
Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Review
K A CHAN, M W TSOULIS and
others

Early-life nutritional effects on
the female reproductive system

224 :2 R45–R62
Early-life nutritional effects on the
female reproductive system
K A Chan1,*, M W Tsoulis1,* and D M Sloboda1,2,3

Departments of 1Biochemistry and Biomedical Sciences, 2Pediatrics and 3Obstetrics and Gynecology,

McMaster University, 1280 Main Street West HSC 4H30A, Hamilton, Ontario, Canada L8S 4K1
*(K A Chan and M W Tsoulis contributed equally to this work (co-first authors))
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-14-0469 Printed in Great Britain

Published by Bioscientifica Ltd.
Correspondence

should be addressed

to D M Sloboda

Email

sloboda@mcmaster.ca
Abstract
There is now considerable epidemiological and experimental evidence indicating that

early-life environmental conditions, including nutrition, affect subsequent development

in later life. These conditions induce highly integrated responses in endocrine-related

homeostasis, resulting in persistent changes in the developmental trajectory producing an

altered adult phenotype. Early-life events trigger processes that prepare the individual for

particular circumstances that are anticipated in the postnatal environment. However,

where the intrauterine and postnatal environments differ markedly, such modifications

to the developmental trajectory may prove maladaptive in later life. Reproductive

maturation and function are similarly influenced by early-life events. This should not be

surprising, because the primordial follicle pool is established early in life and is thus

vulnerable to early-life events. Results of clinical and experimental studies have indicated

that early-life adversity is associated with a decline in ovarian follicular reserve, changes in

ovulation rates, and altered age at onset of puberty. However, the underlying mechanisms

regulating the relationship between the early-life developmental environment and

postnatal reproductive development and function are unclear. This review examines

the evidence linking early-life nutrition and effects on the female reproductive system,

bringing together clinical observations in humans and experimental data from targeted

animal models.
Key Words

" developmental programming

" reproduction

" puberty

" ovary

" maternal nutrition

" IUGR
Journal of Endocrinology

(2015) 224, R45–R62
Introduction
Disease risk is established well before birth. Life-style

associated diseases, including obesity and type 2 diabetes,

are known to be influenced by fetal adaptations to in utero

conditions and critically, these disease effects span multiple

generations (Gluckman et al. 2007, Aiken & Ozanne

2014). Although science has made significant advances

in understanding how this occurs, the exact signaling

pathways still remain unclear. As germ cells (oocytes) in

the growing fetal ovary are vulnerable to prenatal events, it

is likely that modifications in fetal gonadal development

contribute to transgenerational disease risk.
The developing organism is capable of adapting to

various environments. This phenomenon has led to the

hypothesis that disease risk is the result of complex gene–

environment interactions (Bouchard 2008, Andreasen &

Andersen 2009). This ‘environment’ includes the period

encompassing the developmental milieu within which

gametes, germ/stem, and somatic cells will not only

differentiate into established organ systems but also give

rise to the next generation. It is this inherent deve-

lopmental plasticity of an organism that allows it to

respond to cues that will ultimately determine the adult
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phenotype. However, under some circumstances, develop-

mental adaptations to early-life insults may lead to

negative effects on long-term health (Gluckman & Hanson

2007). In this regard, epidemiological and experimental

data have indicated that there is a relationship between

the in utero environment and the risk of developing

chronic disease later in life (Gluckman & Hanson 2004,

2007). A number of differential insults that induce

developmental adaptations have been shown to modify

disease risk (Champagne 2011, Rosenfeld 2012, Desai et al.

2013, Reynolds 2013, Reynolds et al. 2013, Sinclair &

Watkins 2013, Tarantal & Berglund 2014) and to modulate

reproductive function (Savabieasfahani et al. 2006,

Sloboda et al. 2009, Connor et al. 2012, Schöpper et al.

2012, Lie et al. 2013, Barra et al. 2014, Zhou et al. 2014,

Zhuo et al. 2014). As the gametes that will eventually give

rise to grand-offspring form during fetal life, it is possible

that the link between early-life adversity and postnatal

disease lies in the developing ovary – involving the

developing germ cells and their function. In this review,

we consider the female reproductive system, how

perinatal adversity modifies fetal reproductive develop-

ment and the long-term effects of early-life adversity

on female reproductive function. As the effects of

environmental toxins and chemicals (Walker & Gore

2011, Gopinath 2013, Marques-Pinto & Carvalho 2013)

on the male reproductive system have been reviewed

elsewhere (Mori 2001, Hampl et al. 2013), this review

focuses on the effects of early-life nutritional insults on the

female reproductive system.
Establishment of female reproductive
function: a brief overview

Central to female fertility is the ovary, which consists of

oocytes surrounded by somatic cells (follicles). Two pools

of follicles exist within the ovary: the resting follicle

pool and the growing follicle pool. The resting follicle

pool is made up of primordial follicles, which are oocytes

surrounded by a single layer of flattened (squamous)

granulosa cells (Hirshfield 1991). The majority of primor-

dial follicles remain quiescent; however, a small subset is

recruited to supply the growing follicle pool throughout

reproductive life (McGee & Hsueh 2000). Oocytes within

primordial follicles originate from primordial germ cells

(PGCs) that have migrated from the hindgut to the

gonadal ridge during embryonic life (Mamsen et al.

