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Abstract
The ‘sick euthyroid syndrome’ or ‘non-thyroidal illness syndrome’ (NTIS) occurs in a large

proportion of hospitalized patients and comprises a variety of alterations in the

hypothalamus–pituitary–thyroid (HPT) axis that are observed during illness. One of the

hallmarks of NTIS is decreased thyroid hormone (TH) serum concentrations, often viewed as

an adaptive mechanism to save energy. Downregulation of hypophysiotropic TRH neurons in

the paraventricular nucleus of the hypothalamus and of TSH production in the pituitary

gland points to disturbed negative feedback regulation during illness. In addition to these

alterations in the central component of the HPT axis, changes in TH metabolism occur in a

variety of TH target tissues during NTIS, dependent on the timing, nature and severity of the

illness. Cytokines, released during illness, are known to affect a variety of genes involved in

TH metabolism and are therefore considered a major determinant of NTIS. The availability of

in vivo and in vitro models for NTIS has elucidated part of the mechanisms involved in the

sometimes paradoxical changes in the HPT axis and TH responsive tissues. However, the

pathogenesis of NTIS is still incompletely understood. This review focusses on the molecular

mechanisms involved in the tissue changes in TH metabolism and discusses the gaps that still

require further research.
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Introduction
Illness results in profound changes in thyroid hormone

(TH) metabolism called the ‘sick euthyroid syndrome’ or

‘nonthyroidal illness syndrome’ (NTIS). NTIS is charac-

terized by decreased serum triiodothyronine (T3) and

thyroxine (T4) concentrations, increased serum reverse

T3 (rT3) concentrations and unaltered or inappropriately

low serum thyroid-stimulating hormone (TSH), indicating

profoundly altered negative feedback in the pituitary and

hypothalamus (Docter et al. 1993). The alterations in the

central part of the hypothalamus–pituitary–thyroid (HPT)

axis are combined with reduced production of T3 and

impaired clearance of rT3 by the liver, and with specific
changes in peripheral TH metabolism in major T3 target

organs. Muscle and adipose tissue show additional and

differential changes in TH metabolism. The role of the

thyroid gland has been largely neglected with regard to

illness induced alterations in TH metabolism for many

years, but in vitro studies showed that genes involved in

the production and release of T4 and T3 are severely

affected by high concentrations of pro-inflammatory

cytokines (Bartalena et al. 1998). In addition, acute

inflammation in mice reduced thyroidal TSH-receptor

expression preceded by an acute increase in interleukin

1 beta (IL1b) expression (Boelen et al. 2004a). Thus, the
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thyroid gland itself is clearly involved in the pathogenesis

of NTIS. The ultimate effects of the observed changes in

local TH metabolism on tissue function during illness are

currently unknown. However, the common view is that

while changes observed during the acute phase of illness

are beneficial they may become deleterious during

prolonged critical illness, making the stage and severity

of illness a major determinant of NTIS.

Cytokines have been implicated in the development

of NTIS for more than two decades. IL6 was found to be

negatively correlated with serum T3 concentrations in

hospitalized patients (Boelen et al. 1993). In mice,

administration of bacterial endotoxin or lipopolysacchar-

ide (LPS) results in an acute increase of serum IL6 and

tumor necrosis factor alpha (TNFa) concentrations

(Boelen et al. 1995). A causal role for IL6 in the

development of NTIS in mice was shown since IL6 knock

out mice show a less pronounced drop in serum T3 during

illness (Boelen et al. 1996). However, acute injection of

cytokines failed to induce NTIS like features, except for

interferon gamma (IFNg) which reduces serum T3 and T4

(Boelen et al. 1995). Chronic infusions with IL1 and IL6 on

the other hand mimick certain symptoms such as

decreased serum T4 and T3 and decreased thyrotropin-

releasing hormone (TRH) expression in the hypothalamus

in mice (van Haasteren et al. 1994), while chronic IL1b

infusions mimicks certain aspects of NTIS in the rat

(Hermus et al. 1992).

Mechanisms involved in the pathogenesis of NTIS

have predominantly been studied by using a variety of

in vivo and in vitro models. Several NTIS rodent models

have been described i.e. acute illness, induced by

administration of a sublethal dose of LPS (Boelen et al.

2004a, Fekete et al. 2004); chronic inflammation, induced

by injection of turpentine in the hind limb ultimately

resulting in the formation of an abscess (Chopra et al.

1987, Boelen et al. 2006); bacterial sepsis, induced by

inoculation of Streptococcus pneumoniae or i.p. injection

with Escherichia coli (Knapp et al. 2003, Boelen et al. 2008)

and prolonged critical illness in rabbits induced by burn

injury (Weekers et al. 2002). The similarity between these

models is the decrease in serum TH concentrations,

although the time course, severity and inflammatory

response are variable. The availability of transgenic mice

provided the possibility to study the specific contribution

of genes involved in TH metabolism in the context of

NTIS. The role of specific molecular factors involved in the

altered TH metabolism has been studied extensively

in vitro by using a variety of cell lines that were stimulated

with LPS or pro-inflammatory cytokines with and without
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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specific inhibitors. In this review, we discuss changes in

TH regulation and metabolism during NTIS, and the

molecular mechanisms involved.
Illness induced alterations in hypothalamic
TRH expression

The combination of low serum TH and an inappropriately

low TSH response suggests central down-regulation of the

HPT axis. This is supported by the observation that TRH

gene expression in the paraventricular nucleus (PVN) of

the hypothalamus was decreased in post mortem hypo-

thalamic tissue of patients who died after prolonged

illness as compared with patients with acute cardiac arrest.

