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Abstract
Recent developments in endocrinology, made possible by the combination of mouse

genetics, integrative physiology and clinical observations have resulted in rapid and

unanticipated advances in the field of skeletal biology. Indeed, the skeleton, classically

viewed as a structural scaffold necessary for mobility, and regulator of calcium–phosphorus

homoeostasis and maintenance of the haematopoietic niche has now been identified as an

important regulator of male fertility and whole-body glucose metabolism, in addition to the

classical insulin target tissues. These seminal findings confirm bone to be a true endocrine

organ. This review is intended to detail the key events commencing from the elucidation of

osteocalcin (OC) in bone metabolism to identification of new and emerging candidates that

may regulate energy metabolism independently of OC.
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Evolution and bone

The vertebrate skeleton is one of the largest mammalian

organs, providing the framework of the body, supporting

the softer tissues and creating points of attachment for

most skeletal muscles. In addition, the skeleton provides

protection for vital organs and blood cells, assists in

movement and acts as a storage system for minerals,

namely calcium and phosphorus, in order to repair,

micromanage and participate in fracture healing, thus

maintaining a high bone quality adequate to fulfil its

major functions. Uniquely, bone has the ability to renew

itself through a process of remodelling. Bone remodelling

is a biphasic process occurring throughout life in a

constant and balanced manner, responsible for linear

growth and bone maintenance during adulthood, thus

demonstrating true homoeostatic functions. These

processes are fully dependent upon two antagonistic cell

populations: the osteoblasts and osteoclasts. The primary
function of mesenchyme-derived osteoblasts is the depo-

sition of bone matrix that is subsequently mineralised.

Conversely, the haematopoietic-tissue-derived osteoclasts

are a unique cell type possessing the capability to destroy

the host tissue by reabsorbing mineralised bone matrix

(Rodan & Martin 2000, Teitelbaum 2000, Harada &

Rodan 2003, Teitelbaum & Ross 2003, Karsenty 2006).

The misregulation of bone remodelling inevitably results

in bone loss and disease and the most common, by far,

is osteoporosis.

Considering the sheer size and dynamic homoeostatic

nature of the skeleton, it is not implausible to postulate

that the skeleton has a high energetic cost. Simple clinical

observations add credence to the possible relationship

between energy and bone, exemplified by patients with

anorexia nervosa, who display decreased or arrested bone

growth and low bone mass in adults (Legroux-Gerot et al.

2005). Converesly, obesity has traditionally been observed
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to have a positive effect on mechanical loading, thus

providing protection from osteoporosis. Nevertheless,

results from recent clinical studies have indicated that

increased adiposity is associated with low total bone

mineral density (BMD) and total bone mineral content

(reviewed in Cau (2011)).
Insulin and the insulin receptor

For the survival of all species, the ability to precisely

regulate energy production and expenditure is critical.

In a once unstable environment, mammals evolved

intricate paracrine, autocrine and endocrine signalling

pathways that coordinate energy expenditure and storage

in metabolically active tissues. Metabolic imbalance

between energy intake and expenditure is detrimental,

with a positive imbalance resulting in obesity and diabetes

(diseases encompassed by the metabolic syndrome) or a

negative energy imbalance resulting in anorexia nervosa

(Fulzele et al. 2010, Fulzele & Clemens 2012). Insulin is a

peptide hormone synthesised in the b-cells of the pan-

creatic islets of Langerhans as its precursor proinsulin and

has pleiotropic roles within the body, regulating glucose

homoeostasis, carbohydrate, lipid and protein meta-

bolism, and promoting cell division and growth through

its mitogenic effects (reviewed in Wilcox (2005)); thus,

insulin regulates whole-body energy utilisation, mediating

its downstream effects by binding to the insulin receptor

(IR). First identified in 1971, the IR is a heterotetrameric

membrane glycoprotein situated in the plasma membrane

of target cells. The IR is composed of two a and two b

subunits linked by disulphide bonds. Upon binding of

insulin to the extracellular a subunit of the IR, a

conformational change in the intracellular b subunit is

elicited, thus allowing for the binding of ATP, triggering

phosphorylation of the b subunit. Accordingly, it also

confers tyrosine kinase activity, leading to phosphory-

lation of various effector molecules including IR substrate 1

(IRS1). IRS1 can subsequently bind to further signalling

molecules, mediating the cellular effects of insulin

(Hubbard et al. 1994, Hubbard 1997, Kido et al. 2001).

It is well established that bone possesses a functional IR

(Pun et al. 1989). Results from in vitro studies, utilising

osteoblast cultures, and in vivo studies have indicated that

insulin increases bone anabolic markers, modulating

collagen synthesis (Rosen & Luben 1983), alkaline phos-

phatase production (Canalis 1983, Kream et al. 1985,

Yamaguchi et al. 1993), parathyroid hormone (PTH)

responsiveness (Thomas et al. 1995) and glucose uptake

(Ituarte et al. 1989). Importantly, the heterogeneous
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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distribution of IR in neonatal rat calvaria was reported

subsequently (Thomas et al. 1996). Results from comp-

lementary studies indicated that insulin-challenged pri-

mary and cultured osteoclast-like cells dose-dependently

suppressed osteoclast function via inhibiting resorptive

pit formation, supporting the anabolic role of insulin in

bone (Thomas et al. 1998). Indeed, insulin deficiency

in humans exemplified by patients with type 1 diabetes

mellitus (T1DM) has in some, but not all, subjects been

associated with decreased bone mass (Kemink et al. 2000)

coupled with poor bone regeneration following injury

(Loder 1988).

DM is a group of metabolic diseases resulting from

defects in insulin secretion, insulin action or both. Patients

with DM have an increased risk of bone fractures; however,

T1DM and T2DM result in differing osteopathy (Leidig-

Bruckner & Ziegler 2001). T1DM results in low BMD,

increasing fracture risk by approximately six times, whereas

the fracture risk is increased by approximately only two

times in T2DM compared with the general population due

to bone quality deterioration (Tuominen et al. 1999,

Jackuliak & Payer 2014). Specifically, T1DM patients have

an absolute deficiency of insulin-like growth factor 1

(IGF1), that results in impaired bone formation and lower

peak bone mass. Conversely, T2DM patients may display

increased BMD due to both increased mechanical loading

and hyperinsulinaemia; however, both T1DM and T2DM

patients have microarchitectural bone changes, resulting

in bone which has an inferior quality compared with that

of the general population (Brown 2004, Yamagishi et al.

2005, Melton et al. 2008, Milczarczyk 2008, Nyman et al.

2011). As DM is beyond the remit of this review, we direct

the reader to the review by Jackuliak & Payer (2014).

Given these insights, it has been postulated that there

is a bone–energy endocrine loop. The first supportive

evidence originated from the initial realisation that leptin,

an adipocyte-derived hormone, inhibits both appetite

(Flier & Elmquist 1997, Friedman & Halaas 1998) and bone

mass accrual through a hypothalamic relay (Ducy et al.