2012, Sánchez & Smitz 2012). Upon arrival at the gonadal

anlagen, PGCs proliferate by mitosis to form oogonia;

however, incomplete cytokinesis results in the formation
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-14-0469 Printed in Great Britain
of multi-nucleated syncitia, consisting of multiple

oogonia connected by intercellular cytoplasmic bridges

surrounded by somatic cells, also known as germ cell cysts

(Pepling & Spradling 1998, Tingen et al. 2009, Haglund

et al. 2011, Pepling 2012, Sánchez & Smitz 2012).

Subsequently, oogonia enter meiosis and become arrested

in the diplotene stage of meiosis I, at which point they are

referred to as primary oocytes (Hunt & Hassold 2008,

Pepling 2012). Concomitant with the oogonia-to-oocyte

transition is breakdown of cysts and the freeing of

individual oocytes to form primordial follicles (Pan et al.

2012). Breakdown of cysts and the establishment of the

primordial follicle pool occur from postnatal (P) day 1 to

P4 in rodents (Rajah et al. 1992, Pepling & Spradling 2001).

During this time, there is a massive wave of germ cell

death (atresia) via apoptosis and only 33% of oocytes

survive to form primordial follicles (Pepling & Spradling

2001, Kezele et al. 2002). The primordial follicles begin to

form near the ovarian core (medulla), and their assembly

gradually shifts toward the surface (Rajah et al. 1992).

Similarly, human primordial follicle assembly begins in

medullary regions and radiates outwards into cortical

regions (Sforza et al. 2003) with a wave of follicle atresia

(Geber et al. 2012); however, this process begins well

before birth at w13 weeks postconception and continues

until birth (Forabosco & Sforza 2007). Regardless of timing

differences between species, the accumulated number of

primordial follicles established early in life largely dictates

the reproductive potential and lifespan of mammals,

because once this pool is depleted, reproductive life ceases.

Recent data have led to a challenge to this concept of a

finite primordial follicle pool and on the basis of evidence

which indicates that the mammalian ovary may have

proliferative germ cells that could replenish the reserve

(Johnson et al. 2004, 2005, Woods et al. 2012); however,

this idea is still heavily debated (Tingen et al. 2009, Kerr

et al. 2012, Zhang et al. 2012, 2013).

Follicle growth is regulated by a highly orchestrated

neuroendocrine negative-feedback system characterized

by hypothalamic release of gonadotropin-releasing hor-

mone (GNRH), anterior pituitary release of gonadotropins

(luteinizing hormone (LH) and follicle-stimulating hor-

mone (FSH)), and ovarian sex steroids (estradiol (E2) and

progesterone) (Walker & Gore 2011). Hypothalamic

GNRH stimulates the release of LH or FSH (depending on

GNRH pulsatility) from the anterior pituitary (Popat et al.

2008, Tsutsumi & Webster 2009). These gonadotropins

bind to their cognate receptors in the ovary, stimulating

the production of sex steroids that aid in follicle growth

and, importantly, feedback onto the hypothalamus and
Published by Bioscientifica Ltd.
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anterior pituitary to regulate the production of GNRH and

LH/FSH (Popat et al. 2008). It is not until puberty that

GNRH pulsatility is sufficient to induce ovulation of late-

antral or fully-grown follicles (Kawagoe & Hiroi 1983,

Grumbach 2002, Russell & Robker 2007). It is currently

not known what exact mechanism initiates GNRH

pulsatility and, consequently, the onset of puberty.

However, there is evidence that metabolic status conveyed

to the hypothalamic kisspeptin system by leptin (Elias &

Purohit 2013), ghrelin (Tena-Sempere 2013), and adipo-

nectin (Martos-Moreno et al. 2010), amongst others, is

critical. Nonetheless, once puberty is reached, regular

menstrual (human) and estrous (rodent) cycles, governed

by GNRH, LH/FSH, and sex steroids, result in follicle

recruitment, development, and ovulation of an oocyte

capable of being fertilized (Popat et al. 2008). This occurs at

every cycle until the primordial follicle pool is depleted

(Skinner 2005). Thus, one can imagine that events or

insults occurring during critical hypothalamic–pituitary–

gonad developmental windows may disrupt reproductive

function and even impair fertility.

Notably, during fetal and early neonatal folliculo-

genesis, massive epigenetic remodeling occurs, including

remethylation of the entire genome (Walker & Ho 2012).

Thus in addition to the development and differentiation

of germ and somatic cells being vulnerable to early-life

insults, adversity may equally (or simultaneously) result

in stable changes to the epigenotype of germ cells
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Figure 1

The lifecycle of an ovarian follicle.
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(Pan et al. 2012), having long-term implications for future

generations (Fig. 1). Epigenetics refers to the study of

changes in gene function, without alterations in the DNA

sequence that are mitotically and/or meiotically heritable

(Berger et al. 2009, Dupont et al. 2009). Factors contributing

to altered epigenetic states include histone post-

translational modifications, noncoding RNAs, transcription

factors, and DNA methylation (Sarkies & Sale 2012). The

latter largely occurs on cytosines at palindromic CpG

dinucleotides (Bird & Wolffe 1999), and promoter CpG

methylation is generally associated with a transcriptionally

silent gene (Sarkies & Sale 2012). Interestingly, the

oogonium/oocyte is subjected to massive fluctuations due

to CpG methylation over the course of development.

