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Abstract
Hypertension is one of the major risk factors of cardiovascular diseases, but despite a century

of clinical and basic research, the discrete etiology of this disease is still not fully understood.

The same is true for obesity, which is recognized as a major global epidemic health problem

nowadays. Obesity is associated with an increasing prevalence of the metabolic syndrome,

a cluster of risk factors including hypertension, abdominal obesity, dyslipidemia, and

hyperglycemia. Epidemiological studies have shown that excess weight gain predicts future

development of hypertension, and the relationship between BMI and blood pressure (BP)

appears to be almost linear in different populations. There is no doubt that obesity-related

hypertension is a multifactorial and polygenic trait, and multiple potential pathogenetic

mechanisms probably contribute to the development of higher BP in obese humans.

These include hyperinsulinemia, activation of the renin–angiotensin–aldosterone system,

sympathetic nervous system stimulation, abnormal levels of certain adipokines such as

leptin, or cytokines acting at the vascular endothelial level. Moreover, some genetic and

epigenetic mechanisms are also in play. Although the full manifestation of both

hypertension and obesity occurs predominantly in adulthood, their roots can be traced back

to early ontogeny. The detailed knowledge of alterations occurring in the organism of

experimental animals during particular critical periods (developmental windows) could help

to solve this phenomenon in humans and might facilitate the age-specific prevention of

human obesity-related hypertension. In addition, better understanding of particular

pathophysiological mechanisms might be useful in so-called personalized medicine.
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Introduction
There is no doubt that the prevalence of obesity and the

associated cardiovascular diseases has increased dramati-

cally around the world in the last decade. Current

assessment indicates that more than one billion people

in the world are overweight or obese (Yach et al. 2006,
Aguilera et al. 2013). It is estimated that the annual

medical burden of obesity and obesity-related diseases

costs hundreds of billions of US dollars in the United

States alone (Landsberg et al. 2013) and this trend has

an increasing tendency. International studies on the

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-14-0368


Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y
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economic costs of obesity have shown that they account

for 2–7% of total health care costs, the level of which

depends on the way the analysis is performed (WHO 2000).

Although the relationship between obesity and hyper-

tension is widely recognized, there is a question as to what

is the primary abnormality? It has been suggested that

obesity is characterized by a cascade of metabolic and

cardiovascular disorders, including hypertension, which

is a primary risk factor of obesity-induced cardiovascular

disease. Epidemiological studies have demonstrated that

overweight predicts future development of hypertension,

and the relationship between BMI and blood pressure (BP)

appears to be almost linear in different populations (Hall

2003). It seems that this relation exists already at the age of

8–11 years (Falaschetti et al. 2010). According to Third

National Health and Nutrition Survey (NHANES III), the

risk of hypertension has significantly increased in men

and women with overweight and it was much higher for

subjects with obesity (Must et al. 1999). The data from

30 years of follow-up of the original Framingham Study

have demonstrated that obesity is an additional indepen-

dent cardiovascular risk factor to BP (Stokes et al. 1989).

Moreover, recently, it has been shown that obesity is one

of the major determinants of hypertension in the general

population (Kannel 2000). A similar conclusion was

obtained in the Tecumseh Study (Julius et al. 2000),

where BP, waist/hip ratio, and plasma insulin were elevated

to a higher extent in the hypertensive group. The authors

proposed a plausible hypothesis that the weight gain and

BP elevation may be intermediate phenotypes of an

underlying sympathetic overactivity in hypertension. The

association between the family history of essential

hypertension and body weight gain was documented by

Allemann et al. (2001). Healthy normotensive 25-year-old

age- and sex-matched male offspring of hypertensive

parents were matched for BP with those of normotensive

parents. Five years later, the resting BP was still the same in

both groups but body weight, BMI, and waist/hip ratio

increased more in the offspring of hypertensive parents.

The familial predisposition to hypertension and greater

body weight gain is also supported by the fact that lean

subjects with hypertension are about 2–3 kg heavier than

age- and sex-matched normotensives, suggesting a link

between the mechanisms that elevate BP and those that

stimulate food consumption or lower energy expenditure.

The first explanation of basic mechanisms involved in

the relation between human obesity and hypertension was

published by Vague (1956). He noted that cardiovascular

and metabolic complicationsofobesity were more common

in patients with ‘android’ type of obesity (upper body
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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obesity) when compared with ‘gynoid’ type (lower body

obesity). Later on, several studies demonstrated the associ-

ation of android (or central) obesity, hypertension, and

insulin resistance, which formed the basis for

understanding the pathophysiology of obesity-related

hypertension (Kissebah et al. 1982, Kalkhoff et al. 1983,

Modan et al. 1985, for review see Landsberg et al. (2013)).

Most recent clinical studies on the morbidities of

obesity indicate that the excess weight gain by fat

accumulation is not necessarily a determinant for the

development of obesity-related diseases, but the abnormal

body fat distribution is a more important factor for the

morbidity (Matsuzawa et al. 2011, Di Chiara et al. 2012).

Visceral adiposity may have a major role in the occurrence

of hypertension, diabetes mellitus, hyperlipidemia, and

atherosclerosis not only in obese humans but also in

animal models of diet-induced obesity (Davy & Orr

2009, Hall et al. 2010). Recent evidence revealed several

biological and genetic differences between intra-

abdominal visceral fat and peripheral subcutaneous fat.