Moreover, TRH mRNA expression in the PVN correlates

positively with pre-mortem serum TSH and T3 levels (Fliers

et al. 1997). In addition, several animal studies show that

hypothalamic TRH expression also decreases after acute

inflammation (Kakucska et al. 1994), chronic inflam-

mation (Boelen et al. 2006) and prolonged critical illness

in rabbits (Mebis et al. 2009). However, the underlying

mechanisms are incompletely understood. Local T3

bioavailability in the hypothalamus might play a role as

TRb0/0 mice display an impaired illness induced TRH

decrease and TRb signalling is important for the feedback

regulation of T3 on TRH neurons. However, the role of

circulating TH is probably limited as alterations in the

hypothalamus that are supposed to be involved in the

illness induced TRH decrease precede the decrease in

circulating TH levels (Fekete et al. 2005). A striking

observation that has been linked to the illness induced

TRH decrease is a marked increase in type 2 deiodinase

(D2/Dio2) mRNA expression both in tanycytes, specialised

cells lining the wall of the third ventricle (de Vries et al.

2014a) and in the hypothalamus of a variety of rodent and

rabbit NTIS models (Boelen et al. 2004a, 2006, Fekete et al.

2004, Mebis et al. 2009). D2 is the main T3 producing

enzyme in the brain and involved in the regulation of

local TH availability. In an in vitro coculture system,

increased D2 expression in glial cells results in an increase

of T3 responsive gene expression in cocultured neurons,

indicating that increased T3 production by D2 in tanycytes

could influence adjacent neurons in a paracrine fashion

(Freitas et al. 2010). The observation that TRb0/0 mice do

not show a hypothalamic TRH decrease supports the role

for local T3 in the suppression of TRH secretion (Boelen

et al. 2009a). The mechanisms involved in the illness

induced increase in Dio2 mRNA expression are discussed

in the following section. In addition, both IL1b and

corticosterone are known to affect Trh expression directly
Published by Bioscientifica Ltd.
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and could also contribute to the TRH decrease upon

inflammation (Kakucska et al. 1994, 1995). TRH is also

decreased during starvation suggesting that part of the

observed TRH decrease during illness might be a result

of the diminished food intake associated with illness.

However, in a mouse model for chronic inflammation,

diminished food intake does not play a role in the

observed Trh decrease (Boelen et al. 2006).
Illness induced alterations in pituitary TSHb

expression

One of the characteristics of NTIS is the absence of an

appropriate TSH response in the face of low serum T4 and

T3 concentrations. Low TSH serum concentrations and

decreased Tshb mRNA expression in the pituitary have

been described in a wide variety of animal models (Boelen

et al. 2004a, 2006, Fekete et al. 2004, Mebis et al. 2009). The

mechanism involved is still unclear although we showed

that the illness induced decrease of Tshb expression

depends on functional thyroid hormone receptor (TR)

signaling, since TRb0/0 mice show a blunted Tshb

decrease upon LPS stimulation compared to their WT

counterparts (Boelen et al. 2009a). The diminished food

intake that is associated with chronic inflammation is

only partly responsible for the observed Tshb decrease

(Boelen et al. 2006).

The pituitary expresses both D1/Dio1 and D2 (Alkemade

et al. 2006). The D2 mediated conversion of T4 to T3

has been thought to be important for the feedback of

TH on TSH, since D2 knock out mice show a disturbed

negative feedback (Schneider et al. 2001). As the LPS

induced suppression of TRH in the hypothalamic PVN

is associated with an increase of Dio2 expression in the

mediobasal hypothalamus (Boelen et al. 2004a, Fekete

et al. 2004), it was speculated that the LPS induced

decrease in Tshb expression might also be dependent on

increased D2 activity in the pituitary. Surprisingly, the

response of Dio2 expression in the pituitary after LPS

appeared to be dependent on the species, strain and type

of illness studied; both increased and decreased Dio2

expression have been observed (Boelen et al. 2004a, 2006,

2009a, Fekete et al. 2004). Furthermore, administration

of LPS to rats results in an increased pituitary D2 activity

after 12 and 24 h, which is dependent on the fall in TH

concentrations, in contrast to the hypothalamic D2

increase (Fekete et al. 2005). Further studies using pituitary

specific D2 knock out mice are necessary to investigate

the exact role of D2 in the LPS induced alterations in

TH metabolism in the pituitary.
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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In addition to Dio2, the expression of Dio1 in the

pituitary is increased during inflammation (Boelen et al.