Specifically, PGCs during embryonic life undergo almost

complete genomic demethylation upon arrival to the

gonadal ridge (Lee et al. 2014). Postnatally, throughout

folliculogenesis, the oocyte genome is remethylated as

follicle growth progresses (Reik et al. 2001). Post-fertiliza-

tion, another waveofdemethylationoccurs inboth paternal

(Oswald et al. 2000) and maternal (Wang et al. 2014)

genomes. Despite massive erasure of the methylome in

PGCs, some genomic sequences become resistant (Guibert

et al. 2012), and oocyte methylation status is known to be a

strong factor in the determination of pre-implantation

embryo methylation status (Smallwood et al. 2011).

These two lines of evidence indicate that it is possible

for DNA methylation status to get transmitted across
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for fertilization

lation

Pre-
ovulatory
follicles

le loss due
 atresia

Follicular atresia

Secondary
follicles

Antral +FSH

Oocytes

Follicle growth

Published by Bioscientifica Ltd.

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-14-0469


Maternal
nutrition

F0

F1

F2

F2

F3

Figure 2
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generations. Thus exposure of a pregnant female (F0

generation) to an insult will directly expose not only her

offspring (F1 generation), but also the F1 offspring’s germ

cells, which will later form the F2 generation (Fig. 2).

Therefore, the first generation not directly exposed to an

environmental insult in this scenario would be F3

generation offspring. If effects are observed in F3 gener-

ation offspring as a result of F0 exposure, it would indicate

a germline-dependent transmission across generations,

which has been termed transgenerational (Skinner 2008).

Observation of effects only in F1 and/or F2 generation

offspring would indicate germline-independent trans-

mission across generations, which has been termed

multigenerational (Skinner 2008). Moreover, epigenetic

marks that are thought to reflect early-life nutritional

status have been put forward as possible biomarkers of

long-term disease risk (Heijmans et al. 2008, Godfrey et al.

2011, Dominguez-Salas et al. 2012, 2014, Khulan et al.

2012). Although the usefulness of these marks has not

been thoroughly investigated, it is likely that techno-

logical advancement permitting the identification of

specific epigenetic changes across the entire genome

and linking of these marks with functional outcomes

will improve our ability to understand how epigenetics

modulates long-term health and disease risk.
Human studies of reproductive programming:
modulatory effects of early growth

Early studies investigating the developmental origins

of disease risk historically used birth weight (BW) as
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-14-0469 Printed in Great Britain
a proxy measure for intrauterine adversity (Barker et al.

1989, Barker 2006). Consequently, epidemiological

investigations of populations born with low BW (LBW),

due to intrauterine growth restriction (IUGR) and/or

small-for-gestational age (SGA), showed significant associ-

ations between intrauterine growth, BW, and postnatal

reproductive function (Cooper et al. 1996, van Weissen-

bruch & Delemarre-van de Waal 2006, Sloboda et al. 2007,

van Weissenbruch 2007, Ibanez et al. 2011).

Adolescent girls and young adult women born SGA

show reduced ovarian size and increased circulating

gonadotropin levels, which are already detectable in

infancy (Ibanez et al. 2000, 2002a). Whether disruption

of ovarian development occurs as early as fetal life in

humans is unclear. IUGR female fetuses show altered

ovarian development characterized by reduced ovarian

size and reduced proportions of primordial follicles (de

Bruin et al. 1998), although in subsequent studies, IUGR

fetuses did not show significant changes in volume or

follicle number (de Bruin et al. 2001). A lack of change in

fetal ovarian follicle numbers would indicate that the

effects of IUGR on ovarian folliculogenesis may not be

apparent until the post-pubertal time-point, although it is

important to recall that the size of the ovary may not

reflect follicle numbers and/or function.

SGA girls display exaggerated adrenarche, advanced

menarche, low ovulation rates, and early-onset menopause

(Cooper et al. 1996, Veening et al. 2004, Ibanez & de Zegher

2006). Furthermore, upon onset of puberty, SGA girls also

display exaggerated adrenal androgen secretion, factors

responsible for secondary sexual characteristics (pubic hair,

deepening of voice, etc.), as well as hyperinsulinemia,

which has been shown to be associated with hyperandro-

genemia (Ibanez et al. 1999, 2004). These findings are

indicative of an accelerated advancement in reproductive

maturity and may be indicative of a reduced reproductive

lifespan in SGA girls, compared with appropriate-for-

gestational age (AGA) girls. Whether this advancement

is associated with accelerated loss of ovarian follicles is

unknown (although results from animal studies are

indicative that this is the case, see below). Acknowledging

this, it may be no surprise, therefore, that SGA girls are

thought to be at an increased risk of experiencing

premature infertility (Vikstrom et al. 2014), although

these results are still contentious (Meas et al. 2010,

Sadrzadeh-Broer et al. 2011). Despite the fact that results

from many studies have been indicative of an association

between growth restriction in utero and reproductive

abnormalities, SGA is not always associated with early

menarche (Shim et al. 2013) or menopause (Treloar et al.
Published by Bioscientifica Ltd.
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2000) and in some circumstances, associations are mild

(Hernandez et al. 2006, de Ferran et al. 2011). Recent results

for a non-Western cohort of children have indicated that

neither BW for gestational age or SGA status was associated

with age at onset of puberty and instead, that SGA children

were shorter at the onset of puberty, consistent with either

a trade-off between linear growth and maturation or

simply with less growth potential (Hui et al. 2012).

Other forms of reproductive dysfunction have also

been associated with early-life adversity. Polycystic ovarian

syndrome (PCOS) is one of the most common female

endocrine disorders, affecting between 5 and 10% of adult

reproductive age women (Azziz 2004, Hart et al. 2004).