Such differences are also reflected in their contrasting roles

in the pathogenesis of obesity-related cardiometabolic

problems (Hamdy et al. 2006). The functional differences

between visceral and subcutaneous adipocytes may be

related to their anatomical location. Visceral adipose

tissue and its adipose tissue-resident macrophages produce

more proinflammatory cytokines, such as tumor necrosis

factor alpha (TNFa) and interleukin 6 (IL6), but less

adiponectin. These cytokine changes induce insulin

resistance and play a major role in the pathogenesis

of endothelial dysfunction and the subsequent athero-

sclerosis. The rate of visceral fat accumulation is also

different according to the gender and ethnic background,

being more prominent in white men, African American

women, and Asian Indian and Japanese men and women

(Hiuge-Shimizu et al. 2012). Such differences may explain

the variation in the cardiometabolic risk between different

populations. However, it is unclear as to what degree of

visceral fat reduction is needed to induce favorable

metabolic changes. The increasing knowledge about

body fat distribution and its modifiers may lead to the

development of more effective treatment strategies for

subjects at a high risk for type 2 diabetes and coronary

artery disease. It is interesting that visceral obesity elicits

greater activation of the sympathetic nervous system

(SNS) than subcutaneous obesity does (Grassi et al.

2004); however, the mechanism by which visceral obesity

is more active in SNS activation is not clear.

The obesity-related hypertension is a multifactorial and

polygenic trait (Aghamohammadzadeh & Heagerty 2012).
Published by Bioscientifica Ltd.
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The multiple potential mechanisms contribute to the

development of higher BP in obese humans including

hyperinsulinemia, activation of the renin–angiotensin–

aldosterone system, SNS stimulation, abnormal levels of

certain adipokines such as leptin, and altered spectrum of

cytokines acting at the vascular endothelial level (da

Silva et al. 2009, Hall et al. 2010, Lambert et al. 2010).

Moreover, the role of perivascular adipose tissue damage,

defined as a disturbance in normal metabolic and vasoactive

function of the adipocytes surrounding blood vessels, is

also considered (Aghamohammadzadeh & Heagerty 2012).

However, the exactmechanisms of the relationship between

obesity and hypertension are still not fully understood.

Undoubtedly, the interaction of genetic and environmental

factors is also important (Kuneš & Zicha 2006). In the last

years, several genetic loci and genes linked to obesity and

hypertension were disclosed on different chromosomes and

the list of obesity-associated loci is increasing day-by-day

(Russo et al. 2010).

The influence of dietary factors on the development

of obesity-related hypertension may be partially explained

by epigenetics. These non-genetic alterations, which have

an important regulatory action in modifying gene

expression in response to environmental stimuli, are

under the control of two major epigenetic mechanisms:

methylation of cytosine residues of DNA and modification

of histone proteins associated with DNA (chromatin

remodeling). The epigenetic chromatin remodeling is

very important because it modifies the accessibility of

chromatin to transcription factors, facilitating the recog-

nition of these factors by genes to be expressed and by

genes to be silenced, either transiently or permanently

(Spotswood & Turner 2002). It has been demonstrated

that the disruption of balance of epigenetic networks may

cause several major diseases. However, the relevance of

epigenetics to obesity, hypertension, and/or metabolic

syndrome is less clear (Egger et al. 2004, Gallou-Kabani &

Junien 2005). We can speculate that obesity-related

hypertension develops as a consequence of ‘errors’ in

well-coordinated regulatory systems (Kuneš & Zicha 2009).

The errors in the cascade of molecular, biochemical, and

genetic processes, which regulate BP, glucose metabolism,

food intake, etc., have finally enough potential to result in

a particular disease. As these errors may not be robust and

affect various parts of the complex regulatory system, their

determination might be difficult (Kuneš & Zicha 2009).

This short review summarizes contemporary infor-

mation on the pathophysiology of obesity-related

hypertension. Special attention will be paid to the role of

the SNS and the renin–angiotensin system (RAS) and the
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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role of ontogenetic factors in obesity-related hypertension

will be discussed. We have repeatedly emphasized the

importance of age in the pathogenesis of experimental

hypertension (Zicha et al. 1986, Zicha & Kuneš 1999, Kuneš

& Zicha 2006). Moreover, the hypothesis of the fetal origins

of adult diseases in humans was proposed by Barker &

Osmond (1988), suggesting that environmental factors,

mainly nutrition, can lead to permanent metabolic and

structural changes in the fetus, thus increasing the risk of

many diseases in adulthood, including hypertension

(Kuneš et al. 2012) and obesity (Taylor & Poston 2007).

The knowledge of molecular mechanisms, by which early

minor environmental stimuli modify the expression of

genetic information, might be the desired key for the

understanding of mechanisms leading to the change of

phenotype in adulthood (Kuneš & Zicha 2009, Kuneš et al.

2012). We would also like to discuss some information

about epigenetic inheritance, which should partially

explain the gene–environment interaction.
Rat models of obesity and hypertension

Animal models are essential to understand the patho-

physiology of human diseases; however, the ideal model,

which should mimic all pathophysiological features of a

particular disease, does not exist. Such a model should be

genetically well defined, should be large enough for

experimental techniques, economically acceptable, and

would develop end-stage disease comparable to that in

humans (Zicha & Kuneš 1999, Russell & Proctor 2006).

Although the mouse seems to be a more appropriate tool

for genetic manipulations, its small size is not good for

long-term physiological measurements. Therefore, rat

models are the most useful. Spontaneous mutations and

selective breeding procedures in rats provide several

complementary models of obesity, hyperlipidemia, insulin

resistance, and type 2 diabetes, as well as cardiovascular

diseases including hypertension (Russell & Proctor 2006,

Fellmann et al. 2013). Although each animal model has

some limitations and strengths, used together in a comp-

lementary fashion they are essential for the research on

metabolic and cardiovascular diseases. As mentioned above,

the etiology of these diseases is complex, both inherited

and acquired (Kuneš & Zicha 2006, Varga et al. 2010).

