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Abstract
Glucagon action is transduced by a G protein-coupled receptor located in liver, kidney,

intestinal smooth muscle, brain, adipose tissue, heart, pancreatic b-cells, and placenta.

Genetically modified animal models have provided important clues about the role of

glucagon and its receptor (Gcgr) beyond glucose control. The PubMed database was

searched for articles published between 1995 and 2014 using the key terms glucagon,

glucagon receptor, signaling, and animal models. Lack of Gcgr signaling has been associated

with: i) hypoglycemic pregnancies, altered placentation, poor fetal growth, and increased

fetal–neonatal death; ii) pancreatic glucagon cell hyperplasia and hyperglucagonemia;

iii) altered body composition, energy state, and protection from diet-induced obesity;

iv) impaired hepatocyte survival; v) altered glucose, lipid, and hormonal milieu; vi) altered

metabolic response to prolonged fasting and exercise; vii) reduced gastric emptying and

increased intestinal length; viii) altered retinal function; and ix) prevention of the

development of diabetes in insulin-deficient mice. Similar phenotypic findings were

observed in the hepatocyte-specific deletion of Gcgr. Glucagon action has been involved in

the modulation of sweet taste responsiveness, inotropic and chronotropic effects in the

heart, satiety, glomerular filtration rate, secretion of insulin, cortisol, ghrelin, GH, glucagon,

and somatostatin, and hypothalamic signaling to suppress hepatic glucose production.

Glucagon (a) cells under certain conditions can transdifferentiate into insulin (b) cells.

These findings suggest that glucagon signaling plays an important role in multiple organs.

Thus, treatment options designed to block Gcgr activation in diabetics may have implications

beyond glucose homeostasis.
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Introduction
Glucagon is a 29-amino acid polypeptide secreted by the

a or glucagon cell of the islet of Langerhans in response to

hypoglycemia, arginine, gastric inhibitory polypeptide

(during ambient reduced glucose levels), gastrin, and

potassium chloride. Glucagon was initially discovered as
a contaminant of pancreatic extracts with glucogenic

properties or properties that mobilize glucose in 1923.

It took more than 20 years for Sutherland and de Duve to

establish that glucagon is secreted by pancreatic a-cells.

Between 1959 and 1962, Unger et al. developed a RIA
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making it possible to investigate the physiology of

glucagon and its role in various disorders (Unger et al.

1959, 1962, Gromada et al. 2007).

As a counter-regulatory hormone, glucagon main-

tains blood glucose levels by activating glycogenolysis

and gluconeogenesis. In addition, glucagon reduces

triglyceride, very LDL release, and cholesterol levels

and stimulates fatty acid oxidation (Eaton 1973, Longuet

et al. 2008). Beyond glucose homeostasis, glucagon elicits

significant extra-hepatic effects in tissues such as kidney,

heart, adipose tissue (white and brown), gastrointestinal

tract, thyroid, and CNS (Lefebvre 1995, Burcelin et al.

1996, Porte et al. 1998, Kieffer & Habener 1999,

Kinoshita et al. 2014).

Glucagon action is transduced by a G protein-coupled

receptor (GCGR/Gcgr) that is a member of the class II

GCGR superfamily of seven transmembrane spanning

receptors that are coupled via GTP-binding proteins to

adenylyl cyclase resulting in an increase in cAMP

production. cAMP activates signaling pathways that

cause an increase in gluconeogenesis, glycogenolysis,

and fatty acid oxidation. In addition, glucagon controls

glucose, energy, and lipid metabolism at least in part via

AC/cAMP-independent signals including p38MAPK,

IP3/DAG/Ca, peroxisome proliferator-activated receptor

alpha (PPARa), and fibroblast growth factor 21 (FGF21)-

dependent pathways (Berglund et al. 2010, Habegger et al.

2010, 2013, Rodgers 2012, Cyphert et al. 2014).

Binding sites for glucagon have been identified in

liver, kidney, intestinal smooth muscle, brain, adipose

tissue, heart, pancreatic islet b-cells, and placenta (Ouhilal

et al. 2012). Gcgr gene expression is positively regulated by

glucose and negatively regulated by glucagon and agents

that increase intracellular cAMP (Quesada et al. 2008).