2004a, 2009a). This change is mediated by the increase in

cytokines during the acute phase response, since animals

deficient for IL12 and IL18 do not show the LPS induced

increase (Boelen et al. 2004b,c). If the D1 increase in the

pituitary gland serves a purpose with regard to the Tshb

decrease is unknown at present. Alternatively, the Tshb

decrease might be dependent on the changes in Dio2

expression in the mediobasal hypothalamus, which could

affect the pituitary either via suppression in Trh expression

or theoretically via an increase in T3 transported from the

hypothalamus to the pituitary via the portal capillaries

(Fekete & Lechan 2007).

In vitro studies using primary cultures of pituitary cells

show that cytokines have a pronounced effect on pituitary

release of TSHb. Both IL1b and TNFa decrease basal TSHb

release independently of T3 uptake and action in the

pituitary cells (Harel et al. 1995, Wassen et al. 1996).

Interestingly, acute energy deprivation has no effect on

TSHb release from pituitary cells in culture, consistent

with the in vivo studies discussed above showing that the

TSHb decrease during chronic inflammation is only partly

explained by decreased food intake (Boelen et al. 2006).
The effect of cytokines on TH synthesis

Several components of the TH synthesis pathway are

downregulated by cytokines directly on the level of the

thyrocyte, ultimately leading to decreased secretion of T4

and T3 (Bartalena et al. 1998).

Supraphysiological concentrations of the pro-inflam-

matory cytokines IL1a and IL1b inhibit the TSH-induced

thyroglobulin (Tg) mRNA expression and Tg release in

human cultured thyrocytes via suppression of cAMP

(Rasmussen et al. 1988, 1994, Yamashita et al. 1989).

IL1a and IL1b also decrease 125I incorporation and T4 and

T3 secretion from human thyrocytes in the presence of

TSH (Sato et al. 1990). Thyroid peroxidase (TPO) mRNA

expression and protein content, important for the

oxidation of iodide to iodine, is also directly affected by

IL1 in human thyrocytes and rat thyroid FTRL-5 cells

(Asakawa et al. 1996, Gerard et al. 2006). Moreover, IL1b

impairs basal and TSH-stimulated uptake of iodide by the

natrium/iodide symporter (NIS) in porcine thyroid

follicles (Nolte et al. 1994). The role of IL6 is less well

established: one study showed that IL6 inhibits the TSH-

and cAMP-induced increase in TPO mRNA expression

and T3 secretion in thyrocytes obtained from Graves’

disease patients (Tominaga et al. 1991), while IL6 has
Published by Bioscientifica Ltd.
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only a minor effect on cultured human thyroid cells

(Rasmussen et al. 1991).

IFNg is a cytokine that is mainly involved in anti-viral

and anti-bacterial responses and is produced by natural

killer and T-cells. INFg has a variety of effects on human

thyrocytes in culture; it inhibits TSH- induced TH and Tg

secretion (Nagayama et al. 1987, Kung et al. 1992) as well as

Tg mRNA expression (Sato et al. 1990), TSH-induced TPO

expression (Ashizawa et al. 1989) and the TSH- and cAMP-

induced upregulation of TSH receptors on the thyrocyte

(Nishikawa et al. 1993). IFNg also inhibits the TSH-induced

increase in NIS expression in rat FTRL-5 cells resulting in

diminished iodide uptake (Ajjan et al. 1998). Interestingly,

overexpression of IFNg in thyroid cells in a transgenic

mouse leads to primary hypothyroidism mainly due to a

big decrease in NIS mRNA and protein expression

(Caturegli et al. 2000).

TNFa plays an important role in the acute phase

response and is known to inhibit the TSH-induced cAMP

response and Tg production (Deuss et al. 1992) and release

(Poth et al. 1991, Rasmussen et al. 1994) in cultured

thyrocytes. TNFa also inhibits NIS expression in rat FTRL-5

cells (Ajjan et al. 1998).

Finally, cytokines are able to inhibit D1 expression

and activity in the rat thyrocyte and FRTL-5 cells (Pekary

et al. 1994, Hashimoto et al. 1995, Tang et al. 1995). Taken

together, these studies clearly show that cytokines,

either alone or synergistically, are able to downregulate

various components of the TH synthesis pathway in the

thyroid, ultimately leading to decreased secretion of T4

and T3 (Fig. 1).
Illness induced alteration in TH transport

Cellular entry of TH is necessary before intracellular

conversion of TH by deiodinating enzymes and binding

to the nuclear TR can take place. Two categories of TH

transporters have been described i.e. the organic anion

transporters and the amino acid transporters. The organic

anion transporting polypeptide family consists of a variety

of homologous proteins of which OATP1C1 is expressed in

brain capillaries and in astrocytes where it is involved in

the uptake of T4 across the blood–brain barrier (Sugiyama

et al. 2003). Well-known amino acid transporters of solute

carrier (SLC) group are MCT8 and MCT10. MCT8

transports both T4 and T3 and is expressed in many tissues

including liver, kidney and in various brain areas

including cortical regions, striatum, cerebellum and

hypothalamus (Alkemade et al. 2005, Heuer et al. 2005,

Visser et al. 2011). MCT10 preferentially transports T3
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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instead of T4 and is expressed in kidney, liver and muscle

(Visser et al. 2011). Once transported into the cell, THs can

be metabolized by outer or inner ring deiodination

through the iodothyronine deiodinases.