The symptoms include anovulation, excess androgen

secretion, insulin resistance, obesity, and dyslipidemia

(Hart et al. 2004). An association exists between abdominal

fat deposition in both adolescent girls and adult women

with the syndrome (Kirchengast & Huber 2001, Puder et al.

2005, Carmina et al. 2007, Hickey et al. 2009). It has been

suggested that PCOSmay arise througha gene–environment

interaction (Franks 2008), and although PCOS is associated

with a number of polymorphisms associated with androgen

synthesis (Ferk et al. 2008, Shah et al. 2008), no clear genetic

association has been established (Simoni et al. 2008).

Although both experimental and clinical data exist

indicating that events in are associated with a later life

PCOS phenotype, specific predisposing factors have not

been clearly defined. IUGR followed by catch up growth

during childhood increases the risk of precocious pub-

arche (Ibanez et al. 1998a), anovulation PCOS (Ibanez et al.

2002b, 2007), and characteristics of the metabolic syn-

drome in adolescence (Ibanez et al. 2006a). Insulin

resistance has been suggested to be a central driver in

these associations and treatment with insulin sensitizers

in girls with precocious pubarche has been shown to

significantly delay the onset of early menarche in this

population (Ibanez et al. 2006b, 2008a).

Although it is clear that intrauterine factors play a

significant role in the development of the female repro-

ductive system and the risk of dysfunction later in life

(de Zegher & Ibanez 2006, Ibanez et al. 2007, Melo et al.

2010, Franks & Berga 2011), the causal factors are not still

clearly defined (Cresswell et al. 1997). In a small popula-

tion of girls, SGA was associated with an increased risk

of developing PCOS (Ibanez et al. 1998a,b, 2001, 2008b).

However, this relationship may be different in babies that

had grown normally babies. In a prospective study of

normal adolescents, we have recently shown that BW was

not associated with PCOS characteristics. These findings,

however, need to be confirmed in other populations of
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-14-0469 Printed in Great Britain
unremarkable adolescents in equally large prospective

studies. Recently, PCOS has also been associated with

being large for gestational age (Mumm et al. 2013) as well

as having no association with BW (Sadrzadeh et al. 2003).

Interestingly, it has been proposed that two distinct birth

pathways exist to development of PCOS, where high

BW was associated with hyperandrogenism (as a single

symptom), while low ponderal index was associated with

the presence of all three key PCOS symptoms (menstrual

dysfunction, hyperandrogenism, and polycystic ovaries)

(Davies et al. 2012).
Animal studies of reproductive programming:
modulatory effects of early growth

Few animal studies have investigated specifically the

modulatory effects of growth on reproductive outcome

in offspring. In these studies, IUGR is induced by uterine

artery ligation, thus mimicking placental insufficiency

(Wigglesworth 1974). Results of several studies have

indicated that IUGR female offspring display delayed

pubertal onset, while others mirror the results of human

studies indicating advanced pubertal onset in female

offspring born with a LBW (Engelbregt et al. 2000, 2002).

Many animal models of IUGR use nutrient restriction and

thus are discussed in detail below.
Maternal nutritional effects on reproductive
function of offspring

Human data

Nutritional effects on reproduction are well established

(Wade et al. 1996, Schneider 2004, Dupont et al. 2014). This

reciprocal relationship between nutritional cues, energy

intake, and metabolic indicators is not surprising as

organisms must have adequate energy stores and resources

for successful reproduction. There are a number of

maternal conditions and/or pregnancy complications

that restrict availability of nutrients to the fetus and

decrease fetal growth (Sibley et al. 2005, Lager & Powell

2012), but a common theme is reduced nutrient supply.

An adequate supply of nutrients is required to maintain a

balance between the nutrient demands of the mother and

those of the fetus (Bloomfield et al. 2013). The most

common cause of growth restriction in term newborns is

decreased fetal availability of nutrients and hormones

(Godfrey 1998, Rosenberg 2008, Diderholm 2009).

Numerous pregnancy complications can compromise

availability of nutrients, including placental insufficiency
Published by Bioscientifica Ltd.
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and maternal nutrient restriction (Cetin & Alvino 2009,

Diderholm 2009, Lausman et al. 2012) where impaired

placental development and/or function is associated with

inadequate fetal nutrient supply and LBW (Pardi et al. 2002,

Cetin & Alvino 2009). Critically, it is now recognized that

maternal obesity may also result in an environment of

malnutrition as a proportion of obese mothers give birth to

growth-restricted babies (Radulescu et al. 2013) and obesity

is associated with compromised placental function (Pardi

et al. 2002, Cetin & Alvino 2009, Diderholm 2009, Lausman

et al. 2012, Hastie & Lappas 2014). In either case, maternal

malnutrition alters maternal–fetal–placental nutrient

exchange (Harding & Johnston 1995) and results in fetal

adaptations that lead to increased disease risk.

How early-life nutritional cues affect PGC and repro-

ductive development in offspring during critical prenatal

windows however is unclear. Data collected from historical

observations of humans have shed some lights on the

effects that maternal nutrient challenges during pregnancy

have on the reproductive performance and function of

offspring. The Dutch Hunger Winter of 1944–1945 created

a unique opportunity to study the relationship between

prenatal famine exposure and adult health. Offspring born

to mothers exposed to famine conditions during varying

stages of pregnancy have been extensively followed up

and numerous papers have been published outlining the

relationship between maternal famine exposure and health

outcomes of offspring (Painter et al. 2005, Heijmans et al.