This review will focus on the role of glucagon and

glucagon signaling in fetal growth, pancreatic develop-

ment, and glucose and lipid homeostasis in genetically

modified animal models that have been demonstrated to

provide important clues about the role of glucagon in

health and disease. Animal models provide an invaluable

tool to study the underlying mechanisms associated with

glucagon action; however, they have the disadvantage

that genetic manipulation could lead to lifelong adap-

tations that can skew results. Thus, some of the findings

may not necessarily translate into human disease.

The PubMed database was searched for articles

published between 1995 and 2014 using the key terms

glucagon, glucagon receptor, and animal models. Articles

obtained from this search are discussed in this review.

A brief summary of all the known metabolic changes that
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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have been identified from genetically modified animal

models with altered Gcgr expression is provided in Fig. 1.
Role of glucagon on pregnancy maintenance
and fetal growth

Disruption of the glucagon receptor gene (Gcgr) during

pregnancy is associated with maternal hypoglycemia,

hyperglucagonemia, abnormalities of placentation, poor

fetal growth, and increased fetal and early postnatal

death. GcgrK/K placentas are characterized by extensive

mineralization, fibrinoid necrosis, narrowing of the vas-

cular channels, and a thickened interstitium associated

with trophoblast hyperplasia. In addition, lack of gluca-

gon placental signaling down-regulates genes that

control growth, adrenergic signaling, vascularization,

oxidative stress, and G protein-coupled receptors (Ouhilal

et al. 2012).
Role of glucagon in pancreatic development
and pancreatic islet morphology

During fetal development, glucagon is required for early

insulin or b-cell differentiation and to mature a subset of

glucagon cells (Vuguin et al. 2006). In rodent models,

disruption of the Gcgr gene is associated with an increase

in the number of pancreatic islets and an increase in the

number of somatostatin cells without altering insulin cell

mass. Lack of glucagon signaling is also associated with

a profound glucagon cell hyperplasia. A subset of those

glucagon cells coexpress markers of immature islet

endocrine cells such as insulin, PDX1, and glucose

transporter 2 (Vuguin et al. 2006). Similar to the GcgrK/K

model, glucagon cell expansion is observed in themajority

of the models in which there is reduced or absent Gcgr

receptor signaling, such as inactivation or a reduction in

glucagon and/or its receptor by genetic manipulation,

immuno-blockade, or treatment with antisense oligonu-

cleotides (Gelling et al. 2003, Sloop et al. 2004, Conarello

et al. 2007,Winzell et al. 2007, Gu et al. 2009, Hayashi et al.

2009, Lee et al. 2011, Longuet et al. 2013). In those studies,

a or glucagon cell expansion is accompanied by elevated

plasma glucagon levels. One exception has been the study

by Liang et al. (2004), which demonstrated that

a reduction in Gcgr expression using an antisense

oligonucleotide is not accompanied by changes in a or

glucagon cell number; however, glucagon levels were

nonetheless significantly increased.

Interestingly, specific inactivation of the Gcgr gene in

the hepatocyte recapitulates the phenotype observed in
Published by Bioscientifica Ltd.
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Figure 1

Studies using the Gcgr knockout mouse model (GcgrK/K) have revealed important insights into the role of glucagon signaling in pancreatic and extra-

pancreatic tissues.
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GcgrK/K mice. Specifically, both GcgrK/K mice and the

liver-specific GcgrK/K mice have similar reductions in

fasting glucose and improved glucose tolerance and

insulin sensitivity, and glucagon cell hyperplasia and

hyperglucagonemia, suggesting that an independent

circulating factor produced by the lack of Gcgr signaling

in liver can increase glucagon cell proliferation (Longuet

et al. 2013).
Role of glucagon in food intake and
body composition

Glucagon has beneficial effects on food intake, body fat

mass, and energy expenditure (Habegger et al. 2010,

Heppner et al. 2010). In addition, glucagon has a satiety

effect by decreasing meal size through a combination of
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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peripheral and central actions (Heppner et al. 2010).