In a rabbit model for prolonged critical illness,

hypothalamic Oatp1c1 and Mct10 expression was upregu-

lated, while Mct8 expression was unaltered (Mebis et al.

2009). The functional consequences of these changes were

unclear. In mice that received a turpentine injection in the

hindlimb, leading to the formation of a sterile abscess,

Mct8 as well as D3 (discussed in the following section) was

found to be expressed in infiltrating neutrophils (Boelen

et al. 2005). The rabbit and mouse studies show that MCT8

does respond to a variety of illnesses, but more extensive

studies, including functional studies, will be needed to

address this topic in more detail.
TH production and degradation by
deiodinases

THs can be produced and degraded by iodothyronine

deiodinating enzymes, so-called deiodinases. These

enzymes belong to a selenocysteine containing enzyme

family and comprise three types: D1, D2 and D3 (Kohrle

2000). D1 and D2 are T3 producing enzymes while D3

inactivates T4 and T3. The expression and activity levels of

all three deiodinases are affected during illness. The basic

expression levels of the different deiodinases differ; some

organs express predominantly D2 and D3 while other

organs showed a limited expression of D2 or D3 but do

express D1. The combination of the deiodinases expressed

in a cell together or in the same tissue determine the

availability of T3 and thereby cellular and tissue function.
Type 1 deiodinase

The role of D1 in the pathogenesis of NTIS has been

extensively studied as D1 is thought to be involved in the

production of serum T3 (decreased during illness) via outer

ring deiodination and in the clearance of rT3 (rT3

concentrations are increased during illness in humans)

via inner ring deiodination. D1 is localized in the plasma

membrane, and expressed in liver, kidney, thyroid and

pituitary. It is positively regulated by T3 (Toyoda et al.

1995, Jakobs et al. 1997). Illness induces a marked decrease

in liver D1 mRNA expression and activity in critically ill

patients (Peeters et al. 2003, 2005) and in a variety of NTIS

animal models (Boelen et al. 1995, 2004a, 2005, 2008,

Debaveye et al. 2005).
Published by Bioscientifica Ltd.
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Figure 1

Cytokines have direct inhibitory effects on components of the thyroid

hormone synthesis pathway in the thyrocyte. Cytokines diminish the

uptake of iodide by the natrium/iodide symporter (NIS). Thyroglobulin (Tg)

is synthesized within the follicular cells and is transported into the follicular

lumen. The transcription of Tg is inhibited by cytokines. In the lumen,

thyroid peroxidase (TPO) is a key enzyme in the formation of TH. It oxidizes

IK to I2 and subsequently organifies the I2 by linking it to the tyrosin

residues on the Tg protein forming mono-iodotyrosine (MIT) and

di-iodotyrosine (DIT). TPO subsequently combines MIT and DIT to form

triiodothyronine (T3) or two DIT residues to form thyroxine (T4). TPO

expression and function is inhibited by cytokines. After endocytosis into

the follicular cell, Tg is broken down thereby releasing T4 and T3.

Additional T3 is formed by deiodination of T4 by type 1 deiodinase (D1)

which is also inhibited by cytokines.
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The Dio1 gene is activated via a TR/RXR heterodimer

which indicates that decreased Dio1 expression may result

from reduced TR or/and reduced RXR expression. T3

positively regulates the expression of Dio1 via TRb

mediated binding to TH responsive elements in the Dio1

promoter and functional TRb signaling is therefore

essential for basal expression of Dio1 (Amma et al. 2001).

Liver TRb expression is downregulated during acute

inflammation in mice (Beigneux et al. 2003, Boelen et al.

2004a). In vitro studies suggest a major role for cytokines,

as IL1b decreases TRb mRNA expression in a human

hepatoma cell line (HepG2; Kwakkel et al. 2006). Further-

more, TNFa, IL1 and IL6 decrease the binding capacity of

T3 to the TR (Jakobs et al. 1997). An important intracellular

signalling pathway for cytokines is the nuclear factor-

kappa B (NF-kB) pathway. Nagaya et al. (2000) show that
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0133 Printed in Great Britain
TNFa impairs the T3 dependent induction of Dio1

expression in HEPG2 cells via interference of NF-kB with

TR function. There is, however, no evidence for a direct

interaction between the TR and NF-kB which suggests a

common cofactor by NF-kB and the TR to play a role

(Nagaya et al. 2000).

Although it was assumed that mainly the TRb was

involved in the illness induced D1 repression in the liver,

studies in TRb0/0 and TRa0/0 mice show that while the LPS

induced D1 decrease is still present in the TRb0/0 mice, this

response is attenuated in the TRa0/0 mice (Kwakkel et al.

2008, 2010). In addition, the IL1b induced decrease in TRb

mRNA expression in HepG2 cells is solely dependent on

NF-kB signaling, while the decreases in Dio1 and TRa are

dependent on both NF-kB and activator protein-1 (AP-1)

signaling (Kwakkel et al. 2006, 2007). This suggests that
Published by Bioscientifica Ltd.
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diminished expression of the TRb by itself is not the only

factor in the illness induced liver Dio1 decrease.