2000). Thereafter, a rapid expansion of evidence

supporting this crosstalk has occurred, further elucidating

the complex roles of leptin and identifying further

adipocyte- (adiponectin) and gut-derived hormones

(glucagon-like peptides 1 and 2 and serotonin) that

regulate bone mass, remodelling and energy homoeo-

stasis. The revelation that bone itself regulates energy

metabolism in a reciprocal manner via a secreted hormone

osteocalcin (OC) was finally uncovered several years ago

(Lee et al. 2007). Thus, in the last few years, an explosion

of avant-garde research has explored this concept,
Published by Bioscientifica Ltd.
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uncovering new and atypical roles of bone beyond its

traditional functions. This aims of this review are to

succinctly discuss the crosstalk between insulin and the

osteoblast as well as introducing and considering new

concepts beyond the current dogmas in an attempt to

demonstrate the complexity of this field.
Osteocalcin

OC or bone Gla-protein was isolated from bone over three

decades ago by two independent groups (Hauschka et al.

1975, Price et al. 1976) and is the most abundant

osteoblast-specific non-collagenous protein (Hauschka

et al. 1989). Named due to the presence of three vitamin

K-dependent g carboxyglutamic acid residues, OC is a

small protein (46 and 49 amino acids long in mice and

humans respectively) initially synthesised in the

osteoblast as a pre–pro molecule. Vitamin K-dependent

post-translational modifications occur causing three

glutamic acid residues (GLU13, GLU17 and GLU20) to be

g carboxylated into Gla residues by a g carboxylase. Final

intracellular cleavages produce the mature OC, which

is subsequently secreted. The presence of the three g

carboxyglutamic acid residues is critical for the structure

and function of OC in the fully carboxylated state

allowing the binding of OC to hydroxyapatite (HA) with

a high affinity, regulating the maturation of bone mineral

(Hauschka & Wians 1989, Hauschka et al. 1989). However,

OC also exists in the general circulation in fully

carboxylated, partially carboxylated and completely

uncarboxylated forms (Plantalech et al. 1991, Cairns &

Price 1994, Vergnaud et al. 1997, Schilling et al. 2005,

Ferron et al. 2010a). On the basis of results from human

and rodent studies, serum OC concentrations have been

correlated with bone formation and osteoblast number,

thus being used as a serum marker of bone formation

(Brown et al. 1984; reviewed in Gundberg et al. (2012)). To

investigate the role of OC in bone health, OC-deficient

mice were generated (OcK/K); however, surprisingly no

major skeletal deformities were observed in these mice

(Ducy et al. 1996). In 2007, further phenotypic evaluation

of these mice resulted in an unanticipated finding. OcK/K

mice were hyperglycaemic, hypoinsulinaemic and had

reduced insulin secretion and sensitivity compared with

WT mice. Additionally, islet size, number, b-cell mass,

pancreas insulin content and insulin immunoreactivity

were all markedly decreased in OcK/K mice. Moreover,

OcK/K mice had increased fat mass and adipocyte number,

being insulin-resistant in the liver, muscle and white

adipose tissue (Lee et al. 2007). This study also focused on
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-14-0584 Printed in Great Britain
the small number of genes encoding secreted or signalling

molecules that are expressed exclusively by the osteoblast

in the hope of identifying further osteoblast-enriched

genes affecting energy metabolism. One gene was found to

be of most interest, expressed in only two cell types: the

osteoblast and Sertoli cells of the testis. This gene was Ptprv

(Esp), encoding osteotesticular protein tyrosine phospha-

tase (OST–PTP; Mauro et al. 1994). In vitro, Ptprv

coordinates the progression of the preosteoblast to a

mature, mineralising cell, and in vivo it may be a critical

regulator of the commitment of mesenchymal cells to the

ossification of new bones during skeletogenesis (Mauro

et al. 1994, Chengalvala et al. 2001, Yunker et al. 2004).

It is well established that PTPs are key regulators of IR

signalling in many cell types, dephosphorylating and

inactivating the IR within minutes of stimulation to

maintain glucose homoeostasis (Mauro et al. 1994, Hunter

1995, Schlessinger 2000, Dacquin et al. 2004, Tonks 2006,

Lee et al. 2007). As a result, two mutant mice were created:

a global knock out of Ptprv (Lee et al. 1996) and an

osteoblast-specific knock out of the phosphatase domain

of OST–PTP (Dacquin et al. 2004). Both mutants exhibited

severe hypoglycaemia and hyperinsulinaemia, resulting in

postnatal lethality in the first 2 weeks of life. Results from

further analysis indicated that the pancreas of PtprvK/K

mice had greater islet content, number of islets, islet size

and b-cell mass, resulting in increased insulin secretion.

In addition, mutants were significantly more tolerant to

glucose upon challenge, displaying an insulin-sensitive

phenotype, thus mice were protected from induced

obesity and diabetes (Lee et al. 2007, Ferron et al. 2008).

In parallel, mice overexpressing full-length Ptprv cDNA

selectively in osteoblasts exhibited hyperglycaemia,

hypoinsulinaemia, glucose intolerance, insulin resistance,

decreased b-cell proliferation, lower b-cell mass and

impaired insulin secretion. Subsequently, it was noted

that the phenotype of PtprvK/K mice mirrored the OcK/K

mouse phenotype, while the Ptprv mice overexpressing

full-length Ptprv cDNA selectively in osteoblasts were a

phenocopy. Results from further genetic studies indicated

that the metabolic phenotype of PtprvK/K mice was fully

corrected by removing one allele of Oc, implying that

PtprvK/K mice are a model for a gain of function of Oc,

providing solid evidence that Ptprv and OC reside in the

same regulatory pathway (Lee et al. 2007). Biochemical

analysis revealed that PtprvK/K mice have significantly

higher serum undercarboxylated OC levels than WT

controls; however, OC expression and serum levels were

normal in PtprvK/K mice, indicating that OST–PTP is

involved in the decarboxylation of OC and the subsequent
Published by Bioscientifica Ltd.
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release of undercarboxylated OC into the systemic

circulation (Lee et al. 2007, Ferron et al. 2010a).