2008, Roseboom et al. 2011) (and grand offspring) (Painter

et al. 2008a, Veenendaal et al. 2013). Results of follow-up

studies indicate that women born to mothers exposed to

famine had more children earlier in life, compared with

women born to control (not famine-exposed) mothers

(Painter et al. 2008b), although the effect of famine on

reproductive success was very small and has been disputed

(Lumey & Stein 1997, 2009). Data collected on other

historic cohorts indicate that women exposed to acute

malnutrition during fetal life may experience negative

effects on their reproductive systems, which could result in

permanently impaired fecundity (Song 2013) as well as

negative effects on metabolic function. There are results,

however, indicating that not all offspring born under

famine conditions develop postnatal metabolic compli-

cations as demonstrated in offspring of the Siege of

Leningrad (Stanner et al. 1997, Stanner & Yudkin 2001),

but effects on reproductive capacity and function in this

cohort have not been thoroughly analyzed.

Data describing the relationship between in utero

nutrient restriction and offspring age at menopause are

limited. Famine during early childhood was reported to
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-14-0469 Printed in Great Britain
result in a decrease of 0.36 years in age at natural menopause

(Elias et al. 2007). Consistent with this observation,

malnourished women in developing countries have shorter

reproductive lifespans, delayed or advanced onset of

puberty, and early menopause (Osteria 1983, Riley 1994,

Kirchengast & Winkler 1996, Lindstrom & Berhanu 1999).

Steiner et al. (2010) reported a weak association between

BW and age at menopause (HR 1.09; 95% CI 0.99, 1.20),

but this relationship appears to be attenuated if one adjusts

for gestational exposure to famine (Yarde et al. 2013),

perhaps indicating that nutrient restriction plays a large

role in the link between age at menopause and BW.
Animal data

Perinatal nutritional challenges have been shown to have

long-term consequences for reproductive health (Guzman

et al. 2006, Zambrano et al. 2006, Bernal et al. 2010,

Sloboda et al. 2010, Aiken et al. 2013). Results from several

animal models have indicated that pre- and/or postnatal

nutrient restriction affects reproductive aging, as well as

altering central regulation of reproductive hormones. The

effects of maternal nutrient restriction on reproductive

outcomes are sensitive to the timing of nutritional

challenge during gestation as well as the type of nutrient

challenge. Models involving total caloric restriction,

protein restriction, or micronutrient manipulation all

have shown that these challenges have reproductive

effects on offspring, although the outcomes vary accor-

ding to the model. This may reflect differential fetal and

neonatal adaptive responses influencing reproductive

developmental tempo depending on when the nutritional

deficit occurred during gestation. Below we have sum-

marized the literature on reproductive outcomes classified

according to the major nutrient restriction models.

Protein restriction Protein restriction during pregnancy

and/or lactation in rats produces female offspring that

display irregular cycles early in life, and decreased

reproductive lifespan (Zambrano et al. 2005, Guzman

et al. 2006, 2014). This is probably due to diminished

ovarian reserves as adult offspring born to dams fed an

isocaloric, protein-restricted diet throughout pregnancy

had reduced numbers of primordial follicles, elevated

levels of ovarian oxidative stress, and shortened ovarian

telomere length compared with controls (Aiken & Ozanne

2014). The effects also vary according to developmental

windows. Female offspring exposed to protein restriction

during lactation alone have shown a decrease in circulat-

ing LH and an increase in systemic FSH levels at weaning, a
Published by Bioscientifica Ltd.
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hormone profile that is distinct from those of offspring

exposed to protein restriction during either pregnancy

alone or pregnancyClactation (Guzman et al. 2014).

Furthermore, female offspring born to dams exposed to

protein restriction during pregnancy or lactation alone

exhibit a reduction in numbers of preantral and antral

follicular at weaning, compared with offspring of mothers

restricted during pregnancy and lactation (Guzman et al.

2014). In addition, exposure to protein restriction during

pregnancy and lactation or lactation alone results in

delayed onset of puberty (Guzman et al. 2006). After

puberty, offspring born to lactationally protein restricted

dams display increased numbers of preantral and small

antral follicles but reduced numbers of primordial

follicles, Graafian follicles, and corpora lutea (da Silva

Faria et al. 2008) indicative of ovulatory dysfunction.

These results indicate that a mismatch between in utero

and postnatal nutrition produces an offspring reproduc-

tive phenotype that is distinct from those observed during

the perinatal period and may negatively influence future

reproductive success (da Silva Faria et al. 2008, 2010).

Total caloric restriction It is well established that total

caloric restriction during pregnancy significantly affects

ovarian development and function of offspring. In sheep,

maternal nutrient restriction results in a negative effect

on oocyte quality which results in lower oocyte cleavage

after IVF and decreased morula and blastocyst formation

(Grazul-Bilska et al. 2012). In rats, maternal caloric

restriction throughout pregnancy results in LBW offspring

that experience accelerated neonatal growth and early

vaginal opening (VO), a marker of sexual maturation in

rodents (Sloboda et al. 2009, Caron et al. 2012, Sanchez-

Garrido et al. 2013). Early onset of puberty, however, is not

always apparent in rodent models investigating caloric

restriction (Chernoff et al. 2009), and in some cases

puberty is delayed (Gereltsetseg et al. 2012). Nonetheless,

in adulthood, offspring of dams fed calorically restricted

diets have reduced numbers of primordial and antral

follicles and elevated levels of ovarian oxidative stress,

which has been associated with ovarian aging (Bernal et al.