An very elegant alternative mechanism for TRb-

mediated repression of liver D1 during acute inflam-

mation has been proposed by Yu et al., who showed both

in vivo and in vitro that adding exogenous co-activator

steroid receptor co-activator-1 (SRC-1) attenuates the

illness induced liver D1 decrease (Yu & Koenig 2000,

2006). These studies indicate that competition for

limiting amounts of SRC-1, which is a shared coactivator

for TR and inflammatory signaling pathways, is one of the

mechanisms involved in the illness induced D1 decrease.

Indeed, restoration of liver Dio1 expression by exogenous

SRC-1 prevents the fall in serum TH levels after LPS (Yu &

Koenig 2000, 2006).

After LPS administration, hepatic RXRa protein

rapidly migrates to the cytoplasma where it can be

degraded. This process is mediated by the inflammatory

pathway JNK (Beigneux et al. 2000). However, the IL1b

induced decrease of liver Dio1 mRNA is not prevented by

inhibition of JNK alone (Kwakkel et al. 2006), which makes

it unlikely that RXR is solely responsible for the illness

induced decrease in liver Dio1.

An additional possibility is that decreased amounts of

a specific co-factor glutathione (GSH), required for D1

catalytic activity (Goswami & Rosenberg 1987) may play a

role in the illness induced decrease of liver D1 activity. D1

activity in intact liver cells can be suppressed by IL6 and

the addition of N-acetyl-cysteine, an antioxidant that

restores intracellular GSH levels, prevents the IL6-induced

suppression of D1 (Wajner et al. 2011, Fig. 2).

Although these studies provide mechanisms behind

the illness induced D1 decrease in the liver, the import-

ance of this decrease for the development of NTIS is

questioned by studies in D1/D2 knock out mice, showing

similar responses to LPS administration with regard to

changes in serum T4 and T3 compared to WT littermates

(St Germain et al. 2009). Although it is unknown at

present whether a lack of D1 affects the illness induced

liver T3 concentrations, it has been shown in critically ill

rabbits that the suppression of liver D1 activity was

correlated with decreased hepatic T3 concentrations

(Debaveye et al. 2008).
Type 2 deiodinase

D2 is localized in the endoplasmic reticulum and

deiodinates T4 into the biologically active T3. D2 is the

main enzyme involved in the production of tissue T3 and

is therefore heavily involved in local TH metabolism.
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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D2 is negatively regulated by TH, both pre- and post-

transcriptionally, as T3 down regulates Dio2 mRNA

expression (Burmeister et al. 1997), while T4 as well as

rT3 (both substrates for D2) affect D2 activity via increasing

D2 ubiquitination and subsequent proteasomal

degradation (Sagar et al. 2007).

Many studies have focused on the role of D2 in the

central part of HPT axis as the setpoint of the central HPT

axis that is altered during illness. The unresponsiveness of

the HPT axis to low serum TH levels has been suggested to

be mediated by increased production of T3 via elevated D2

activity in tanycytes (Fekete et al. 2004) as mice lacking the

TRb do not show an illness induced hypothalamic Trh

decrease (Boelen et al. 2009a). In addition, global D2

knock out mice do not show a suppression of Trh upon LPS

stimulation (Freitas et al. 2010).

The inflammation induced D2 upregulation in the

hypothalamus was found to be independent of the fall in

serum TH concentrations, in contrast to D2 expression

in other brain areas like the cortex and in the pituitary

(Fekete et al. 2005). A role for inflammatory cytokines was

suggested as LPS administration results in a rapid increase

of pro-inflammatory cytokines including TNFa, IL1 and

IL6. The Dio2 promoter contains NF-kB responsive

elements and is thus sensitive to inflammatory signal

transduction pathways (Fekete et al. 2004, Zeold et al.

2006). NF-kB is therefore highlighted as a possible

mediator of the inflammation induced increase in Dio2

expression in the hypothalamus.

In vitro, NF-kB is able to induce Dio2 expression in

mesothelioma cells endogenously expressing D2 (Zeold

et al. 2006). In a primary culture of rat astrocytes and

human glioma cells, LPS induces Dio2 mRNA expression

via the NF-kB and MAPK pathways (Lamirand et al. 2011).

However, the significance of these findings with regard to

NTIS are debatable, since the changes in Dio2 expression

occur relatively late in astrocytes compared to tanycytes.

Stimulation of primary tanycytes with LPS also results

in an increase of Dio2 expression. This effect can be

completely blocked when the transcriptional activity of

the NF-kB pathway is inhibited (de Vries et al. 2014a)

indicating an important role for NF-kB in the relevant cell

type. These results will have to be replicated in vivo, since a

study by Sanchez et al. (2010) showed that Ik-Ba, a marker

for NF-kB activation, is expressed secondary to the rise in

Dio2 in tanycytes after LPS administration in rats.

During fasting, a rise in D2 activity in the hypo-

thalamus is also observed, however the magnitude of

this response is marginal compared to the increase in

D2 activity during inflammation. Furthermore, the
Published by Bioscientifica Ltd.
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Schematic representation of the mechanisms involved in the inflammation-

induced inhibition of type 1 deiodinase (D1) expression and activity.