The development of obesity and the associated

metabolic complications due to increased caloric intake

in rodents is a widely used approach, which is parallel

to human obesity. Both rat and mouse strains susceptible

to the development of obesity are fed a high-fat diet

(HFD) over a period of 3–4 months (Vickers et al. 2011,
Published by Bioscientifica Ltd.
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Fellmann et al. 2013). Within rat strains, Wistar and

Sprague–Dawley strains are most often used. However,

only some Sprague–Dawley rats fed a HFD develop

obesity, dyslipidemia, and arterial hypertension (Dobrian

et al. 2000).

Spontaneously hypertensive rats (SHRs) are considered

to be a model of essential human hypertension without

obesity. However, it has been demonstrated that a HFD

increased body weight, serum cholesterol, and BP in SHRs

and the changes in metabolic parameters were associated

with cardiovascular dysfunction in these animals (Šedová

et al. 2004, Cao et al. 2011). Chung et al. (2010) have shown

that after 12 weeks on the HFD, SHRs gained more body

weight, their systolic BP was further elevated, and glucose

intolerance induced, but there were no significant

differences in the insulin resistance index, serum lipid

profile, plasma renin activity, and serum aldosterone

levels. On the other hand, Knight et al. (2008) observed

that HFD consumption for 10 weeks had no effect on

systolic BP of SHRs. It seems that the discrepant results may

be due to different durations of the experiment, different

ages at which HFD feeding was started, and/or different

compositions of the diets.

Other models, similar to obese strain of SHR (SHROB)

or Zucker rats, provide interesting results in the study of

obesity-related hypertension. In 1973, Koletsky isolated

a new mutation in a rat line originating from a cross

between Sprague–Dawley rats and SHRs. Animals of this

strain were hypertensive and became highly obese,

hyperlipidemic, and hyperinsulinemic. Most interest-

ingly, obese rats developed cardiovascular disease with

atherosclerosis and advanced lesions, including dissecting

aortic aneurysms (Koletsky 1975). The strain, now

designated as SHROB, has been recently used as a model

that closely mimicks human metabolic syndrome. Several

substrains of SHROB rats with diverse severity of

symptoms are used (Russell & Proctor 2006, de Artiñano

& Castro 2009). SHROB rats can be identified as obese at

about 5 weeks of age together with hyperinsulinemia,

slightly elevated blood glucose (Friedman et al. 1997), and

insulin resistance (Velliquette et al. 2002). Spontaneous

hypertension usually occurs at w3 months of age and rises

progressively; animals also develop cardiac hypertrophy

and vascular disease (Ernsberger et al. 2007). Thus, one can

say that obesity precedes hypertension, but it is difficult to

say that obesity is a cause of hypertension in this model.

Obese Zucker rats (OZRs) are the best known and most

widely used animal model of genetic obesity and

hypertension, which was initially described by Zucker

& Zucker (1961) (Kurtz et al. 1989). This strain has
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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a spontaneous mutation of the gene for leptin receptor.

Leptin is a hormone released from adipocytes and acts as

a key regulator of energy homeostasis. Zucker rats develop

severe obesity associated with hyperphagia, defective

thermogenesis and a range of endocrinological abnorma-

lities, and insulin resistance with mild glucose intolerance,

but without a progression to diabetes (Russell & Proctor

2006, de Artiñano & Castro 2009). Moreover, it has been

demonstrated that in adult OZRs, renal and splanchnic

sympathetic nerve activity (SNA) as well as mean arterial

pressure (MAP) are elevated in comparison with age-

matched lean Zucker rats (LZRs) (Morgan et al. 1995,

Huber & Schreihofer 2010). Furthermore, it has been

suggested that the elevated SNA and MAP in OZRs could be

derived from the rostral ventrolateral medulla (Huber &

Schreihofer 2011). Zucker diabetic fatty (ZDF) rats are a

variant of the Zucker rats, which were developed from

the original Zucker colony (Friedman et al. 1991). Obese

male rats of this colony were found to become diabetic,

with impaired insulin secretion, but with preserved

sensitivity to insulin. They also developed a late increase

in systolic BP (at 7 months of age), and hence they could

be considered as a good model of obesity-related hyper-

tension (Kurtz et al. 1989). However, it should be noted

that leptin receptor mutation is extremely rare in humans

(Hall et al. 2001). Thus, the results from the studies on

Zucker rats cannot be simply applied to human obesity,

which is commonly polygenic (Bell et al. 2005).
Peptides in cardiovascular regulation

To prevent obesity-related cardiovascular disease, it is

important to clarify the mechanisms controlling food

intake and to determine whether these mechanisms are

also involved in BP regulation. Some peptides participat-

ing in the regulation of appetite or feeding behavior seem

to have a role also in cardiovascular and sympathetic

regulations. These peptides include short-term centrally

released and centrally acting neuropeptide Y (NPY),

corticotrophin-releasing hormone (CRH), agouti-related

protein (AgRP), alpha-melanocyte-stimulating hormone

(a-MSH), cocaine- and amphetamine-regulated transcript

(CART) peptides, melanin-concentrating hormone

(MCH), orexins, etc. Their central effects are combined

with those of peripherally released and centrally acting

leptin and ghrelin, which regulate energy balance in a

long-term manner, and with short-term acting peptides

such as cholecystokinin (CCK) (for review see Matsumura

et al. (2003), Baltatzi et al. (2008) and Sartor (2013)).

Peripherally released hormones play a role in short-term
Published by Bioscientifica Ltd.
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cardiovascular regulation via the vagally mediated

sympathoinhibitory reflex mechanism, similar to that of

the arterial baroreflex (Sartor 2013).