Consistent with a role in modulating food intake,

glucagon also appears to affect the regulation of body

weight by promoting weight loss in physiological and

pathological doses as observed in patients with glucago-

noma (Schulman et al. 1957, Bloom & Polak 1987).

In addition, rodent models and in vitro studies have

demonstrated that glucagon increases energy expenditure

through activation of brown adipose tissue (Billington

et al. 1991).

Disruption of the Gcgr gene is associated with a

significant decrease in total adipose tissue, which is

compensated for by an increase in lean body mass. The

changes in body composition are not accompanied by a

change in growth rates, food intake, resting O2 consump-

tion, and energy expenditure when compared with WT
Published by Bioscientifica Ltd.
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littermates (Gelling et al. 2003, Vuguin et al. 2006).

Notably, during other pathological states, such as insulin

deficiency and/or hyperglucagonemia, glucagon increases

energy expenditure and thermogenesis. This increase in

thermogenesis involves targeting of brown adipose tissue

(Yahata & Kuroshima 1987) and white adipose tissue

lipolysis (Lefebvre 1975).

When exposed to a high-fat diet, disruption of the

Gcgr gene is associated with a decrease in consumption of

fat, 30% less weight gain, and protection from high-fat-

induced hepatic steatosis when compared with WT

littermates (Conarello et al. 2007). In contrast, it has

been demonstrated that GcgrK/K mice have enhanced

susceptibility to Jo2-induced liver injury by increasing the

apoptotic rate (Sinclair et al. 2008). Moreover, glucagon is

essential for hepatocyte survival via regulation of cAMP-

dependent pathways that decrease caspase activity

(Sinclair et al. 2008).
Role of glucagon in glucose and
lipid homeostasis

Glucagon plays a central role in the response to

hypoglycemia by stimulating gluconeogenesis and glyco-

genolysis and opposing the insulin effects. Its main action

on the liver is mediated by the activation of adenylyl

cyclase and the protein kinase A signaling pathway

(Quesada et al. 2008). Glucagon stimulates changes to

lower the energy state by activating AMPK signaling in the

liver, thereby improving the efficiency by which the liver

converts gluconeogenic substrate into glucose following

glucagon stimulation (Berglund et al. 2009). The first-line

biguanide drug for the treatment of diabetes ‘metformin’

has been shown to antagonize the effect of glucagon in the

liver by increasing AMP levels (Miller et al. 2013).

Glucagon has also been shown to have an inhibitory

effect on insulin secretion. It has been recently shown that

glucagon stimulated signaling, via cAMP–PKA–CREB, and

the subsequent hepatic production of kisspeptin 1

suppresses insulin secretion (Song et al. 2014). In addition

to its effect on the liver, glucagon can suppress hepatic

glucose production by acting through the mediobasal

hypothalamic region of the brain, suggesting that gluca-

gon can limit its own direct stimulatory effect in the liver

(Mighiu et al. 2013).

The lipolytic effect of glucagon in humans has been

challenged (Gravholt et al. 2001). In animal models,

glucagon has potent hypolipidemic actions (Eaton 1973,

Guettet et al. 1991, Bobe et al. 2003). Glucagon decreases

triglyceride and very-LDL release by the liver (Guettet et al.
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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1989, Bobe et al. 2003), reduces plasma cholesterol

(Guettet et al. 1988,1989, 1991), and increases b-oxidation

(Prip-Buus et al. 1990). Glucagon action on lipid metab-

olism is mediated through AMPK-, p38 MAPK-, PPARa-,

Foxa2-, and FGF21-dependent mechanisms (Longuet et al.

2008, Berglund et al. 2010, von Meyenn et al. 2013). In

addition, glucagon plays a central role in fatty acid

oxidization during prolonged fasting and in response to

exercise (Longuet et al. 2008, Berglund et al. 2010).