(A) Under physiological conditions, thyroid hormone receptor (TR) mediated

gene transcription needs the presence of co-factors such as steroid receptor

co-activator (SRC). D1 is dependent on cofactors such as glutathione (GSH).

(B) During inflammation, competition for co-factors by cytokine induced

pathways such as activator protein-1 (AP-1) and/or nuclear factor-kappa B

(NF-kB) leads to lessTR mediated transcription of the Dio1 gene.Cytokines are

also able to produce reactive oxygen species via the NADPH oxidase pathway

which depletes the available GSH thereby diminishing D1 activity.
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mechanisms behind the fasting induced increase in D2

are different and dependent on leptin, corticosterone and

changes in neuropeptide expression (Diano et al. 1998).

D2 is expressed in skeletal muscle (Bianco & Kim 2006)

and is thought to be involved in the peripheral production

of T3 under basal circumstances (Maia et al. 2005). Dio2

expression in skeletal muscle increases in intensive-care

unit patients (Mebis et al. 2007), in several NTIS animal

models of acute (Kwakkel et al. 2008) and chronic

inflammation (Kwakkel et al. 2009), while in septic

patients and mice muscle Dio2 expression decreases

(Rodriguez-Perez et al. 2008, Kwakkel et al. 2009). The

increased Dio2 expression during chronic inflammation is

likely due to enhanced CREB signalling (Kwakkel et al.

2009), while the decrease during sepsis might be mediated

by decreased food intake since 62 h of fasting decreased

muscle Dio2 expression in healthy volunteers (Heemstra

et al. 2009) (see Fig. 3).

Like inflammation, hypothyroidism increases D2

activity in the hindlimb muscle of mice (Marsili et al.

2010). The increased production of T3 in muscle by D2

plays an important role during myogenesis, muscle
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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regeneration and differentiation, and is mediated via the

forkhead box O3 (FoxO3) pathway (Dentice et al. 2010,

Marsili et al. 2011). Fox transcription factors are a class of

transcription factors that bind to forkhead regulatory

elements in the DNA and regulate a variety of cell

functions (Accili & Arden 2004). Whether the FoxO3

pathway also plays a role in the inflammation induced D2

increase remains questionable at this stage.

D2 is also expressed in the lung, although the

significance in the healthy adult lung is unknown

(Escobar-Morreale et al. 1997, Ohba et al. 2001). During

LPS induced lung injury (caused by intranasal LPS

administration) and ventilator-induced lung injury

(VILI) in mice, the expression of D2 in the lung is

increased (Ma et al. 2011). In addition, D2 protein

expression is increased in human microvascular

endothelial cells that are subjected to cyclic stretch

(Ma et al. 2011). The increase in D2 expression and the

subsequent rise in local T3 concentrations might be an

adaptive and protective mechanisms of the lung to

prevent lung damage during inflammation, since knock-

ing down D2 in vivo aggravates lung injury after VILI
Published by Bioscientifica Ltd.
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(Barca-Mayo et al. 2011, Ma et al. 2011). VILI leads to local

increases of TNFa, IL6 and IL1b, again suggesting the

involvement of cytokines in the upregulation of Dio2

(Barca-Mayo et al. 2011) via NF-kB activation (Lentsch

et al. 1998, Leeper-Woodford & Detmer 1999). Indeed,

inhibiting NF-kB activation protects mice from LPS

induced acute lung injury (Wang et al. 2013).

Interestingly, TH metabolism is also tightly linked

with the innate immune system. Increased expression of

Dio2 is found in resident macrophages in the liver upon

chronic and acute inflammation. However, this is not

mediated by NF-kB and the mechanisms involved are

unknown to date (Kwakkel et al. 2014).

D2 is homeostatically regulated by a post transcrip-

tional mechanism involving ubiquitination mediated

conformational changes and subsequent proteosomal

degradation, explaining its short half-life compared to

the other deiodinases. This mechanism was first described
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0133 Printed in Great Britain
by Gereben et al. (2000) and was shown to be induced by

the major substrate of D2, T4. Ubiquitination of D2 by the

ubiquitin conjugating enzymes UBC6 and UBC7 is

mediated via WSB-1 (a D2 specific E3 ubiguitin ligase

adaptor subunit) which changes the conformation of the

D2 dimer and thus its catalytic activity (Sagar et al. 2007).

D2 can be reactivated by de-ubiquitination by the de-

ubiquitinating enzyme USP-33 (Curcio-Morelli et al.

2003). In tanycytes, both WSB-1 and USP-33 are co-

expressed with D2 (Fekete et al. 2007). Recent studies,

however, show that T4 induced ubiquitination in tany-

cytes is minimal, probably to ensure the sensitivity of the

TRH producing neurons in the PVN to fluctuations in

serum TH concentrations (Werneck de Castro et al. 2015).