Leptin, the product of the ob gene, is synthesized in

the adipose tissue and serum leptin levels correlate with

total fat mass. Leptin regulates energy intake and

expenditure providing the information to the CNS and

influencing the effects of other neuropeptides to decrease

food intake and to upregulate thermogenesis and energy

expenditure through the stimulation of SNA. These effects

are mediated by two major pathways, positive regulation

of anorexigenic a-MSH and negative regulation of NPY

having an orexigenic effect combined with a reduction

of thermogenesis (Kotsis et al. 2010). In obesity, leptin

resistance and hyperleptinemia develop because of dis-

rupted signaling in leptin receptor-containing neurons in

brain areas involved in food intake regulation, namely the

hypothalamic nucleus arcuatus. Leptin action in the

nucleus arcuatus is also important for the control of

sympathetic outflow to both brown adipose tissue and the

kidney (Rahmouni & Morgan 2007). Selective resistance

to the metabolic actions of leptin seems to be present in

obesity, whereas its action in stimulation of sympathetic

tone remains unaltered (Mark et al. 2004). SNS-stimulating

effects of leptin are mainly demonstrated in the kidney,

adrenal gland, and brown adipose tissue. Hyperleptinemia

and leptin resistance thus may be the cause of chronically

elevated SNS in obesity via activation of leptin receptors in

hypothalamus and brainstem (Hall et al. 2010, Canale et al.

2013). In diet-induced obesity in mice, anorexigenic

activity of leptin, both peripherally or centrally adminis-

tered, was attenuated while renal SNA to leptin as well as

increased BP were preserved, leading to hypertension

(Rahmouni et al. 2005a).

Many studies have also examined whether the effects

of leptin on metabolism, apoptosis, and hypertrophy

could contribute to the obesity-related hypertension (for

review see Sweeney (2010)). Moreover, in the leptin-

resistant state, NPY is overexpressed and it is released

from neural sites by sympathetic activation and acts as a

vasoconstrictor and thus could play a role in obesity-

related hypertension (Kotsis et al. 2010).

CCK is an anorexigenic gastrointestinal peptide with

many functions related to digestion including satiety.

Leptin is also released from the gastric epithelial cells of

the stomach (Bado et al. 1998). Both hormones have an

additive effect at the level of vagal afferents to regulate

food intake, but CCK and leptin also have an interactive

relationship in cardiovascular regulation via central

mechanisms (Sartor 2013). The potential importance of
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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CCK and its receptor CCK1 has been demonstrated in rats

lacking CCK1 receptors, which develop obesity, diabetes,

cardiac disease, and hypertension (Yagi et al. 1997).

Ghrelin, together with leptin, is a key regulator of

energy balance. It is a physiological antagonist of leptin

and also acts in the hypothalamus with the opposite

influence on neuropeptides such as NPY and a-MSH

compared with leptin. Although ghrelin production is

known to be suppressed in obesity states, high levels of

ghrelin have been found in obese hypertensive patients

(Zhang et al. 2010). The relationship among obesity,

hypertension, and ghrelin needs further elucidation. The

exact BP-lowering mechanisms exerted by ghrelin are

unknown but probably involve central and peripheral

pathways. Modulation of endothelial function may be

at least partially responsible for the antihypertensive

actions of ghrelin. BP-lowering effect of i.v. ghrelin

administration in rats occurred together with a decrease

in SNA and was not caused by the direct ghrelin action on

blood vessels (Callaghan et al. 2012). Moreover, a novel

vascular receptor different from ghrelin receptor GHS-R1a

was proposed to be involved in lowering of BP after the

activation with growth hormone secretagogue analogs or

ghrelin agonists in rats (Callaghan et al. 2014). In addition,

it has been demonstrated that the calcium-activated

potassium channel may play a key role in the BP-lowering

effect of ghrelin especially in situations of endothelial

dysfunction (Shinde et al. 2005).
The role of SNS

Increased SNA is a characteristic feature of many animal

models of obesity (Kassab et al. 1995, Rahmouni et al.

2005a, Prior et al. 2010). High SNA has also been

demonstrated in human obesity (Grassi et al. 1995, Vaz

et al. 1997, Wofford et al. 2001) in which acute systemic

ganglionic blockade lowers BP and peripheral resistance

more in normotensive obese subjects than in lean subjects

(Shibao et al. 2007). There is a considerable heterogeneity

of regional SNA in obese subjects (Vaz et al. 1997; Fig. 1).

Increased SNA detected in various vascular beds of obese

subjects need not have the same importance for obesity-

related hypertension. Thus, substantially enhanced

muscle SNA in normotensive obese subjects does not

cause the increase in forearm vascular resistance because

vasodilator response of a-adrenergic blockade was similar

in obese and lean subjects (Agapitov et al. 2008). On the

other hand, moderately increased renal SNA seems to be of

greater importance for the development of obesity-related

hypertension (Hall et al. 2010). The enhancement of renal
Published by Bioscientifica Ltd.
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SNA due to the impairment of baroreflex function

precedes BP rise in rabbits with diet-induced obesity

(Armitage et al. 2012). Moreover, renal denervation

attenuated sodium retention and prevented BP rise in

dogs with diet-induced obesity (Kassab et al. 1995).

Similarly, chronic a- and b-adrenergic blockade lowered

BP more in obese subjects than in lean hypertensive

subjects (Wofford et al. 2001). The importance of renal

sympathetic effects on obesity suggests a possible role

of a recently described pathway, which is based upon

norepinephrine stimulation of b2-adrenergic receptors

leading through suppression of serine–threonine protein

kinase WNK4 to the activation of Na–Cl cotransporter

in the distal tubule. This b2–WNK4–NCC pathway is

responsible for sodium retention and BP elevation in salt

hypertension (Mu et al. 2011).