Notwithstanding, it still remained unclear as to how

OC carboxylation status could regulate whole-body energy

metabolism. Clues came from several key studies concern-

ing forkhead box protein O1 (Foxo1) and activating

transcription factor 4 (Atf4) (Seo et al. 2009, Yoshizawa

et al. 2009, Rached et al. 2010, Kode et al. 2012). Foxo1 is a

transcription factor targeted by insulin and regulatesglucose

homoeostasis in tissues involved in energy metabolism

includingadipocytes andhepatocytes;however, its function

in osteoblasts has not been explored until recently. A Foxo1

osteoblast conditional knockout mouse was generated,

that displayed decreased fasting blood glucose levels and

increased insulin sensitivity. The mice also displayed a

30% increase in serum OC levels, coupled with a 75%

reduction in Ptprv expression, indicative of an association

between Ptprv and carboxylation status of OC. In the same

study, it was demonstrated, utilising various mouse models,

that heterozygous mice lacking one allele of Foxo1 in

osteoblasts and one allele of Ptprv showed improved insulin

sensitivity. Similarly, the metabolic phenotype was cor-

rected in heterozygous mice lacking one allele of Foxo1 in

osteoblasts by the removal of one allele of OC. Utilising

these models to investigate the mechanisms underlying

the phenotype, it was established that Foxo1 regulates the

bioactivity of OC via OST–PTP through direct binding to its

promoter, reducing serum OC (Rached et al. 2010, Kousteni

2011, 2012). In a separate study, the role of Atf4 was also

investigated. Atf4 belongs to the subfamily of cAMP-

response element-binding proteins/ATF basic leucine zipper

proteins broadly expressed throughout the body; however,

it predominantly accumulates in osteoblasts where it

regulates virtually all functions of the osteoblast related to

the control of bone mass including bone formation and

matrix mineralisation (Yang & Karsenty 2004, Elefteriou

et al. 2005, Yoshizawa et al. 2009). Atf4K/K mice primarily

show phenotypic abnormalities in the skeleton; however,

the global or osteoblast-specific ablation of Atf4K/K in mice

results in favourable metabolic changes, including

improved glucose tolerance and insulin sensitivity associ-

ated with decreased Ptprv expression. In contrast, the

overexpression of Atf4 in osteoblasts reflected this pheno-

type, resulting in glucose intolerance associated with

increased Ptprv expression. This effect was due to the direct

regulation of Ptprv expression in osteoblasts by Atf4,

established by a ChIP array confirming that Atf4 binds to

the CRE element in the Ptprv promoter (Yoshizawa et al.

2009). Finally, it has been shown that Foxo1 co-localises

with Atf4 in the osteoblast nucleus, promoting the
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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transcriptional activity of Atf4, thus up-regulating the

expression of Ptprv in osteoblasts, resulting in OC inacti-

vation (Kode et al. 2012).

But how does Ptprv affect insulin signalling in

osteoblasts? In the search for the OST–PTP substrate in

osteoblasts, utilising multiple genetic and biochemical

modalities, the IR was identified as a potential substrate.

As a result, two studies conducted simultaneously by the

laboratories of Professors Karsenty and Clemens to

explore the role of insulin signalling in osteoblasts were

initiated. They generated osteoblast-specific IR-deficient

mice (Insrosb
K/K) that presented with hyperglycaemia,

increased peripheral adiposity, reduced insulin secretion,

severe glucose intolerance and decreased levels of circulat-

ing undercarboxylated OC. These mice also displayed a

skeletal phenotype with a reduction in bone acquisition

due to reduced bone formation; however, the marker of

bone resorption (CTx) was decreased. Upon infusion of

exogenous undercarboxylated OC, the metabolic pheno-

type was fully corrected, indicating that insulin signalling

in osteoblasts has the potential to regulate whole-body

glucose homoeostasis via carboxylation status of OC

(Ferron et al. 2010b, Fulzele et al. 2010). It was also

suggested that insulin signalling in osteoblasts might

favour bone resorption, due the observation that

decreased CTx levels in Insrosb
K/K mice reflected the

increase in CTx observed in PtprvK/K mice. Utilising

osteoblasts from Insrosb
K/K and PtprvK/K mice, Ferron and

colleagues established, using a co-culture system, that WT

osteoclast precursor cells cultured with osteoblasts isolated

from Insrosb
K/K mice decreased osteoclast resorption pit

formation, while a 50% increase in osteoclast resorption

pit formation was observed when PtprvK/K primary

osteoblasts were used in the co-culture system. Moreover,

osteoprotegerin (Opg (Tnfrsf11b)), a negative regulator of

osteoclast formation and function, encoding the decoy

receptor for receptor activator of nuclear factor k B ligand

(RANKL), was increased by twofold in Insrosb
K/K and

decreased by 50% in PtprvK/K osteoblasts. Further unravel-

ling of this complex pathway revealed that insulin

signalling in osteoblasts inhibited Foxo1 expression,

favouring bone resorption via suppression of Opg and

Twist2 (RUNX2 inhibitor; Ferron et al. 2010b, Fulzele et al.

2010, Rached et al. 2010). It appeared that osteoclasts were

pivotal for the connection between bone and energy

metabolism; therefore, Ferron and colleagues investigated

genes associated with Opg-dependent events in the

osteoclast. It was found that Tcirg1, an essential part

of the plasma membrane proton pump, responsible for

the acidification of the bone before bone resorption by
Published by Bioscientifica Ltd.
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osteoclasts, was decreased in co-culture osteoclast/Insrosb
K/K

osteoblast models (Teitelbaum 2000, Teitelbaum & Ross

2003, Bronckers et al. 2012). These results indicated that

insulin signalling in osteoblasts induces osteoclast acid-

ification and bone resorption via decreased Opg

expression. Utilising biochemical and mass spectroscopy

analysis, it was established that an acidic environment

generated by osteoclasts situated in the resorption lacuna

can decarboxylate OC present in the extracellular matrix

(Engelke et al. 1991).

In addition to the classical osteoblast-specific PTP,

Ptprv, which is defined by its specificity for phosphotyr-

osine (Alonso et al. 2004, Barr et al. 2009), 37 other

mammalian classical PTPs exist. Of these, the only other

identified PTP able to bind to the osteoblast IR and

respond to isoproterenol treatment similarly to OST–PTP

(Hinoi et al. 2008) is T-cell PTP. This finding further

supports the notion that bone is involved in the regulation

of glucose metabolism, increasing our understanding of

the complex regulation of OC-mediated glucose homo-

eostasis (Zee et al. 2012) (for comprehensive and recent

reviews, see Karsenty & Ferron (2012) and Ferron &

Lacombe (2014)).

Even in light of this new concept of bone acting as

an endocrine organ, it still remains unclear as to why

osteoporotic or osteopenic mice all do not display

metabolic imbalances. This is indicative of a far more

complex regulation of energy by bone, and indeed

supportive of the notion that additional osteoblast- or

osteocyte-derived factors are likely to exist.
Male fertility and the discovery of the
OC receptor

Diet-induced obesity in rodent models leads to a decrease

in sperm motility and reduced hyperactivated progression,

which is associated with a trend towards a reduction in

fertility potential (Ghanayem et al. 2010, Fernandez et al.

2011). In humans, obesity is associated with infertility

by reducing semen quality, changing sperm proteomes

and contributing to erectile dysfunction (reviewed in

Cabler et al. (2010) and Palmer et al. (2012)).

The discovery of the OC receptor (GPRC6A) occurred

simultaneously with the elucidation of the role of OC in

fertility. Briefly, male and female patients with gonadal

failure possess low bone mass; furthermore, menopause

favours bone loss (Riggs et al. 1982, 1998, Wishart et al.

1995). These clinical observations led to the investigation

of the possible relationship between bone and fertility.