In line with these findings, there is no evidence that

ubiquitination is involved in the regulation of D2 during

inflammation. Also in muscle, where D2 expression

and activity is increased upon inflammation, WSB-1 and
Published by Bioscientifica Ltd.
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USP-33 expression is not correlated with the increased

D2 activity during chronic inflammation and sepsis

(Kwakkel et al. 2009).
Type 3 deiodinase

D3 is localized in the plasma membrane and can be

viewed as the major TH inactivating enzyme, as it

catalyzes inner-ring deiodination of both T4 and T3,

exclusively resulting in the production of biologically

inactive rT3 and rT2 (Kohrle 2000). D3 is highly

expressed in the placenta during fetal development,

thereby protecting the fetus from an overexposure of T3

(Darras et al. 1999). In the adult organism, D3 is expressed

in neurons in the brain, the liver and in parts of the

innate immune system, although physiological levels are

very low (Gereben et al. 2008).

Illness influences D3 expression and activity in the

liver, but the results from animal studies vary. While

during acute and chronic inflammation and during sepsis

liver Dio3 mRNA expression and activity levels are

decreased (Boelen et al. 2005, 2008), hepatic D3 expression

and activity are increased in rabbits with prolonged critical

illness (Debaveye et al. 2005). Slightly increased D3

activity is also observed in the livers of severely ill patients

(Peeters et al. 2003).

During prolonged critical illness, decreased food

intake might be an important factor in regulating liver

deiodinases. Fasting for 36 h or a 50% reduction in food

intake for 3 weeks results in pronounced increase of D3

expression and activity in the liver (de Vries et al. 2014b).

As prolonged illness is associated with persistently

diminished food intake, the differences in D3 activity

between the several illness models might be explained

by the dominant role of reduced food intake. One of the

hormones sensitive to food intake is leptin. Acute and

chronic inflammation increase serum leptin via IL1b

(Faggioni et al. 1998) while prolonged critical illness

decrease serum leptin levels. The drop in leptin is known

to be important for the increase in D3 activity during

fasting in mice (Boelen et al. 2012) and might thus also be

important for the regulation of D3 during illness.

Illness induces changes in muscle D3 expression that

depend on the type and timing of the illness. While acute

inflammation decreases muscle D3 (Kwakkel et al. 2010),

bacterial sepsis does not affect D3 and chronic inflam-

mation even increases D3 expression (Kwakkel et al. 2009).

In critically ill patients, muscle D3 is also increased

(Peeters et al. 2003). These changes seem to be indepen-

dent on inflammatory pathways since neither sepsis nor
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0133 Printed in Great Britain
chronic inflammation induces phosphorylation of the

NF-kB and ERK pathways (Kwakkel et al. 2009).

In proliferating myoblasts, D3 functions as a survival

factor by decreasing TH concentrations and suppressing

TH induced FoxO3 mediated gene expression (Dentice

et al. 2014). In contrast, during muscle cell differentiation,

inhibition of D3 gene expression is mediated by histone

H3 demethylating enzyme (LSD-1) that relieved activation

marks on the D3 promoter and at the same time activates

D2 expression by removing the repressive marks on the

D2 promoter in a reciprocal fashion (Ambrosio et al. 2013).

Whether these epigenetic modifications of deiodinase

gene expression are also important during inflammation

remains to be investigated.

In cardiomyocytes, D3 expression is low under

physiological conditions. Myocardial infarction and

pressure induce hypertrophy in rats lead to an upregula-

tion of D3 activity (Wassen et al. 2002, Olivares et al. 2007).

It was postulated that the increase in D3 in peripheral

organs might be regulated by hypoxia due to decreased

tissue perfusion during illness (Peeters et al. 2003), and this

assumption is supported by the observation that both D3

and hypoxia-inducible factor 1 alpha (HIF1a) are upregu-

lated in the hypertrophic heart. Furthermore, HIF1a

appeared to regulate D3 expression in a variety of cell

lines under hypoxic conditions (Simonides et al. 2008).

HIF1a activity is regulated by prolyl hydroxylases (PHD’s)

that prime HIF1a for degradation (Aragones et al. 2009).

Both oxygen and 2-oxoglutarate (2-OG) are necessary

cofactors for PHD’s and therefore involved in HIF1a

regulation. Under hypoxic conditions, HIF1a stabilizes

and translocates to the nucleus, dimerizes with HIF1b and

activates Dio3 gene transcription (Simonides et al. 2008).

However, decreased concentrations of 2-OG might also

play a role in the stabilization of HIF1a as diminished food

intake, frequently observed during illness, could result in

decreased concentrations of 2-OG due to glucagon and

increased gluconeogenic flux (Ochs 1984). In addition,

during inflammation NF-kB also directly enhances HIF1a

gene transcription, thereby increasing total HIF1a avail-

ability (Oliver et al. 2009, Fig. 4).

It was recently shown that the upregulation of D3

during myocardial infarction is also associated with

increased expression of a specific set of microRNA’s that

might enhance the proliferative capacity of the cardio-

myocytes (Janssen et al. 2013).