2010). These offspring show a decrease in mRNA levels of

the granulosa cell-specific estrogen receptor b in addition

to a decrease in the oocyte-specific growth factor, GDF9

(Sloboda et al. 2009, Bernal et al. 2010), which is evidence

of impaired folliculogenesis. Similarly, in cattle, maternal

caloric restriction during the first trimester produces

offspring with diminished ovarian reserve during adult-

hood, as demonstrated by reduced antral follicle count,

decreased circulating anti-Müllerian hormone, and
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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increased FSH in adulthood (Mossa et al. 2013). Further-

more, in sheep, offspring born to ewes fed calorie-

restricted diets during the first two-thirds of pregnancy

had reduced ovulation rates in adult life as determined by

laparoscopic counts of corpora lutea (Rae et al. 2002).

Together these observations are indicative of a shortened

reproductive lifespan in offspring born to mothers on

calorie-restricted diets. Premature ovarian aging is caused

by early follicle loss or a reduction in the ovarian reserve;

the finite pool of follicles that exist within the ovary. The

follicular reserve is influenced by the rate of primordial

follicle recruitment, follicle health, and reproductive

cyclicity (Gleicher et al. 2011), all of which appear to be

negatively affected in offspring born to calorie-restricted

mothers. As outlined in the introduction, this reserve is

vulnerable during the perinatal period when these nutri-

tional insults occur, and it appears that changes in ovarian

histogenesis induced by different levels of maternal

nutrition contribute to the impaired reproductive pheno-

type of offspring (Rae et al. 2002, Mossa et al. 2013).

In sheep, maternal dietary restriction with or without

micronutrient supplementation of selenium (Se) decreased

cell proliferation in primordial, secondary and/or antral

follicles, stromal cells, and blood vessels in fetal ovaries

(Grazul-Bilska et al. 2009). Futhermore, maternal nutrient

restriction at differing timepoints throughout pregnancy

results in differential effects on ovarian development.

Maternal nutrient restriction in sheep for the first 30 days

of gestation reduced fetal germ-cell proliferation at day 65,

but increased granulosa cell proliferation at day 110. In

contrast,maternalunderfeeding from65to110 daysor from

0 to 110 days altered the expression of genes that regulate

apoptosis. Although the pathways may differ, both of these

mechanisms probably contribute to the reduced number of

ovarian primordial follicles that characterize this under-

feeding model (Lea et al. 2006).

Maternal caloric restriction also modifies the develop-

ment and the function of central reproductive control. In

rats, maternal caloric restriction during the last week of

pregnancy results in growth restriction and neonatal

catch-up growth during lactation (Iwasa et al. 2010).

The offspring were characterized by delayed VO (puberty)

and decreased hypothalamic GNRH and Kiss1 mRNA

expression prepubertally (Iwasa et al. 2010). Kiss1 encodes

the peptide kisspeptin, which stimulates GNRH pro-

duction (Matsui et al. 2004) and thought to be a key factor

in the initiation of puberty (Seminara et al. 2003).

Although the female gonad develops during fetal life,

with the establishment of PGCs, the breakdown of germ

cell nests, and the establishment of primordial follicle
Published by Bioscientifica Ltd.
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formation (being species-dependent), results from previous

studies have indicated that nutritional challenge during

the early-postnatal period influences reproductive func-

tion – even at the level of the follicles contained in the

ovary. Delayed pubertal onset has been observed in rats

(Castellano et al. 2011, Sanchez-Garrido et al. 2013) and

mice (Caron et al. 2012) underfed during lactation using

a model that modulates litter size and thus influences

nutritional supply. In mice, this appears to be caused by a

reduction in the number of axonal projections from the

arcuate nucleus of the hypothalamus to the median

preoptic nucleus (MPO) of the hypothalamus, which

contains neurons that secrete GNRH (Caron et al. 2012).

It was also observed that in these underfed mice that

there was a reduction in the density of kisspeptin-immuno-

reactive fibers within the MPO, indicating that the

kisspeptin input driving GNRH production is lacking

(Caron et al. 2012). Importantly, this reduction in

kisspeptin input to the MPO persisted into adulthood,

potentially explaining the reduction in fertility observed in

these offspring. Functionally, these alterations were associ-

ated with an inability of these offspring to produce an LH

increase after ovariectomy at postnatal day 24, indicating

impairment in central responsiveness to loss of negative

feedback (Caron et al. 2012).

Micronutrient models Micronutrient deficiencies play a

significant role in the modification of fetal metabolism,

organ growth, and function (Allen 1994, 2005). Indeed,

studies have identified significant improvement in BW

outcome after maternal micronutrient supplementation,

particularly in developing countries with inadequate

nutrition or food insecurity (Haider & Bhutta 2006,

Zagre et al. 2007, Haider et al. 2011). Most of the essential

micronutrients needed for appropriate growth and

development are absorbed through food consumption.

Unfortunately, even in developed populations, pregnant

women often do not maintain adequate nutritional intake

during pregnancy. According to the Southampton

Women’s Survey (SWS), 13% of pregnant women do not

follow national nutritional guidelines for pregnancy, and

only 2.9% of pregnant women take recommended supple-

ments (Crozier et al. 2009, Inskip et al. 2009). Pregnant

adolescents have been shown to be micronutrient deficient

and at a high risk of giving birth to SGA babies (Baker

et al. 2009). Carbon-1 metabolites such as vitamin B12 and

folate play a critical role in DNA and histone methylation,

influencing epigenetic regulation of gene expression and

modifying signaling pathways that may underlie IUGR,

and the modulation of developing organ systems including
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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gonadal and brain development (Forges et al. 2007,

Stover 2011, Dwarkanath et al. 2013, Gueant et al. 2013).