Fortuitously, it was noted that OcK/K mice were poor
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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breeders, as a result of from decreased testes weight with a

50% reduction in sperm count associated with impaired

Leydig cell maturation and decreased circulating testo-

sterone. Reflecting this phenotype, PtprvK/K mice had

increased male reproductive organ weights with a 30%

increase in sperm count and increased circulating testo-

sterone (Oury et al. 2011). These results indicated a link

between OC and testosterone production, which was

relevant to males only, as no change in circulating

oestrogen or the aromatase enzyme required to convert

testosterone to oestrogen (Cyp19A1) was observed in the

Ptprv- or Oc-deficient mice. In an effort to clarify the

signalling mechanism underlying this pathway, several

factors were taken into consideration, namely the target

cells affected by OC (b-cells of the pancreas and the Leydig

cells of the testis) and the sexually dimorphic aspects

of OC. These clues led to the identification of GPRC6A,

a G protein-coupled receptor linked to adenylate cyclase.

Gprc6a is expressed in the Leydig cells, and its inactivation

in mice leads to a metabolic phenotype very similar to that

of OcK/K mice characterised by glucose intolerance and

decreased b-cell area and b-cell mass. In addition, these

mice demonstrate defective bone mineralisation (Pi et al.

2008, 2010). Moreover, the compound heterozygous mice

(OcK/C Gprc6aK/C) had a reproductive phenotype similar

in all aspects to that observed in Oc- and Gprc6a-deficient

mice models (Oury et al. 2011). These results indicated

GPRC6A to be an OC receptor, demonstrating that OC

mediates testosterone biosynthesis. Additionally, utilising

the Gprc6aK/K mouse model, it was shown that i.p.

injection of OC failed to markedly stimulate ERK activity,

thus having minor effects on circulating serum insulin

levels, which were increased in WT mice exposed to the

same treatment. GPRC6A has been shown to be integral in

the promotion of b-cell proliferation during development

and adulthood via OC, thus highlighting GPRC6A as an

important receptor for skeletal-tissue-mediated energy

regulation via the pancreas (Pi et al. 2011, Wei et al.

2014a). Most recently, Oury et al. (2013) demonstrated

that OC acts via a pancreas–bone–testis axis, such that

OC-stimulated testosterone synthesis is positively

regulated by insulin signalling in osteoblasts and is

independent of luteinising hormone (LH). No connection

between PtprvK/K and OcK/K mice in osteoblast-stimu-

lated oestradiol production was identified, illustrating that

the regulatory mechanisms of fertility of male and female

mice are vastly distinct (Oury et al. 2011).

It was noted that the reproductive phenotype of

OcK/K and Gprc6aK/K male mice was very similar to that

of LhbK/K (LH-deficient) male mice, all displaying
Published by Bioscientifica Ltd.
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defective testosterone synthesis and testosterone-

dependent events (Oury et al. 2011). LH is a key regulator

of male fertility, favouring testosterone biosynthesis via

the hypothalamo-pituitary axis (Kumar 2007). Surpris-

ingly, further analysis of OcK/K or Gprc6aK/K mice

revealed increased circulating levels of LH, which is

indicative of a dual regulation of male fertility, or of OC

acting downstream, of LH (Themmen & Huhtaniemi

2000, Kumar 2007). By means of elaborate studies from

Karsenty’s groups have since demonstrated that OC

regulates male fertility independently of the hypotha-

lamo-pituitary axis. Indeed, the regulation of testosterone

synthesis by OC is independent of a measurable

influence of Gprc6a on Lh (Lhb) expression and there is

no evidence that LH regulates OC expression (Ferron

et al. 2010a,b, Oury et al. 2013; reviewed in Karsenty &

Oury (2014)).

To emphasise the importance of the role of bone in

energy metabolism, Wei et al. (2014b) evaluated the con-

sequences of osteoblast-specific overexpression of or loss

of IR in high-fat-diet (HFD)-fed mice. Results from these

studies indicated that insulin resistance in bone affects

whole-body glucose homoeostasis in mice fed on a HFD

by decreasing OC activity; moreover, it was demonstrated

that SMURF1-mediated IR ubiquitination contributes

to the development of insulin resistance in osteoblasts.

These results support the notion that bone is a highly

important site for the regulation of global energy

homoeostasis (Wei et al. 2014b).
What else controls OCN?

As discussed, results from a number of seminal studies

have indicated that a feed-forward link exists between OC

and insulin; however, leptin and glucocorticoids have

been shown to negatively regulate OC activity. In brief,

leptin secretion by adipocytes results in increased Ptprv

expression via Atf4, occurring via a central pathway (Hinoi

et al. 2008) and glucocorticoids decrease OC activity by

suppressing osteoblast function and OC production

(Brennan-Speranza et al. 2012; reviewed in Ferron &

Lacombe (2014)).
Clinical evidence: OC and metabolism/fertility

One of the earliest studies to show an association between

OC and glucose metabolism was published over a decade

ago. OC levels were significantly lower in diabetic patients,

although OC levels increased with improved glycaemic

control (Rosato et al. 1998). In many human studies only
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-14-0584 Printed in Great Britain
total OC levels were quantified; however, the effects on

glucose metabolism via bone are attributed to under-

carboxylated OC. These studies yielded mixed results with

several of them indicating a positive correlation between

serum undercarboxylated OC levels and enhanced b-cell

function (Hwang et al. 2009, Prats-Puig et al. 2010, Pollock

et al. 2011). However, results from other studies indicate no

association between lower circulating uncarboxylated OC

levels and higher HOMA-IR (Shea et al. 2009). Results from

one recent study have indicated that there is a sex-specific

action of the bone–energy homoeostasis axis with OC

being associated with improved metabolic state via adipo-

nectin in females, and via testosterone in males (Buday

et al. 2013). Direct clinical evidence has been reported

for the role of OC in energy metabolism, via the removal

of an OC-producing osteoid osteoma, which resulted

in elevated serum glucose, potentially associated with

decreased levels of undercarboxylated OC (Confavreux

et al. 2012). This conflicting results may be attributable to

the lack of a commercially available undercarboxylated

assay, or differing methodologies (Ducy 2011). Similarly, it

appears that the reproductive function of OC translates to

humans, with the identification of a positive association

between OC and testosterone serum levels in the general

population, patients with bone disorders and patients

with T2DM (Hannemann et al. 2013, Kanazawa et al.