In rodent models, disruption of the Gcgr gene is

associated with lower blood glucose levels during the day

and the development of hypoglycemia during a prolonged

fast, increased plasma LDL, and, in female rodents,

decreased levels of triglycerides (Gelling et al. 2003).
Role of glucagon in the hormonal milieu

Glucagon does not seem to play an important role in

insulin action but induces glucose-stimulated insulin

release (Gelling et al. 2003). Similarly, glucagon action

stimulates its own secretion in isolated rat and mouse

glucagon cells by increasing cAMP levels and stimulating

somatostatin release (Shimatsu et al. 1983, Ma et al.

2005). In humans, glucagon also has a variety of

neuroendocrine effects including the stimulation of GH

and cortisol secretion and inhibition of ghrelin secretion

(Arafat et al. 2005).

Disruption of the Gcgr gene is associated with

hyperglucagonemia and elevated glucagon-like peptide 1

(GLP1) levels, with normal insulin and lactate levels.

GcgrK/K mice have a twofold increase in corticosterone

during fasting, low corticosterone levels in the afternoon,

and an increased responsiveness to epinephrine when

compared with WT littermates. Female GcgrK/K mice

display a small decrease in insulin-like growth factor1

levels (Gelling et al. 2003). Consumption of a high-fat diet

does not alter levels of plasma glucagon, GLP1, triglycer-

ides, non-esterified free fatty acids, or corticosterone in

GcgrK/K mice when compared with WT littermates

(Conarello et al. 2007).
Role of glucagon in satiety and
gastric emptying

Glucagon has been shown to evoke a marked delay in

gastric emptying (Jonderko et al. 1989). These anti-

motility effects on the gastrointestinal tract (esophagus,

stomach, and small and large intestines) are observed

when glucagon is administered to humans in pharma-

cological doses (Patel et al. 1979). Glucagon also controls
Published by Bioscientifica Ltd.
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meal size and satiation in both humans and rodents

(Geary 1990, Geary et al. 1992).

In rodent models, disruption of the Gcgr gene is

associated with decreased gastric emptying (Conarello

et al. 2007), increased length of the intestines (by 20%) due

to an increased rate of crypt neogenesis and crypt

bifurcation, and an increase in the number of L and LK

cells/villi compared with WT littermates (Grigoryan et al.

2012).
Role of glucagon in retinal function

In rodent models, disruption of the Gcgr gene is associated

with a late-onset loss of retinal function, loss of visual

acuity, and eventual death of retinal cells (Umino et al.

2006). These retinal changes were observed at 10 months

of age and correlated directly with the degree of

hypoglycemia.
Role of glucagon in taste

Glucagon and its receptor are coexpressed in a subset of

mouse taste receptor cells that express T1R3 taste receptor

implicated in sweet and/or umami taste (Elson et al. 2010).

No major alterations in taste have been described in

GcgrK/K mouse models.
Role of glucagon in cardiac contractility

Glucagon exerts positive inotropic and chronotropic

effects in the ventricular myocardium by activation of

cardiac adenylate cyclase leading to increased cAMP

formation (MacLeod et al. 1981, Mery et al. 1990,

Gonzalez-Munoz et al. 2008).

In rodent models, disruption of the Gcgr gene is

associated with a diminished parasympathetic tone,

leading to higher heart rates during the light phase and a

modest elevation in the heart rate in response to atropine

(Mukharji et al. 2013).
Role of glucagon in renal blood flow

Glucagon exerts a positive effect on renal blood flow and

glomerular filtration rate, and increases sodium, chloride,

potassium, and inorganic phosphorus clearance ratios

(Elrick et al. 1958, Bailly et al. 1980, Denis et al. 2003). No

major alterations in renal function have been described in

GcgrK/K mouse models.
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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Role of glucagon in b (insulin) cell function

Transgenic mice were engineered that overexpress the

Gcgr in insulin cells using the rat insulin II promoter (RiP-

Gcgr) to determine the functional role of Gcgr receptor in

b-cell function. Overexpression of Gcgr in b-cells increased

glucagon-stimulated insulin release and significantly

increased b-cell volume, suggesting a role for Gcgr receptor

in increased insulin cell competency (Gelling et al. 2009).