Increased levels of circulating leptin and insulin as

well as decreased levels of ghrelin and adiponectin were

proposed to contribute to the enhancement of SNA in

obesity, but impaired baroreflex sensitivity and brain RAS

must also be considered (da Silva et al. 2014). One of the

most important mechanisms for the induction of sym-

pathoexcitation is the action of leptin on hypothalamic

pro-opiomelanocortin (POMC) neurons (Carlyle et al.

2002, da Silva et al. 2004, Tallam et al. 2006, do Carmo

et al. 2014). Brain RAS is a necessary prerequisite for leptin-

induced sympathetic activation (Hilzendeger et al. 2012).

Leptin stimulation of its receptors in POMC neurons

(located in the nucleus arcuatus and/or dorsal and ventral

medial hypothalamic nuclei) causes the activation of

melanocortin receptor 4 (MC4R), which is mediated by

a-MSH released from POMC neurons. MC4R antagonism
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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lowers BP of SHRs to the same extent as a-adrenergic

blockade (da Silva et al. 2008). Moreover, normotensive

LZRs respond to MC4R antagonism by a smaller BP

decrease than hypertensive OZRs (do Carmo et al. 2012).

In normal animals, central leptin action is associated

with decreased appetite, increased energy expenditure,

body weight reduction, and sympathetic activation,

whereas obese animals are characterized by selective leptin

resistance that attenuates metabolic but not sympathetic

response to leptin (Mark 2013). The concept of selective

leptin resistance (Mark et al. 1999, 2002, Correia et al.

2002, Rahmouni et al. 2002, 2005a) is based upon the

fact that yellow agouti obese mice and diet-induced

obese mice were resistant to food intake and body weight

effects of systemic leptin administration while leptin-

induced renal sympathetic activation was preserved.

It means that increased leptin levels in obese animals or

subjects stimulate renal SNA but they do not exert

inhibitory effects on appetite, thermogenesis, and body

weight. This is partially analogous to insulin resistance,

which is also selective because high insulin levels elicited

by hyperglycemia do not increase glucose uptake in

tissues although they stimulate SNA (Landsberg 1986).

Comparison of the two selective resistances, which share

a common pathway of SNS activation, is shown in Fig. 2.

Insulin resistance was also suggested to participate in the

pathogenetic mechanisms of hypertension (Rahmouni

et al. 2003), but there is considerable evidence against its

major role in obesity (Hall et al. 1990, Rocchini et al. 2004).

As far as selective leptin resistance is concerned, there is

an idea (Kalil & Haynes 2012) that increased thermogenic

SNA and decreased food intake are caused by leptin action
Published by Bioscientifica Ltd.
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in the nucleus arcuatus, whereas the enhanced renal

SNA is due to leptin stimulation of dorsal and ventral

medial hypothalamic nuclei. Another idea is that the

stimulation of hypothalamic leptin receptors activates

several intracellular signaling pathways including STAT3,

PI3K, and MAPK (Kalil & Haynes 2012), but only the

PI3K signaling pathway is capable of activating renal SNA

(Mark 2013). A further important feature of selective leptin

resistance is that baroreflex activation attenuates leptin-

induced renal SNA, but leptin-induced sympathetic output

to thermogenic tissues is not inhibited by baroreflex, thus

indicating the independence of renal and thermogenic

SNAs (Hausberg et al. 2002, Kalil & Haynes 2012). The

importance of baroreflex control of SNA is underlined by

the effects of chronic baroreflex activation in dogs with

diet-induced obesity, which caused major renal and

systemic sympathoinhibition leading to BP reduction,

decrease in plasma norepinephrine and renin levels as

well as to lower glomerular filtration but increased

fractional sodium excretion. BP changes induced by

chronic baroreflex activation were comparable to those

induced by renal denervation in the dogs fed the same HFD

(Lohmeier et al. 2012).

The analysis of heart rate variability (HRV) in obese

subjects indicates that HRV is inversely related to BMI

(Laederach-Hofmann et al. 2000, Tentolouris et al. 2003).

In most studies, the low-frequency/high-frequency

(LF/HF) ratio (an index of the sympathovagal balance)

was found to be increased in obese subjects in the fasting

state, suggesting a predominance of SNS activity (Tento-

louris et al. 2003). Furthermore, parasympathetic activity

was reduced in obese subjects compared with lean subjects

(Laederach-Hofmann et al. 2000). The diminished HRV in

obese individuals might indicate either reduced receptor

responsiveness or postreceptor alterations involving the

cardiac sinus node. However, the power of the low-

frequency component of the HRV seems to provide an

index of the baroreflex modulation of SNS activity. Hence,

a reduced power of the low-frequency component of the

HRV could reflect diminished baroreflex sensitivity to the

changes in BP (Piccirillo et al. 1998). Such a diminished

responsiveness has been confirmed by other studies using

the measurements of postganglionic muscle SNA in

response to the changes in MAP elicited by stepwise i.v.

nitroprusside or phenylephrine infusions (Grassi et al.

1995). They have demonstrated that baseline BP and heart

rate as well as plasma norepinephrine levels were similar in

obese and control subjects. However, muscle SNA was

more than twice higher in obese patients. Furthermore,

cardiovagal baroreflex gain was found to be lower in
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0368 Printed in Great Britain
subjects with higher abdominal visceral fat as well as in

those with higher total body fat (Beske et al. 2002).