2013). Furthermore, two subjects were identified from a

cohort of patients displaying testicular failure who har-

boured a heterozygous missense variant in one of the

transmembrane domains of GPRC6A, giving credence to

a role of OC function in humans (Oury et al. 2013; reviewed

in Karsenty & Oury (2014)).
Beyond OC

Intriguingly, recent evidence has indicated that other

osteoblast-derived hormones may contribute to the

emerging function of the skeleton as a regulator of energy

metabolism. This was demonstrated by the partial ablation

of osteoblasts in transgenic mice, which resulted in

profound effects on glucose metabolism and gonadal fat

mass, combined with increased energy expenditure. OC

administration partially corrected the metabolic pheno-

type; however, it did not reverse the increased energy

expenditure or decreased gonadal fat. This indicates that

osteoblasts have the ability to affect glucose metabolism

through both OC-dependent and -independent mechan-

isms (Yoshikawa et al. 2011). Herein, we will discuss novel

candidates that influence energy metabolism, with a focus

on emerging concepts (summarised Fig. 1).
Published by Bioscientifica Ltd.
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Figure 1

The endocrine role of bone: osteocalcin and beyond. Arrows: continuous,

accepted; dashed, speculative; black, known interactions; green, indirect

interactions; red, direct interactions; blue, osteokines. A feed-forward loop

links insulin, bone resorption and osteocalcin activity. Insulin signalling in

osteoblasts decreases the expression of Opg by decreasing the ratio of Opg

(a RANKL decoy receptor) to RANKL, thus increasing bone resorption by

osteoclasts. This osteoclastic bone resorption generates an acidic pH in the

resorption lacunae necessary to decarboxylate osteocalcin stored in the

bone extracellular matrix. Undercarboxylated osteocalcin (GLU13-OC) is

released into the bloodstream, affecting glucose metabolism by binding to

the osteocalcin receptor (GPRC6A), thus stimulating insulin secretion and

b-cell proliferation in the pancreas and promoting insulin sensitivity in

peripheral organs. In addition, GLU13-OC promotes male fertility by

stimulating testosterone synthesis in Leydig cells of the testis through

GPRC6A activation. OST-PTP acts as an inhibitor, dephosphorylating the IR

and suppressing the levels of GLU13-OC. To complete this feed-forward

loop, peripheral/central tissues (adrenal gland, adipose tissue and

pancreas) can further indirectly regulate the release of GLU13-OCN into the

peripheral circulation. New emerging evidence indicates that, in addition,

NPP1 can indirectly inhibit GLU13-OCN release via OPG. Independently of

OCN, osteoblast-specific proteins (PHOSPHO1, AMPK and GSK3b) can

influence insulin secretion from b-cells, their functions and adiposity.

Osteocyte-derived factors – osteokines – may also be implicated in the

endocrine regulation of glucose metabolism (figure adapted from Rosen &

Motyl (2010) and Ferron & Lacombe (2014)).
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Glucose transporter and bone

Cellular uptake of glucose is mediated by either of the two

families of membrane-associated carrier proteins, namely

the sodium coupled glucose transporters (SGLTs) via

active transport and glucose transporter (GLUT) facilita-

tors via facilitated diffusion (Bell et al. 1990, Carruthers

1990). The SGLT family comprises 12 members including

co-transporters for sugars, anions, vitamins and short-

chain fatty acids (Wright & Turk 2004). Currently, the
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-14-0584 Printed in Great Britain
presence of SGLT in bone has not been reported; however,

SGLT2 receptor inhibitors, acting as glucose-lowering

agents in the management of T2DM, have been reported

to have no significant effects on bone formation and

resorption or BMD in humans (Ljunggren et al. 2012).

In contrast, GLUT receptors have recently been reported to

be expressed in bone. To date, the GLUT family consists of

14 members subclassified into three groups, according to

sequence similarities and characteristic elements (Joost &
Published by Bioscientifica Ltd.
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Thorens 2001, Mueckler & Thorens 2013). GLUT receptors

exhibit striking tissue-specific expression, each possessing

differential sensitivities to stimuli such as insulin, thus

allowing for complex and specific regulation of glucose

uptake according to cellular requirements (Gould &

Holman 1993). It was first suggested that insulin promotes

increased glucose uptake via GLUT1 in the osteoblast,

independently of IGF1 signalling to increase the metabolic

activity of the osteoblast (Fulzele et al. 2007). Most

recently, Glut4 has been found to be expressed at similar

levels to those in skeletal muscle in osteoblasts, osteocytes

and chondrocytes, with the genetic ablation of Glut4 in

osteoblasts/osteocytes resulting in increased peripheral

adiposity associated with mild hyperinsulinaemia. These

mice also presented with insulin resistance. These meta-

bolic changes were assumed to originate from osteoblast-

s/osteocytes as no altered gene expression was identified

in the liver or adipose tissue, indicating that decreased

GLUT4-mediated glucose uptake in bone is sufficient to

influence whole-body metabolism (Zhu et al. 2013).

Recent emerging results from two independent labora-

tories have indicated that, in addition to Glut4, Glut1 is

necessary for bone formation and whole-body glucose

homoeostasis. Moreover, Glut1 is modulated by high

glucose levels (Virta et al. 2014, Wei et al. 2014a,b,c).

Collectively, these results provide a deeper understanding
Class I

Class II

Class III

GLUT5 – SI and kidney.

GLUT7 – SI, colon, testis and prostate.

GLUT9 – Kidney, liver, SI, placenta, lung and leucocytes.

GLUT11 – Heart and muscle.

GLUT6 – Brain, spleen and leucocytes.

GLUT8 – Testis, brain, adrenal gland, liver, spleen, BAT and lu

GLUT10 – Heart, lung, brain, liver, skeletal muscle, pancreas,

GLUT12 – Heart, prostate, skeletal muscle and placenta.

HMIT1 – Brain and WAT.

GLUT1 – Bone, erythrocytes, brain, BBB, BTB and foetal.

GLUT3 – Brain and testis.

GLUT4 – Bone, WAT, BAT, skeletal and cardiac muscle.

GLUT2 – Liver, islet of Langerhans, intestine, kidney and brain.

GLUT14 – Testis.

Figure 2

GLUT transporter family. Dendrogram of the extended GLUT family

highlighting GLUT receptor tissue distribution and cellular/subcellular

expression. Additionally, the role of GLUT proteins in the maintenance of

glucose homoeostasis is summarised, outlining the relevant glucose-

responsive tissues and the associated GLUT receptors (newly reported GLUT

receptors in bone are also highlighted; figure adapted from Joost &

http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-14-0584 Printed in Great Britain
of the role of bone in the regulation of glucose metabolism

(summarised in Fig. 2).
AMP-activated protein kinase and
energy metabolism

It has recently been suggested that AMP-activated protein

kinase (AMPK) is a key enzyme in the relationship between

bone and fat. AMPK is a downstream component of a

kinase cascade composed of differing subunits (a1, a2, b1,

b2, g1, g2 and g3). AMPK forms heterotrimers that exhibit

differences in subcellular localisation and regulation

(Hardie 2007), playing a key role in the orchestration of

cellular energy homoeostasis (Hardie et al. 2006, Lage et al.

2008). In response to physiological/pathological stimuli,

AMPK acts to restore cellular energy balance (AMP:ATP

ratio). During cellular energy deprivation, AMPK increases

the potential for ATP production via ATP-generating

pathways such as fatty acid oxidation, while concurrently

decreasing cellular energy-consuming anabolic processes

(Corton et al. 1994, Kahn et al. 2005). Impairment of

AMPK is associated with the metabolic syndrome,

demonstrating its physiological requirement, reflected by

the improvement of energy metabolism, namely insulin

sensitivity in the presence of AMPK (Steinberg & Kemp

2009, O’Neill et al. 2011). It has recently been suggested
ng.

 placenta and kidney.

