange

protein directly activated by cAMP)-dependent pathways
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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without change of FGF21 mRNA expression (Cyphert et al.

2014), suggesting that glucagon increases FGF21 levels

through post-translational mechanisms as well as tran-

scriptional mechanisms.

GLP1, a proglucagon-derived peptide hormone, is

secreted from L cells of the intestine in response to

nutrients. GLP1 plays a key role in the control of glucose

homeostasis by enhancing insulin release and suppressing

glucagon secretion (Meier 2012). GLP1 also inhibits gastric

emptying and induces satiety, which contributes to the

suppression of food intake (Meier 2012). Five GLP1

receptor agonists (liraglutide, exenatide, lixisenatide,

albiglutide and dulaglutide) are currently being used for

the treatment of T2D. Intriguingly, GLP1 analogues also

stimulate FGF21 expression, similar to glucagon or

glucagon agonists. Treatment with liraglutide, a derivative

of human GLP1 with a fatty acid chain, induced FGF21

gene expression in the liver but not in adipose tissue of

KK-Ay mice (Nonogaki et al. 2014); consequently, serum

FGF21 levels were increased in liraglutide-treated KK-Ay

mice showing amelioration of hyperglycemia and obesity.

Moreover, treatment with exendin-4 (the naturally

occurring form of exenatide) for 10 weeks increased

hepatic FGF21 gene expression in HFD-fed mice compared

to control HFD-fed mice (Lee et al. 2014b). Dissimilar

results regarding the effect of exendin-4 on FGF21

expression have also been reported. Hepatic FGF21

expression and serum FGF21 levels were decreased in

HFD-fed mice treated with exendin-4 for 4 weeks

compared to saline treatment (Samson et al. 2011).

Consistent with this result, the addition of exenatide

reduced FGF21 levels in T2D subjects undergoing piogli-

tazone treatment (Samson et al. 2011). Furthermore, a

decrease in hepatic FGF21 levels was correlated with

reduction in hepatic TG content and liver weight in

HFD-fed mice after exendin-4 treatment, implying that

reduction of FGF21 due to exendin-4 may be secondary to

reduced lipid accumulation. Further studies are needed to

evaluate the relationship between FGF21 induction and

metabolic benefits by GLP1 analogues.

Combined glucagon/GLP1 dual agonists that retain

the anti-hyperglycemic potential of GLP1 while avoiding

the hyperglycemic effects of pure glucagon are being

evaluated in clinical trials. The glucagon/GLP1 dual

agonist is an attractive therapeutic agent as an anti-obesity

drug as well as an anti-diabetic drug, due to the lipolytic

and thermogenic properties of glucagon (Sadry & Drucker

2013). Glucagon/GLP1 dual agonists also increased hepa-

tic FGF21 expression and improved obesity-induced

metabolic deterioration in mice, similar to glucagon or
Published by Bioscientifica Ltd.
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GLP1 agonists (Pocai et al. 2009). However, the role of

FGF21 in glucagon/GLP1 dual agonism remains to be

determined.
PPARg agonist (TZD) and FGF21

TZD, a PPARg agonist, is an anti-diabetic drug used for the

treatment of T2D. TZD has been reported to enhance

glucose uptake in adipose tissue or skeletal muscle and

inhibit gluconeogenesis in the liver by reinforcing insulin

action (Soccio et al. 2014). In addition to its role as an

insulin sensitizer, TZD directly converts macrophage

polarity from pro-inflammatory M1 to anti-inflammatory

M2 type (Bouhlel et al. 2007) or indirectly via lipid

partitioning (Prieur et al. 2011), probably leading to

attenuation of obesity-induced adipose inflammation

and insulin resistance. TZD may also elicit beneficial

metabolic effects by regulating the levels or actions of

hormones. Treatment with TZD caused an increase in

serum adiponectin levels in obese mice and consequently

improved obesity-induced glucose intolerance (Nawrocki

et al. 2006). The effectiveness of TZD was diminished in

obese AdipoqK/K mice, suggesting that adiponectin is an

important contributor to TZD-mediated improvement of

whole-body glucose metabolism (Nawrocki et al. 2006). In

addition, TZD has been reported to increase FGF21 gene

expression in adipose tissue, but not in the liver, through

activation of PPARg and, consequently, serum FGF21

levels are higher in TZD-treated mice compared to control

mice (Muise et al. 2008). These results suggest a possible

role of FGF21 in the anti-diabetic actions of TZD. In line

with this assumption, obese Fgf21K/K mice were refractory

to the metabolic effects of TZD (Dutchak et al. 2012).

Notably, these effects of TZD are associated with the local

action of FGF21 in adipose tissue but not with the systemic

action. Adipose-derived FGF21 induction by TZD sup-

presses sumoylation of PPARg and consequently enhances

PPARg activity in adipose tissue, probably contributing to

anti-diabetic effects of TZD (Dutchak et al. 2012).

However, another paper reported that Fgf21K/K mice

exhibited metabolic responses to TZD similar to those of

Fgf21C/C mice (Adams et al. 2013a). Furthermore, PPARg

sumoylation in adipose tissue did not differ between the

two groups after TZD treatment (Adams et al. 2013a).

There is no clear explanation for these discrepancies,

which might be attributable to the differences in knockout

mouse strains or experimental procedures. Further studies

are required to understand the relationship between

FGF21 and PPARg in TZD-induced pharmacologic actions.

Given that both TZD and FGF21 induce browning of WAT
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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(Vernochet et al. 2009, Petrovic et al. 2010, Fisher et al.