Sympathetic activity is altered by food intake; it

consistently decreases after energy restriction in both

animals and humans and it is activated by overfeeding

(Julius et al. 2000). It is well known that fasting lowers

sympathetic activity in rats and that the ingestion of

sucrose solutions increases sympathetic activity in mice

(Young & Landsberg 1980). There is a highly significant

inverse relationship between sympathetic activity and

spontaneous food intake (Sakaguchi et al. 1988). The

inverse relationship between SNA and food intake is of

considerable interest, because it suggests a potential

feedback loop between sympathetic activity and food

intake (Bray 2000). The reciprocal relationship between

food intake and sympathetic activity is robust, suggesting

that b-adrenergic receptors in the periphery and brain may

be involved in the control of food intake in humans. Thus,

the inhibition of feeding by activating the SNS might be

an important satiety system, which helps to regulate body

fat stores and the obesity. However, this is rather difficult

for patients who are taking b-blockers in the treatment

of hypertension. An increase in body weight has been

shown to occur during both short-term (Townsend &

Klein 1997) and long-lasting (Lithell et al. 1992) therapies

with b-blockers. The increase in body weight caused by

this therapy could be a result of their negative effects

on thermogenesis and/or decreased physical activity of

treated patients. Propranolol administration to hyper-

tensive subjects significantly lowers heat production rate

in skeletal muscles by w25%. Moreover, body weight gain

after b-blocker therapy might be also due to a decreased

physical activity.
Renin–angiotensin system

The RAS is generally accepted as an important regulator of

water and electrolyte balance and thus BP. Apart from the

systemic RAS, locally acting RAS has been identified in

different organs, including brain, pancreas, kidney, heart,

and also adipose tissue (Paul et al. 2006). Locally acting

RAS contains all components of RAS, including angioten-

sinogen (Agt), renin, and angiotensin-converting enzyme

(ACE) together with AT1 and AT2 receptors (Cassis et al.

2008) to produce the main effector of the system,

angiotensin II (Ang II). While Agt is produced mainly in

the liver of lean individuals, adipose tissue is another

important source of Agt in obese individuals (Yasue et al.

2010). The specific feature of adipose tissue RAS is its

ability to produce Ang II not only via the renin and ACE
Published by Bioscientifica Ltd.
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pathway but also through cathepsins and chymase

(Karlsson et al. 1998). The fact that particular components

of RAS are expressed in multiple tissues, including adipose

tissue, suggests that this system may be associated with

hypertension and obesity.

Formerly, adipose tissue has been considered only as

a store for excess energy. At present, it is well recognized

that adipocytes exert various physiological functions,

including BP control (through Agt production) (Thatcher

et al. 2009, Kalupahana & Moustaid-Moussa 2012). More-

over, they synthesize various hormones with homeostatic

function (adipokines). The localization of Agt mRNA

expression in adipose tissue was disclosed by Campbell

& Habener (1987) and Cassis et al. (1988). They demon-

strated it in perivascular adipose tissue surrounding the rat

aorta as well as in periatrial and periaortic rat brown

adipose tissue respectively. The importance of adipose

Agt has been substantiated by Massiéra et al. (2001) in

transgenic mice overexpressing Agt in adipocytes on a

WT or Agt-deficient background. They found detectable

circulating Agt concentration in Agt-deficient mice with

Agt expressed only in adipocytes and these mice were

normotensive. By contrast, in WT mice, the transgenic

overexpression of adipocyte Agt not only increased

circulating Agt concentration but also increased BP. By

contrast, mice with deleted adipocyte Agt had a lower BP

than their WT counterparts (Yiannikouris et al. 2012a).

Not surprisingly, Agt mRNA expression levels were higher

in visceral adipose tissue of Sprague–Dawley rats with diet-

induced obesity and hypertension (Boustany et al. 2004).

In addition, losartan treatment (AT1 receptor blocker) was

more effective in obesity-prone Sprague–Dawley rats than

in obesity-resistant Sprague–Dawley rats, in which hyper-

tension was induced by a HFD (Boustany et al. 2005). In

humans, obesity is associated with increased plasma and

adipose tissue Agt, renin, ACE, and Ang II, showing both

systemic and adipose tissue overactivity of RAS. Impor-

tantly, body weight loss in humans has led to the lowering

of the RAS overactivity (Engeli et al. 2005).

Recently, Yiannikouris et al. (2012b) have evaluated

the importance of adipose tissue RAS in the development

of obesity-related hypertension using a low-fat diet and a

HFD. They found that a HFD induced increase in BP only

in WT mice, while there was no increase in BP in mice

lacking the Agt gene only in adipocytes. Interestingly,

mice of both types gained weight similarly and had similar

amounts of fat mass on a HFD. The most interesting

finding of this study was similar plasma Agt protein levels

in WT and knock-out mice, which is in contrast with the

previously accepted hypothesis that the increased adipose
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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tissue Agt gene expression is responsible for high plasma

Agt levels and the activation of systemic RAS in obesity.

However, plasma Ang II level was increased in WT mice

fed a HFD but not in knock-out mice. Thus, whether

this could be a link explaining the effect of local adipose

RAS on the synthesis of circulating Ang II remains yet to

be determined.

Obesity also leads to a shift of adipose tissue immune

cells such as macrophages to pro-inflammatory status,

causing hypertrophy of adipocytes and changes in the

proportion of immune cell populations. A HFD induced

adipose tissue inflammation and activation of adipocyte

RAS, suggesting a role for Ang II in this process (Rahmouni

et al. 2005b). In line with this finding there is the

activation of pro-inflammatory cytokines (TNFa, IL6,

and IL1) by Ang II in adipocytes as demonstrated by

in vitro studies.
Early-life origins of disease

The hypothesis on the fetal origins of adult diseases in

humans was proposed by Barker & Osmond (1988), who

suggested that environmental factors, mainly nutrition,

can lead to permanent metabolic and structural changes

in the fetus and thus can increase the risk of many diseases

in adulthood. Recently, we have summarized the import-

ance of critical developmental periods in the pathogenesis

of hypertension (Kuneš et al. 2012). We believe that some

basic characteristics of hypertension development can be

applied for the development of other significant diseases.