Brain

PancreasIntestines

Adipose tissue

Liver

Kidney

Bone

MuscleMaintenance of
glucose homeostasis

GLUT1, 2, 3, 4
and HMIT

GLUT1, 2

GLUT2, 9GLUT2

GLUT4

GLUT2, 5

GLUT1, 4

GLUT1, 
4, 5, 10, 12

CH2OH
OH

OH

OH
OH

O

Thorens (2001) and Mueckler & Thorens (2013)). Potential similarities

between GLUT3 and GLUT14 are indicated by a red line. The role of bone

GLUT1 and GLUT4 in glucose homoeostasis is speculative and indicated by

a red double-headed arrow. BBB, blood–brain barrier; BTB, blood–testis

barrier; WAT, white adipose tissue; BAT, brown adipose tissue; SI, small

intestine.
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that AMPK is central to the regulation of skeletal

metabolism. The a1 subunit is the dominant catalytic

isoform expressed in bone, and, when removed in mice,

cortical and trabecular bone compartments were shown

to be smaller compared with those of the WT controls

(Shah et al. 2010). Moreover, the administration of

metformin, a drug used widely in the control of T2DM,

ameliorates hyperglycaemia and is known to activate

AMPK (Stumvoll et al. 1995, Zhou et al. 2001). AMPK has

been reported to enhance differentiation and mineralis-

ation of osteoblastic MC3T3-E1 cells and dose depen-

dently increase trabecular bone nodule formation in vitro,

supporting the hypothesis of a role of AMPK in the

regulation of bone formation and bone mass (Kanazawa

et al. 2008, Shah et al. 2010). Recently, Jeyabalan et al.

(2012) have elegantly reviewed AMPK and bone metab-

olism and suggested that AMPK activation may be

involved in the relationship between bone and fat. Indeed,

the activation of AMPK may enable the skeleton to sense

energy status, initiating either adipogenesis or osteoblas-

togenesis depending on energy needs. This hypothesis is

corroborated by the observation that AMPK reduced

adipogenesis in vitro, by phosphorylating b-catenin,

suppressing and directly phosphorylating PPARg coacti-

vators (Leff 2003, Zhao et al. 2010, Jeyabalan et al. 2012).

Supporting this notion, AMPK has been shown to regulate

thyroid-hormone-stimulated OC synthesis in osteoblasts,

potentially indicating a direct link between AMPK and

the regulation of energy metabolism via the skeleton

(Kondo et al. 2013).
Bone morphogenetic proteins

Bone morphogenetic proteins (BMPs) are multi-functional

growth factors that are members of the transforming

growth factor b superfamily. BMPs have a critical role in

embryogenesis and are important in bone and cartilage

formation and function. BMPs have been the subject of

other recent and extensive reviews (Chen et al. 2012).

Genetic manipulation of mice has allowed a wealth of

knowledge to be obtained regarding the complexity of

BMPs that may have clinical relevance, such as in the

treatment and clinical management of bone grafting and

non-unions (reviewed in Carreira et al. (2014)). Roles of

BMPs in adipogenesis and energy metabolism have recently

been described, including in adipocyte development,

adipose cell fate determination, differentiation of com-

mitted preadipocytes and function of mature adipocyte

(Tang et al. 2004, Taha et al. 2006, Huang et al. 2009). More

recent results have indicated that BMPs play a role in
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-14-0584 Printed in Great Britain
the ‘browning’ of white adipocytes. Moreover, the genetic

ablation of Bmp4 results in enlarged white adipocyte

morphology and impaired insulin sensitivity, whereas

overexpression of Bmp4 in white adipocytes results in

reduced adipocyte tissue mass and size coupled with an

increased number of white adipocyte cell types with brown

adipocytecharacteristics, indicating that BMP4 can regulate

the induction of brown-adipocyte-like cells and insulin

sensitivity by affecting white adipocyte development (Qian

et al. 2013). These characteristics of BMPs appear to be

conserved in human tissue, where BMP4 and BMP7 have

been shown to induce the white-to-brown transition in

primary human adipose stem cells (Elsen et al. 2014,

Obregon 2014).
Glycogen synthase kinase

Glycogen synthase kinase 3 (GSK3) is composed of two

mammalian isoforms, GSK3a and GSK3b, playing largely

overlapping roles. Explaining simply, GSK acts mainly as a

brake in many anabolic pathways including the Wnt/

b-catenin and insulin pathways. Moreover, GSK has been

implicated in a range of human pathologies including

cancer, Alzheimer’s disease, non-insulin-dependent DM

and bipolar disorder (reviewed in Patel et al. (2004) and

Forde & Dale (2007)). Recent evidence has indicated that,

in addition to the outlined pathologies, GSK3b functions

in bone to regulate skeletal development and whole-body

metabolism. It has been reported previously that germ-

line loss of GSK3b in mice results in skeletal abnormalities;

however, these abnormalities were not present in carti-

lage-specific GSK3b (GSK3B)-deficient mice, possibly due

to a compensatory increase in GSK3a (GSK3A) protein

levels (Hoeflich et al. 2000, Kugimiya et al. 2007, Liu et al.

2007, Gillespie et al. 2011). Subsequently, mice were

created in which GSK3b was inactivated in early differ-

entiating skeletal cells and osteoblasts only (Gillespie et al.

2013). These mice displayed delayed skeletal development

and ossification and increased trabecular bone. However,

most relevant to this review, Col1a1–Gsk3bK/K mice

displayed decreased fat content, smaller adipocytes,

pronounced hypoglycaemia and hypoinsulinaemia. Inter-

estingly, female Col1a1–Gsk3bK/K mice were significantly

more insulin-sensitive. These metabolic changes were

independent of food consumption and undercarboxylated

or total OC. The mechanisms underlying this connection

still remain unclear; however, the authors suggested that

these metabolic changes may be due to the hyperactiva-

tion of the insulin pathway, resulting in the uptake of

glucose, or due to the presence of an unknown factor other
Published by Bioscientifica Ltd.
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than OC that contributes to increased insulin sensitivity

inCol1a1–Gsk3bK/K mice (Gillespie et al. 2013).
Osteocyte and energy

In addition to the discussed specialised bone cells

(osteoblasts and osteoclasts) osteocytes have also

recently been suggested to be involved in energy

metabolism. Osteocytes are the most abundant bone

cells, formed from differentiated mature osteoblasts, thus

becoming terminally differentiated osteocytes. Osteo-

cytes become entrenched within the mineralised bone

matrix, forming canalicular networks with other osteo-

cytes and bone-surface osteoblasts, acting as important

mediators for intracellular communication and poten-

tially orchestrating bone remodelling. Additionally,

osteocytes are able to detect gravitational forces and

are thought to play a role in matrix mineralisation and

phosphate homoeostasis; however, the precise functions

of osteocytes still remain unclear (Karsenty & Wagner

2002, Bonewald 2007, 2011). Intriguingly, Sato and

colleagues have recently suggested that osteocytes may

play a role in the regulation of the control of fat mass in

association with the hypothalamus. Mice were generated

in which the receptor for diphtheria toxin (DT) was

under the control of the dentin matrix protein 1

promoter (Dmp1). Mice then received injections of DT

at 15 weeks to render them osteocyte-less mice (OL

mice). Following injection, mice lost weight and white

adipose tissue mass, with a drastic reduction in mesen-

teric and subcutaneous fat; however, these mice were

not diabetic. These effects were reversed when osteocytes

were replenished within the bone. The mechanism

underlying this phenotype remains unknown; however,

total OC was decreased in the OL mice (Sato et al. 2013).