2012), it will also be interesting to study the role of FGF21

in TZD-induced browning.
Sirt1 activators and FGF21

Sirt1, an NAD-dependent deacetylase, is an important

regulator of cellular or whole-body energy metabolism

through the modulation of acetylation/deacetylation of

histones or non-histone proteins. Sirt1 gain- or loss-of-

function studies in the whole-body or in specific organs

have suggested that Sirt1 is a promising therapeutic target

for the treatment of insulin resistance and T2D (Boutant &

Canto 2014). Pharmacologic studies have suggested that

several Sirt1 activators have therapeutic efficacy in T2D

associated with obesity. Resveratrol, a natural polyphenol

product derived from grapes, is a well-known Sirt1

activator that improves metabolic profiles in obese mice

(Baur et al. 2006, Lagouge et al. 2006) and human subjects

with obesity or T2D (Timmers et al. 2011). SRT1720, a

synthetic small molecule activator of Sirt1, improves

insulin sensitivity and glucose tolerance (Milne et al.

2007). Sirt1-mediated regulation of glucose and lipid

homeostasis may be elicited by various mechanisms,

including an increase of PGC1a-mediated b oxidation

and mitochondrial biogenesis (Feige et al. 2008), suppres-

sion of sterol regulatory element-binding protein

1c-mediated fatty acid synthesis (Ponugoti et al. 2010),

reduction of nuclear factor-kappa B-mediated macrophage

inflammation (Schug et al. 2010), or enhancement of

PPARg-mediated browning (Qiang et al. 2012). In

addition, Sirt1-mediated changes in the levels of certain

hormones may contribute to its beneficial metabolic

action. Sirt1 induces adiponectin gene expression through

deacetylation of forkhead box O1 (Qiao & Shao 2006),

which may help improve glucose tolerance and insulin

sensitivity. Additionally, it has been reported that Sirt1

increases insulin secretion through the suppression of

transcription of uncoupling protein 2 (Bordone et al.

2006). Resveratrol has been also reported to enhance

insulin release from pancreatic b cells (Vetterli et al. 2011).

A recent paper reported that Sirt1 or its activators

(resveratrol and SRT1720) induced FGF21 gene expression

in the liver of mice and that liver-specific Sirt1 knockout

(Sirt1Dhep) mice had a reduced hepatic expression and

serum level of FGF21 compared to control mice in

response to fasting (Li et al. 2014). Importantly, Sirt1Dhep

mice exhibited reduced ketogenesis and increased hepatic

lipid accumulation in fasting conditions; this was rescued

by adenovirus-mediated hepatic FGF21 overexpression
Published by Bioscientifica Ltd.
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(Li et al. 2014). These results suggest that Sirt1-mediated

FGF21 induction plays an important role in the adaptive

metabolic response to fasting. Furthermore, Sirt1 may

participate in GLP1 receptor agonist-induced FGF21

expression in hepatocytes (Lee et al. 2014b). Further

studies will be necessary to elucidate the role of FGF21 in

the metabolic improvement by Sirt1 activators.
Other pharmacological compounds and FGF21

A growing body of evidence suggests that other thera-

peutic reagents influence FGF21 gene expression. Lipoic

acid, also known as thioctic acid, is an octanoic acid-

derived organosulfur compound that is naturally syn-

thesized in small amounts in the body (Shay et al. 2009).

Lipoic acid plays an important role in the maintenance of

mitochondrial respiratory capacity as a cofactor that

covalently binds to mitochondrial complex enzymes

(Shay et al. 2009). Numerous studies have suggested that

lipoic acid supplements improved glucose intolerance and

insulin sensitivity in mice and human subjects (Jacob et al.

1999). In Germany, lipoic acid is medically approved for

the treatment of adult-onset T2D and diabetic compli-

cations such as diabetic neuropathy. Lipoic acid has been

reported to regulate glucose and lipid metabolism by

modulating the activity of Sirt1 or AMPK (Park et al. 2008,

Yang et al. 2014). Importantly, lipoic acid has been also

reported to induce FGF21 expression in hepatocytes and

in the livers of mice, probably via upregulation of CREBH

(Bae et al. 2014). However, a biological role of FGF21 in

lipoic acid-induced metabolic improvement remains to be

determined. Acarbose, an a-glycoside hydrolase inhibitor

that is being used as an anti-diabetic drug, has been

reported to increase serum FGF21 levels in aged mice

(Harrison et al. 2014). Given the effects of acarbose on the

enhancement of the life-span and improvement of

metabolic derangement (Harrison et al. 2014), these

findings suggest that acarbose may elicit its metabolic

actions through FGF21. This issue awaits further

investigation.
Conclusions

Numerous studies have suggested that FGF21 is a

promising therapeutic agent for the treatment of obesity-

related insulin resistance due to its multiple actions on

diverse metabolic target organs. In addition to the

metabolic effects of FGF21, we discussed the importance

of FGF21 induction in several disease conditions such as

muscle atrophy, liver injury, cardiovascular disease, and
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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renal injury. FGF21 may also play a protective role against

glutamate-induced neuronal excitotoxicity (Leng et al.

2015) or chemical-induced testicular injury (Jiang et al.

2013). Chronic FGF21 overexpression has been reported

to extend the life-span in mice, probably through a

mechanism involving suppression of the GH/insulin-like

growth factor 1 signaling pathway (Zhang et al. 2012).

Despite diverse beneficial effects of FGF21, it may have

side effects such as growth retardation (Inagaki et al. 2008),

bone loss (Wei et al. 2012), and female infertility (Owen

et al. 2013). Further studies are needed to evaluate the

legitimate therapeutic role of FGF21 or its mimetics in

several diseases, which will provide new strategies to

develop novel agents without adverse effects. In addition,

further work on the elucidation of uncharacterized down-

stream effectors of FGF21 in specific organs will help

develop promising drug targets capable of mimicking the

beneficial effects of FGF21.
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