It is also very important to take into consideration that

developmental changes need not be detected immediately

after the intervention. A certain delay is always present, so

that one can speak about the ‘late consequences of early

alterations’. There is no doubt that the critical develop-

mental periods are much better recognized and charac-

terized in experimental animals than in humans (Zicha &

Kuneš 1999, Kuneš et al. 2012). However, as mentioned

earlier, this theory can also be applied in humans. In 1986,

David Barker and his colleagues postulated that the

geographical distribution of mortality rates from stroke

and cardiovascular diseases in 1968–1978 was closely

related to the neonatal mortality in 1921–1925, suggesting

that poor health and physique of mothers were the

important determinants of the risk of stroke in their

babies (Barker & Osmond 1986). Later on, they reported

that BP in adulthood was related not only to the birth

weight but also inversely to the placental weight (Barker

et al. 1990), leading to the formulation of the ‘early or fetal
Published by Bioscientifica Ltd.
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origin’ hypothesis. Thus, the intrauterine period might be

a major critical period for human diseases.

The detailed review of 48 papers clearly documented

the relationship between early growth and the later

occurrence of insulin resistance, type 2 diabetes, hyper-

tension, hyperlipidemia, and cardiovascular diseases in

both men and women in distinct populations in the

UK, Asia, Europe, Africa, and the USA (Newsome et al.

2003). The combination of low birth weight followed

by obesity in later life appears to carry the highest risk of

insulin resistance.

It has been demonstrated that fetal overexposure to

maternal glucocorticoids in both humans and animals

triggers programming events in utero (Langley-Evans 1996,

2006, Nyirenda & Seckl 1998). Glucocorticoids are power-

ful modulators of gene expression and experimental

studies have demonstrated that they accelerate fetal

organ maturation. This has been proposed as a key step

in nutritional programming. The administration of

synthetic glucocorticoids, which are poor substrates of

11b-hydroxysteroid dehydrogenase type 2, programs

hypertension and renal defects in animals (Benediktsson

et al. 1993, Dodic et al. 2002). Feeding of a low-protein

diet to rats during pregnancy reduces both the activity

and mRNA expression of placental 11b-hydroxysteroid

dehydrogenase type 2 (Langley-Evans et al. 1996, Bertram

et al. 2001). Moreover, the blockade of maternal gluco-

corticoid synthesis through pharmacological adrenalect-

omy prevents the programming of hypertension in the

offspring of rats fed a low-protein diet, demonstrating

the glucocorticoid dependence of the nutritional effect

(Langley-Evans et al. 1996, Langley-Evans 1997, McMullen

& Langley-Evans 2005). This is also true for humans in

whom exogenous glucocorticoids retard fetal and placen-

tal growth and result in lower birth weight (Hofmann

et al. 2001). This is corroborated by the fact that there

are strong correlations among birth weight, plasma

cortisol concentrations, and the development of hyper-

tension and type 2 diabetes (Phillips et al. 2000). As

perinatal exposure to glucocorticoids increases the activity

of hypothalamic–pituitary–adrenal axis (Holmes et al.

2003, Bouret 2009), it has been proposed that the

programming of this axis in utero is linked to behavioral

modifications and neurological responses, as well as

endocrine and cardiovascular functions.

Accumulating body of evidence demonstrated that

leptin production from the placenta and fetal adipose

tissue can regulate fetal growth and development (Stocker

et al. 2005). Besides the regulation of energy balance and

neuroendocrine functions in mature animals, this is
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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another function of leptin. Administration of leptin

during pregnancy and lactation to protein-restricted

dams produced offspring that had increased metabolic

rate and thus they were not obese when fed a HFD in

adulthood (Stocker et al. 2005). This is probably due to the

fact that neonatal leptin is an important trophic factor for

the development of hypothalamic circuits (Bouret 2009).

The existence of the critical periods for the developmental

effects of leptin during key periods of hypothalamic

development may induce long-lasting effects on the

metabolism in adults.
Epigenetic mechanisms

Despite the enormous progress in genetic and genomic

studies, including extensive analysis of the human

genome, only up to 10% of discovered gene functions

are known and many more remain yet to be discovered.

It is evident that genetics alone cannot explain the

occurrence of phenotypic heterogeneity of cardiovascular

diseases including hypertension and obesity. Probably, the

interaction of organism with environmental factors is

dependent on several other features such as epigenetics.

Epigenetics is not based upon changes in nucleotide

sequence of DNA, but it is associated with DNA methyl-

ation, histone modifications, and chromatin remodeling.

More than 100 modifications of histones including

acetylation, methylation, phosphorylation, etc., have

been described (Kouzarides 2007). Although the function

of most of these ‘marks’ remains obscure, there is a

possibility that they determine which genes are tran-

scribed in which cells under specific circumstances. It has

been shown that unusually dense collections of CpG

dinucleotides known as CpG islands exist throughout the

genome (Eckhardt et al. 2006). These islands are localized

in promoter regions of particular genes and they are not

methylated during transcription. Additionally, the chro-

matin proteins associated with DNA may be activated or

silenced. This explains why the differentiated cells in a

multicellular organism express only those genes that are

necessary for their own activity.

There is no doubt that gene–environment interactions

play a significant role in the etiology of obesity-related

hypertension and other diseases. One would expect that

the environmental impact (diet, lifestyle, working con-

ditions, smoking, various infectious agents, etc.) on

genetic information is exerted via DNA damage, but

epigenetic inheritance seems to be more responsible

(Kuneš & Zicha 2006). Several recent studies have

demonstrated how environmental factors can modify
Published by Bioscientifica Ltd.

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-14-0368


Genes Environment Disease

A

B

C

D

E
pi

ge
no

m
e

×

etc.

Obesity

Hypertension

Diabetes

Atherosclerosis

etc.