However, the DMP1 promoter also targets the osteoblast

and, therefore, the assumption that the phenotype is

entirely OC-driven is open to interpretation (Moverare-

Skrtic et al. 2014). Moreover, Ferron & Lacombe have

recently suggested the potential presence of ‘osteokines’,

osteocyte-derived factors that may be implicated in the

endocrine regulation of glucose metabolism; however,

these factors are yet to be discovered (Sato et al. 2013,

Ferron & Lacombe 2014).

Excitingly, results from other recent studies have

indicated that osteocyte-derived fibroblast growth factor

23 (FGF23) functions in an endocrine manner. Since its

identification in 2000, FGF23 has been shown be most

highly expressed in bone (osteocyte), acting as an

important hormone in regulating serum phosphate levels
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-14-0584 Printed in Great Britain
primarily via actions on the kidney (Shimada et al. 2004)

(reviewed in Bonewald & Wacker (2013)). In addition to

the role of FGF23 in phosphate homoeostasis and bone

mineralisation, the PHEX, DMP1, FGF23, KLOTHO and

the MEPE/ASARM peptide axis has been demonstrated to

be involved in the regulation of energy metabolism via the

bone (David et al. 2009a,b). Briefly, mouse models either

overexpressing MEPE, ASARM peptides or infused ASARM

peptides display increased adiposity, are hyperglycaemic

and have increased OC, whereas FGF23-null mice are

hypoglycaemic (ASARM peptide modulates PHEX–DMP1-

mediated FGF23 expression; Rowe et al. 1996, David et al.

2009a,b, 2011). Intriguingly, patients subjected to a 4-h

euglycaemic–hyperinsulinaemic clamp show increased

FGF23 that correlates positively with insulin infusion

(Winther et al. 2011). These combined data are indicative

of key roles for FGF23 in energy metabolism (reviewed in

Rowe (2012)).
Fracture burden and global energy
metabolism

It seems plausible that fracture may be associated with a

large metabolic expense, thus directly affecting global

energy metabolism. Reviewing the literature, we found no

clear link between fracture burden and energy metab-

olism. However, Hamann and colleagues have recently

assessed the effects of intermittent PTH on metabolic

function in both diabetic and non-diabetic rats, with

internally stabilised induced subcritical femoral defects.

PTH had no effect on body weight, glucose tolerance or

pancreatic islet morphology in both groups, despite PTH

therapy resulting in bone anabolic effects and bone defect

repair. Unfortunately, the authors were unable to detect

undercarboxylated OC; however, they reported no change

in carboxylated OC between vehicle and PTH-treated

non-diabetic and diabetic rats (Hamann et al. 2014). These

results are surprising as intermittent therapy is known to

increase serum levels of OC (Neer et al. 2001, Greenspan

et al. 2007). These insights indicate that improved

fracture repair may not have a global effect on energy

metabolism. Paradoxically, it has been shown that

vitamin K-dependent g carboxylation of OC positively

enhances the efficacy of PTH following a closed fracture

osteotomy. After osteomy, carboxylated OC increased by

18% from baseline and uncarboxylated OC was increased

by 100% after surgery; however, insulin sensitivity was not

assessed (Shimizu et al. 2014).
Published by Bioscientifica Ltd.

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-14-0584


Jo
u

rn
a
l

o
f

E
n

d
o

cr
in

o
lo

g
y

Review K J OLDKNOW and others Endocrine role of bone 225 :1 R11
Sphingolipids and PHOSPHO1

Sphingolipids are a large class of lipid molecules contain-

ing a sphingoid backbone, derived from the condensation

of an amino acid and fatty acid; modifications of this basic

structure result in a large sphingolipid family (Hannun &

Obeid 2011, Mullen et al. 2012). Sphingolipids are

primarily synthesised de novo in the endoplasmic reticu-

lum and Golgi apparatus, before transportation to the

plasma membrane and endosomes; however, sphingo-

myelinases also play vital roles in sphingolipid biosyn-

thesis. Categorised as acidic, alkaline or neutral,

sphingomyelinases cleave sphingomyelin, thus gener-

ating ceramide and phosphocholine (Merrill et al. 1997,

Marchesini & Hannun 2004, Futerman & Riezman 2005).

Until recently, sphingolipids were considered structurally

inert; however, they are now accepted to be fundamental

signalling molecules, responsible for eliciting a wide range

of signalling properties and cellular functions, encom-

passing roles in the regulation of cell growth, prolifer-

ation, differentiation, programmed death, death,

senescence, adhesion, migration, inflammation, angio-

genesis and intracellular trafficking. Current efforts are

focused on deciphering the mechanisms underlying these

varied roles, enabling a greater understanding of sphingo-

lipid metabolism and lipid generation and action

(Hannun & Obeid 2008, Merrill 2011, Airola & Hannun

2013; reviewed in Gault et al. (2010)).

Recent in vitro results have indicated that sphingoli-

pids are implicated in osteoblast and chondrocyte

apoptosis and in the regulation of osteoclastogenesis

(Takeda et al. 1998, MacRae et al. 2006; reviewed by

Khavandgar & Murshed (2014)). In vivo, sphingolipid

metabolism plays a critical role in skeletogenesis; mouse

models lacking the ceramide-generating neutral sphingo-

myelinase 2 enzyme (nSMase2/SMPD3 – gene-targeted

Smpd3K/K and fro/fro mice) display gross skeletal abnorm-

alities, including deformed long bones, short-limb dwarf-

ism, hypomineralisation, delayed dentin mineralisation

and enamel formation (Aubin et al. 2005, Stoffel et al.

2005, Alebrahim et al. 2014). Conversely, the overexpres-

sion of SMPD3 in osteoblasts only (fro/fro;Col1a1–Smpd3

mice) corrects embryonic bone abnormalities, demon-

strating a direct role of SMPD3 in skeletal mineralisation

(Khavandgar et al. 2011, 2013). However, the mechanisms

underlying this role, while remaining unclear, are now

becoming a little more evident.

As highlighted, SMPD3 hydrolyses sphingomyelin

to phosphocholine (Stoffel et al. 2005), which is subse-

quently hydrolysed into choline and phosphate by the
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-14-0584 Printed in Great Britain
bone-specific phosphatase PHOSPHO1 (Houston et al.