Deficiencies in folate and/or vitamin B during pregnancy

increase the risk of neural tube defects, cognitive or

learning disabilities, and have long-term effects on hepatic

regulation of metabolic function (Blaise et al. 2007, Stover

2011, Safi et al. 2012). The effects of prenatal intake of

vitamin B12 on reproductive functions of female offspring

are not known. Studies investigating on reproduction

functions are localized to those that investigate the

postnatal intake; in sheep, B12 and methionine restricted

intake enhanced the number of estrogen-active antral

follicles following FSH stimulation (Kanakkaparambil

et al. 2009). In the future, studies investigating the role of

micronutrient balance are likely to be combined with

alterations in macronutrient balance as well, because

human dietary patterns probably have simultaneous

imbalances in both macro- and micronutrients.

Several studies have also focused on the effects of

antioxidants during pregnancy on ovarian functions of

offspring . A commonly studied antioxidant is melatonin,

which is able to cross the placenta and has been found

in the milk of lactating rodents (Klein 1972, Rowe &

Kennaway 2002). Melatonin protects against follicular

oxidative stress and slows the process of reproductive

aging in the rat (Trentini et al. 1992, Tamura et al. 2012).

Maternal administration of melatonin produces offspring

that display delayed VO and lowered LH levels in a rodent

model (Colmenero et al. 1991). Similarly, postnatal

administration of melatonin in adult rats also decreases

LH serum levels and delays the onset of the post-

reproductive constant estrous-anovulatory state as

observed in reproductive aging rats (Trentini et al. 1992).

Other antioxidants, including vitamin C and E, have

been found to be detrimental to the developing fetus

when administered at high doses, at least in specialized

high-risk pregnancies. Results from a clinical trial by

Poston et al. (2006) indicated that prenatal supple-

mentation of vitamin C and E increases the risk of

producing LBW babies. In rats, maternal treatment with

vitamin C in a hypoxic pregnancy attenuated hypoxia-

induced maternal and placental oxidative stress (Richter

et al. 2012), but the effects of vitamin C and E

supplementation during pregnancy on reproduction of

offspring have not yet been investigated.

Selenium is an essential trace element. It is an

antioxidant found in trace amounts in many foods

including nuts, cereals, fish, and eggs and is often

associated with redox reactions and signalling pathways

(Kurokawa & Berry 2013), and recently has been suggested
Published by Bioscientifica Ltd.
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to play a role in corpus luteum and/or placental function

in pregnant cows (Kamada et al. 2014). Although essential

in trace amounts, high levels of selenium result in toxicity

(Gore et al. 2010). In zebrafish, elevated dietary selenium

decreased fecundity, embryo survival, and overall repro-

ductive success (Penglase et al. 2014). In sheep, maternal

diet affected expression of connexin in the ovary, where

selenium modulated the effects; connexin expression in

the granulosa layer of antral follicles was decreased by

high levels of selenium and increased in the granulosa

layer of primary and theca of antral follicles (Grazul-Bilska

et al. 2011).
Nutrient excess

Worldwide obesity has nearly doubled since 1980 with

over 500 million people now considered as being obese

(Frias & Grove 2012). Concomitant with the rise in obesity

is an increase in the number of reproductive-aged women

that are overweight or obese (Flegal et al. 2010, 2012).

Maternal obesity is a major obstetric risk factor for adverse

fetal, neonatal, and maternal outcomes (Leddy et al. 2008,

Gaillard et al. 2013, Mission et al. 2013), in addition it

has been associated with childhood obesity of offspring

(Poston 2012) and an increased risk of those offspring

developing the metabolic syndrome during adulthood

(Rooney & Ozanne 2011, Frias & Grove 2012). Excessive

gestational weight gain (Boynton-Jarrett et al. 2011,

Deardorff et al. 2013) and a pre-pregnancy BMI of

overweight/obese (Keim et al. 2009, Deardorff et al. 2013)

are associated with early menarche in humans; however,

childhood obesity, which is strongly associated with

maternal obesity (Catalano et al. 2009), is also associated

with early menarche (Kaplowitz 2008) making it difficult

to ascertain independent effects. In contrast, results from

rat models (Shrestha et al. 2011) have indicated that high-

fat diet intake throughout pregnancy and lactation,

inducing maternal obesity, advances the onset of puberty,

and disrupts estrous cyclicity in female offspring (Connor

et al. 2012). In particular, the offspring of obese mothers

are more likely to display estrous cycles characterized by

prolonged or persistent estrus, where 2 or more days spent

in estrus may be indicative of premature ovarian aging

(Connor et al. 2012). At the level of the ovary, it has

recently been shown that gestating offspring born to

mothers fed a high-fat/high-cholesterol diet have more

atretic follicles (Leveille et al. 2014), which may indicate

impaired fertility. Interestingly, in sheep, BWs above 5 kg

are associated with a decrease in fecundity even after

controlling for subcutaneous adiposity (Gardner et al.
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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2009), indicating that fetal macrosomia, which is associ-

ated with maternal obesity independently (Mission

et al. 2013), affects future reproductive success. Similar to

models of caloric restriction, these offspring phenotypes,

as a result of maternal nutritional excess, are probably due

in part to impaired ovarian histogenesis, as demonstrated

by a decrease in primordial follicles in fetal ovaries at

gestation day 103 in gestating ewes (Da Silva et al. 2003)

allowed to feed ad libitum.