These data are strengthened by the findings of low levels

of PDX1, GLUT2, and MafA, molecules involved in

the regulation of insulin expression, in insulin cells of

GcgrK/K mice (Vuguin et al. 2006).
Role of glucagon in the development of
diabetes in insulin-deficient mice

Elevated glucagon:insulin ratio has been shown to

accelerate gluconeogenesis and fatty acid oxidation

leading to the formation of ketone bodies (Vons et al.

1991). Hyperglycemia and elevated ketone bodies are the

main component of diabetic ketoacidosis (Eledrisi et al.

2006). Disruption of the Gcgr gene in an insulin-deficient

diabetic rodent model is accompanied by an asympto-

matic, benign, non-catabolic state when followed for

6 weeks (Conarello et al. 2007, Lee et al. 2011), suggesting

that ‘other factors’ contribute to the normalization of the

catabolic state. Similarly, it has been demonstrated that

a low amount of a-cell (2% of the normal a-cell mass) is

sufficient to prevent the metabolic dysregulation observed

in diabetes (Thorel et al. 2011).

Disruption of the Gcgr gene increases circulating level

of FGF21 and GLP1, which promote glucose tolerance

independently of insulin level. Thus, FGF21 and GLP1

seem to be the major players in preventing the developing

of diabetes in GcgrK/K diabetic mice (Omar et al. 2014).
a (glucagon) cell transdifferentiation as a
potential treatment for diabetes

It has been recently demonstrated that, in certain

situations, newly formed b-cells can originate from cells

that previously expressed glucagon, a phenomenon called

transdifferentiation. Such situations include extreme

b-cell loss, increased expression of Pax4 in a-cells, forced

PDX1 expression, epigenomic manipulation, or the use of

the peptide caerulein after treatment with alloxan

(Collombat et al. 2009, Liu & Habener 2009, Thorel et al.

2010, Yang et al. 2011, Bramswig et al. 2013, Piran et al.

2014).
Published by Bioscientifica Ltd.
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Antagonizing glucagon action as a potential
treatment for diabetes

If alterations in glucagon secretion are indeed the cause

of hyperglycemia and other metabolic complications in

diabetic patients, suppression of glucagon signaling can be

viewed as an important therapeutic option. Potent peptide

antagonists, glucagon-neutralizing antibodies, small-

molecule glucagon receptor antagonist, and receptor

antisenseoligonucleotideshavebeenused in animalmodels

to control hyperglycemia but their use inhumanshave been

limited by their side effects as well as the limited mode of

delivery (Johnson et al. 1982, Brand et al. 1994,Qureshi et al.

2004, Estall & Drucker 2006). Recently, four novel peptide-

based glucagon analogs have been developed that are

resistant to DPP4 degradation and thus display substantial

abilities to suppress glucagon action in different animal

models (O’Harte et al. 2013). All analogs inhibit glucagon-

induced insulin secretion in vitro, and in rodents, analogs

inhibited glucagon-induced hyperglycemia and the insuli-

notropic response (O’Harte et al. 2013).
Conclusion

It has been suggested that, in states of insulin deficiency,

excess glucagon secretion plays a major role in the

metabolic perturbations associated with diabetes, such as

hyperglycemia and ketonuria. Thus, inhibition of gluca-

gon receptor signaling represents a possible option for the

treatment of diabetes. Animal models have demonstrated

that the physiological processes regulated by glucagon and

its receptor are much broader than expected. Glucagon

plays important roles in pancreatic development, insulin

cell function, and metabolic response to prolonged

fasting, exercise, lipid metabolism, hepatic energy state,

hepatocyte survival, meal size and satiety, gastric empty-

ing, intestinal length, as well as visual acuity, placenta-

tion, and cardiac contractility. In addition, under some

extreme metabolic conditions of insulin deficiency,

glucagon or a-cells possess the capacity to transdifferenti-

ate into insulin cells. Therefore, antagonizing glucagon

action as a therapy for diabetes may improve glucose and

insulin levels but in additionmay have several unintended

consequences that could further compromise the regulat-

ory response to an altered metabolic state.
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