2004, Stewart et al. 2006, Roberts et al. 2007). Complete

ablation of Phospho1 in mice results in a similar phenotype

to that of fro/fro mice, with Phospho1K/K mice having

significant skeletal pathology, spontaneous fractures,

bowed long bones, osteomalacia and scoliosis in early life

(Huesa et al. 2011, Yadav et al. 2011, 2014, Rodriguez-Florez

et al. 2014). These results indicate that PHOSPHO1 and

SMPD3 are within the same metabolic pathway required

for skeletal mineralisation in the mouse (Khavandgar Z,

Oldknow KJ, Murshed M & Farquharson C, unpublished

observations).

Interestingly, both Phospho1- and Smpd3-deficient

models exhibit decreased body size, indicating that, in

addition to the de novo pathway, the sphingomyelinase

pathway may have the potential to regulate energy

metabolism (Stoffel et al. 2005, Oldknow et al. 2013).

Supporting this notion, results from metabolic studies

conducted in our laboratory have highlighted the finding

that Phospho1 ablation confers remarkable protection

against obesity and diabetes in mice, independent of

serum levels of uncarboxylated and undercarboxylated

OC (Oldknow et al. 2013). The mechanisms underlying

this metabolic protection in both Phospho1- and Smpd3-

deficient models remain unclear; therefore, it is important

to determine whether concentrations of either circulating

or bone-derived choline/ceramide are decreased in these

models. Choline supplementation by others results in

hepatic insulin resistance (Wu et al. 2013). Moreover, the

impairment of de novo synthesis of choline via phospha-

tidylethanolamine N-methyltransferase, which catalyses

the methylation of phosphatidylethanolamine in the

liver, protects mice from diet-induced obesity (Jacobs

et al. 2010). However, in contradiction to the results of

these studies, it has recently been reported that choline

can promote liver health by maintaining cholesterol

homoeostasis (Al Rajabi et al. 2014). Furthermore, de

novo ceramide accumulation results in an alteration in

metabolism (Summers et al. 1998, Merrill 2002, Yang et al.

2009, Ussher et al. 2010). Pharmacological inhibition of

dihydroceramide desaturase 1 (DES1), an enzyme involved

in the de novo pathway of sphingolipid metabolism

(responsible for the insertion of a double bond into

the sphingosine backbone of prevalent sphingolipids,

e.g. conversion of dihydroceramide into ceramide),

improves insulin sensitivity (Bikman et al. 2012). Such

Des1K/K mice have alterations in energy expenditure,

and haploinsufficiency of DES1 in the mouse model

protects against lipid- and glucocorticoid-induced insulin

resistance. (Holland et al. 2007, Siddique et al. 2013).
Published by Bioscientifica Ltd.
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Taken together, these findings strongly support a role

of sphingolipids in the endocrine function of bone;

however, the importance of ceramide and choline in

energy regulation by the skeleton has not yet been fully

investigated.
Ectonucleotide pyrophosphatase/
phosphodiesterase 1

Ectonucleotide pyrophosphatase/phosphodiesterase 1

(NPP1) is the founding member of the NPP family.

These glycoproteins have pleiotropic roles in hydrolysing

phosphodiester or pyrophosphate bonds in various

substrates, including nucleoside triphosphates, lysophos-

pholipids and choline phosphate esters (Bollen et al.

2000, Stefan et al. 2005, Zimmermann et al. 2012).

Specifically, NPP1 forms disulphide-bonded homodimers

and is highly expressed in the plasma membrane and

mineral-depositing matrix vesicles of osteoblasts

(Johnson et al. 1999, 2001, Vaingankar et al. 2004,

Terkeltaub 2006). Thus, NPP1 has been identified as a

critical regulator of tissue mineralisation, hydrolysing

nucleotides into extracellular inorganic pyrophosphate

(PPi), a potent inhibitor of HA crystal formation in

mineralisation-competent tissues (Terkeltaub 2001).

Mice lacking NPP1 (Enpp1K/K) have severe mineralisation

defects in long bones and calvariae, with pathological

perispinal soft tissue and medial arterial mineralisation

associated with abnormally low PPi levels (Sali et al. 1999,

Johnson et al. 2003, Anderson et al. 2005, Mackenzie et al.

2012a,b). In addition to its recognised roles in mineral-

isation, increased NPP1 expression has been associated

with insulin resistance in both in vitro and in vivo models

by negatively modulating IR signalling. (Maddux et al.

1995, Belfiore et al. 1996, Costanzo et al. 2001, Goldfine

et al. 2008, Prudente et al. 2009, Huesa et al. 2014).

Additionally, insulin-resistant subjects have been found

to have NPP1 overexpression in skeletal muscle, adipose

tissue, fibroblasts and lymphocytes (Frittitta et al. 1997,

1998, Teno et al. 1999, Stentz & Kitabchi 2007, Goldfine

et al. 2008). Combing the necessity of NPP1 for

mineralisation and the known role of NPP1 in insulin

resistance led ourselves and our colleagues to investigate

whether NPP1 has a functional role in bone as a novel

regulator of energy metabolism. Genetic ablation of

Enpp1 resulted in insulin sensitisation and mildly

improved glucose homoeostasis. Upon challenge with

a chronic HFD, Enpp1K/K mice displayed improved

insulin tolerance and resistance to obesity. Unlike the

Phospho1K/K mice, Enpp1K/K mice displayed increased
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-14-0584 Printed in Great Britain
levels of undercarboxylated OC and the bone resorption

marker CTX, which is indicative of increased insulin

signalling in osteoblasts favouring resorption by osteo-

clasts (Huesa et al. 2014). However, the results of in vitro

studies did not reveal a role for NPP1 as a modulator of

insulin signalling, indicating a more complex underlying

pathway. Taken together, results from our laboratory

indicate a far more complex story underlying the

reciprocal regulation of bone and energy metabolism.
Perspective

The concept of the whole-body study of physiology has

established the skeleton as a bona fide endocrine organ,

considerably expanding the classical view of bone

towards it being a more complex organ. These provoca-

tive results have challenged and fascinated researchers,

resulting in an increased number of laboratories working

in this field. Further exploration of the endocrine role of

the skeleton is necessary in the search for additional

candidates for molecules involved in the skeletal control

of whole-body energy metabolism. The potential thera-

peutic implications of these recent findings have not yet

been fully exploited. Whether the use of OC is efficacious

in the treatment of DM remains to be determined.

Indeed, many unanswered questions remain and some

have been highlighted previously by others, including

the following: does OC regulate insulin secretion over

the short/long term? How does the osteoblast or

osteocyte sense and use glucose or other fuels? Do

bone cells utilise glucose or amino acids? Does bone

fracture increase whole-body energy expenditure? Do

osteocytes truly have an effect on energy metabolism?

(Martin 2007, Fulzele & Clemens 2012). The answers to

these challenging questions are unquestionably attain-

able, and should ultimately result in better diagnosis,

clinical management and treatment of patients with

metabolic diseases.
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