Exposure of pups to lactating obese dams also appears

to affect reproductive development. Long Evans Tokush-

ima (LETO) rats fostered to obese Otsuka Long Evans

Tokushima fatty (OLETF) dams have more frequent cycles

characterized by two or more days spent in estrus during

young adulthood (Schroeder et al. 2013). However, onset

of puberty was not different in LETO rats reared by OLETF

nor did VO occur earlier in rats (Sanchez-Garrido et al.

2013) or mice (Caron et al. 2012) overfed during lactation

as a result of reduction in litter size. This is in contrast

to the results indicating that prenatal exposure to an

obesogenic environment induced by a high-fat (Connor

et al. 2012) or an n-6 polyunsaturated fatty acid-rich

maternal diet (Hilakivi-Clarke et al. 1997) results in

advanced onset of puberty.

Although early-postnatal overfeeding as a result of

reduction of litter size does not advance the onset of puberty

in female rats, lactationally overfed mice display significant

reductions in the number of arcuate neural projections to

the MPO of the hypothalamus (Caron et al. 2012), probably

contributing to a disruption in adult estrous cyclicity and

a decrease in the fertility index (Caron et al. 2012)

demonstrating that neural alterations have functional

reproductive implications. In mice, neonatal overnutrition

as a result of litter manipulation (Liu et al. 2013a,b) or

lactational maternal high-fat feeding (Vogt et al. 2014)

results in adult-onset obesity and insulin resistance (Liu et al.

2013a), which have adverse effects on oocyte and zygote

quality (Minge et al. 2008, Igosheva et al. 2010, Jungheim

et al. 2010, Luzzo et al. 2012, Machtinger et al. 2012).

Moreover, female offspring born to high-fat-fed dams

produce oocytes with differentially methylated promoter

regions of key metabolic genes (Ge et al. 2014). It is not

known if these epigenetic changes result in transgenera-

tional effects; however, it has been recently shown in mice

that high-fat diet-induced maternal obesity causes meta-

bolic effects in F2 generation offspring via maternal

inheritance (King et al. 2013). However, It is unclear if

these effects are germline-dependent or independent, which

could be due to differential maternal adaptations to

pregnancy in F1 offspring.
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In addition to the increased availability and consump-

tion of low-cost, hypercaloric food contributing to the

obesity epidemic, high fructose consumption, through

both beverages and food, has been identified as another

important conducive factor in the progression of obesity

(Sloboda et al. 2014). The long-term female reproductive

outcomes of early-life exposure to maternal high fructose

intake currently remain unclear. Interestingly, in rats,

maternal fructose intake (10% in the drinking water)

before and during pregnancy increases the male-to-female

sex ratio of litters (Gray et al. 2013). This is in accordance

with the Trivers–Willard hypothesis, which states that

females in a better body condition produce a greater

proportion of male offspring (Trivers & Willard 1973,

Rosenfeld & Roberts 2004). Future studies are required

to fully investigate the effects of high-carbohydrate, high-

sugar, and high-fat diets, so that animal models can reflect

the shifting change in our access to high-energy, low

nutritional value food.

It is worth noting that offspring of obese mothers that

have increased rates of obesity may suffer a double effect

on their reproductive function. Adipose tissue has the

capacity for aromatization – where excess adipose tissue
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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can contribute to increases in the conversion of testoster-

one to E2 (Deslypere et al. 1985). The pro-inflammatory

cytokine tumor necrosis factor alpha (TNFa) increases

the levels of expression of the aromatase gene (Zhao et al.

1996), and as obesity has been classified as a pro-

inflammatory environment, it is possible that TNFa

contributes to increased capacity for aromatization of

adipocytes. Thus, it has been suggested that in the cases

of obesity, high levels of circulating E2 due to adipocyte-

induced testosterone aromatization may impair hypo-

thalamic–pituitary–gonadal function, driving an increase

in central negative feedback at the levels of the hypo-

thalamic and the pituitary (Gosman et al. 2006). This

results in impairments in ovulation and in oocyte

development. Thus, in offspring of obese mothers, where

the intrauterine environment results in ovarian modifi-

cations, there is probably a pre–postnatal interaction on

ovarian dysfunction.
Conclusion

Disease risk is established well before birth. Obesity and

type 2 diabetes, once thought to be lifestyle-mediated, are
Published by Bioscientifica Ltd.
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now known to be influenced by fetal adaptations to

in utero conditions, including poor prenatal nutrition.

Critically, these disease effects span multiple generations,

but how this occurs is unclear. Germ cells (oocytes) in the

growing fetal ovary are similarly vulnerable to prenatal

events and are likely to contribute to this transgenera-

tional disease risk. As the gametes that will eventually give

rise to grand-offspring form during fetal life, it is possible

that the link between poor prenatal nutrition and

postnatal disease lies in the ovary – involving the

developing germ cells and their function. There is now

established evidence demonstrating that poor prenatal

conditions result in fetal growth restriction, LBW,

postnatal reproductive dysfunction, poor pregnancy out-

comes, and may even contribute to early aging and

menopause (Fig. 3). A steady rise in the rate of LBW and

thus increased risk of reproductive deficits and subfertility

may be a reality for forthcoming generations. However,

the underlying mechanisms are still poorly understood.

Thus, it is now essential to integrate evidence from large

prospective human studies using targeted experimental

animal models that will uncover these mechanisms

and begin to indicate potential interventions. This

information, derived from an integrated approach, should

strive to inform both public health and education policy.
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