In addition to the organs and tissues mentioned, D3 is

also expressed by infiltrating polymorphonuclear leuko-

cytes upon the induction of a sterile abscess by turpentine

injection in the hindlimb (Boelen et al. 2005). In addition,
Published by Bioscientifica Ltd.
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activates gene transcription. Upon inflammation, NF-kB is also able to

induce HIF1a transcription which could contribute to D3 regulation.
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peritonitis induced by E. coli and pneumonia induced

by S. pneumoniae stimulates D3 expression in infiltrating

granulocytes in the liver and lungs respectively (Boelen

et al. 2008). Granulocytes are part of the innate immune

system and have intracellular bacterial killing mechanisms

such as the myeloperoxidase (MPO) system (Klebanoff

2005). It is hypothesized that following bacterial infec-

tion, the increased activity of D3 provides the MPO system

with IK that is released when the deiodination of T3 and T4

takes place to ensure an effective microbial killing

machinery (Boelen et al. 2008). However, the mechanisms

involved in the increase in D3 activity in activated

neutrophils are currently unknown.

Although previously assumed otherwise, increased

tissue D3 activity is not involved in the illness induced

alterations in serum TH concentrations, since D3 knock

out and WT mice showed similarly decreased serum TH

concentrations during inflammation (Boelen et al. 2009b).
TH production and degradation by alternative
pathways

TH are also metabolized in peripheral tissues via alterna-

tive pathways. Many of these processes take place in the

liver. T3 and T4 can be conjungated to a sulphate group at

the phenolic hydroxyl group, producing sulphated T3

(T3S) and sulphated T4 (T4S). T3S has no affinity for the TR,

while sulfated TH is prone to degradation by D1 (Mol &

Visser 1985, Visser et al. 1998). Sulfation is mediated by
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0133 Printed in Great Britain
sulfotransferases (Sults), a family of enzymes that sulfate

both endogenous and exogenous substances, and is also

dependent of the availability of specific cofactors

(3 0-phosphoadenosine-5 0-phosphosulfate) and the avail-

ability of inorganic sulfate (Kaptein et al. 1997). Not much

is known about the activity of Sults during illness.

In serum of patients who died in the ICU, the T4S

concentrations are significantly elevated, but this is due

to a decrease in clearance by D1 and not to increased Sult

activity (Peeters et al. 2005). Furthermore, changes in

sulfate availability during illness and diminished food

intake could also play a role. In addition to sulfation, TH

can be glucuronidated by UDP-glucuronosyltransferases

(UGTs; Taurog et al. 1952). T4, and to a lesser extent T3, are

substrates of a variety of UGT iso-enzymes. Glucuronida-

tion facilitates the excretion of TH via the bile and

feces (Tukey & Strassburg 2001). No alterations have

been described in glucuronidation during critical illness

per se, but methodological issues include increased

glucuronidation due to the administration of drugs

(Visser 1994) which will further decrease T4 concen-

trations in ill patients.

A way of TH metabolism that is less well studied is

ether link cleavage (ECL). This involves the breaking of the

ether bridge in between the two tyrosines, yielding

diiodotyrosine as a main product. This reaction is

catalyzed by peroxidases, such as MPO that is present in

leukocytes. In vitro, exposure to zymosan (a compound of

yeast that induces phagocytosis) increased breakdown
Published by Bioscientifica Ltd.
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of T4 and T3 by ECL in leukocytes (Burger et al. 1983),

indicating that this mechanism, besides deiodination,

might be important for the bacterial killing machinery in

the leukocyte. The role of ECL in TH metabolism under

physiological conditions is thought to be limited, since

only 5% of total body clearance of TH is mediated via ELC

(Faber et al. 1989). However, it has been suggested that the

serum concentration of DIT, a product of ELC, increase

after surgery and during sepsis (Gramm et al. 1989,

Meinhold et al. 1991), indicating that in specific patho-

physiological conditions, ECL might attribute to TH

clearance.
Concluding remarks

Several mechanisms are known to be involved in the

illness induced alterations in the HPT axis and TH target

tissues:

i) The illness induced suppression of TRH in the PVN

is hypothesized to be mediated by increased T3

production via increased D2 expression in tanycytes.

Studies using specific inhibitors reported a causal role

for NF-kB in the upregulation of D2. However, no

conclusive data is available whether the induction of

D2 observed in illness results in increased local T3

concentrations.

ii) Whether the decreased thyroidal secretion during

illness is due to central suppression of the HPT axis

or to a direct inhibitory effect of cytokines on the

thyroid gland is still unclear. In vitro studies showed

that a variety of pro-inflammatory cytokines are able

to inhibit crucial steps involved in TH production,

from iodide uptake to TH secretion.

iii) The D1 decrease in liver during illness is likely due

to suppressed TR signalling, possibly mediated by

NF-kB, AP-1 and competition for common cofactors.

Whether the suppression of liver D1 is causal for the

illness induced decrease in serum T3 is uncertain.

iv) Changes in D2 and D3 are observed in muscle, innate

immune cells, adipose tissue and lung (D2) during

illness. Inflammatory pathways might play a role,

although NF-kB is not involved in the D2 increase in

muscle and macrophages. Activation of the CREB

pathway may be involved in the regulation of D2

in muscle.

More studies will be necessary to further define the

underlying mechanisms and more importantly, to inves-

tigate the functional consequences of the changes in TH

metabolism for cellular function. Ultimately, thorough
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0133 Printed in Great Britain
knowledge of the pathogenesis and role of NTIS in critical

illness may help to improve clinical outcome through

targeted interventions in TH metabolism.
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