Figure 3

The interaction of genes, environment, and epigenome in the etiology of

polygenic diseases.

Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y
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epigenetic processes, thereby affecting epigenetic marks

and downstream patterns of gene expression in specific

cells and cell lineages (Roche et al. 2005, Gluckman et al.

2007, Waterland & Michels 2007, Feinberg 2008). Epige-

netic changes not only occur in the course of individual

organism’s lifetime, but also may be inherited from one

generation to the next. It seems that environmental

conditions influencing the organism during its lifetime

may activate specific silent alleles or suppress others. The

epigenome is a connection between environmental

exposure and gene expression, thus influencing cell/tissue

function. This may be especially important for the early

life (in utero) exposure. In the earliest stages of life, the

genome undergoes radical changes in epigenetic marks,

which are characterized by waves of demethylation

of DNA followed by remethylation (Reik et al. 2001).

These imprinting patterns, if not erased after fertilization,

may become stable and persist to the next generations

of experimental animals (Zambrano et al. 2005, Pinheiro

et al. 2008, Torrens et al. 2008) and even of humans

(Veenendaal et al. 2013). This can be reversed by the

changes in lifestyle (Gallou-Kabani & Junien 2005).

For example, it was observed that protein restriction

during pregnancy of rats can result in hypomethyla-

tion of peroxisome proliferator-activated receptor alpha

(Lillycrop et al. 2008), hepatic glucocorticoid receptor

promoters (Lillycrop et al. 2005), and angiotensin AT1b

receptor in the offspring (Bogdarina et al. 2007). Intra-

uterine exposure to a low-protein diet may increase the

risk of hypertension also by the increased corticosteroid

levels. The transgenerational effects could be triggered

through environmental factors such as food preferences,

special dietetic factors, and physical activity. For example,

in the agouti mouse model, folate supplementation of

the maternal diet at conception augments DNA methyl-

ation of the agouti gene and increases longevity of the

offspring (Cooney et al. 2002).

Recently, it has been shown that complex diseases

such as obesity or hypertension may be related to highly

interconnected gene networks and core network modules

that are deregulated by susceptibility loci (Emilsson et al.

2008, Mehler 2008). Moreover, not only gene networks

but also environmental factors and epigenome, more

complex networks can collaborate in clinical mani-

festations of specific disease states (Fig. 3). On the basis

of animal models of disease as well as of human clinical

trials, there are currently three classes of epigenetic

therapies i) DNA methylation inhibitors, ii) histone

deacetylase (HDAC) inhibitors, and iii) RNA-based

approaches (Ptak & Petronis 2008).
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The study of epigenetic and developmental processes

could shed new light on serious health problems. For

example, protein restriction in pregnant rats reduces

methylation of the promoter region of the gene that codes

for glucocorticoid receptor in offspring liver cells (Lillycrop

et al. 2007, Erhuma et al. 2009). This leads to the

amplification of the liver metabolic response to stress

hormones. Moreover, it has been demonstrated that pups

of rat mothers on a low-protein diet overexpress the AT1b

receptor mRNA and protein in the adrenal gland, suggesting

its contribution to the elevated BP observed in these animals

(Bogdarina et al. 2007). The expression of AT1a receptor was

normal. However, such results cannot be simply transferred

into human pathology because human genome contains

only a single AT1 receptor gene, which is widely expressed

in a pattern similar to that of AT1a receptor in rodents

(Inagami 1995). Besides the role of the prenatal environ-

ment, including nutrition, the effects of prenatal stress

and social environmental exposures can be important

factors (Darnaudéry & Maccari 2008, Kuzawa & Sweet

2009). Therefore, the study of epigenetic contributions to

obesity-related hypertension and other cardiovascular

diseases should be very important for the understanding

of other regulatory mechanisms and for the development

of new therapeutic strategies as mentioned in several recent

reviews (Wong et al. 2005, Turunen et al. 2009, Ordovás &

Smith 2010, Lillycrop & Burdge 2012).
Conclusions

Obesity-related hypertension is an important medical

problem. According to the epidemiological studies, we

can talk about the pandemic of obesity and thus partially

also about the epidemic of hypertension. Obesity-related

hypertension is a chronic, slowly developing disease the
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pathology of which is complex, and multiple potential

mechanisms could play a role in the relation between

obesity and hypertension (Fig. 4). Despite the fact that

many details about the development and maintenance

of obesity-related hypertension have been identified,

the primary impulse to start the pathological process is

still not known, and neither is it known whether obesity

causes hypertension or vice versa. Nevertheless, it has been

demonstrated (Messerli et al. 1981) that obesity per se raises

BP by only a few millimeters of mercury, while 50% of

individuals with hypertensive obesity have a much larger

rise in BP (Korner 2007).

Gene–environment interactions are gaining more and

more attention in the etiology of human diseases. There is

an increasing belief that epigenetic variants and inheri-

tance could provide the missing piece of a puzzle for the

understanding of these very complicated relationships in

many diseases, which have usually the complex pheno-

types, e.g. obesity-related hypertension. Studies on genetic

association have had a mixed success in the detection

of important genes and/or environmental influences

that are notoriously difficult to identify. Thus, epigenetic

changes and regulation become increasingly important.

The research community is increasingly aware of the role

that chromatin plays in gene regulation, transcription,

and disease development.

However, once the obesity-related hypertension has

developed, the complete normalization of BP is difficult, if

not impossible. The main concern for the future should be

therefore the prevention of obesity and/or hypertension

development as well as the personalized medicine. There is

no doubt that the young organism is highly sensitive to

various risk factors and it may also be more sensitive to

various pharmacological interventions than the adult one.
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Therefore, the early diagnosis of obesity, hypertension,

and other diseases together with the change in lifestyle

can lead to early intervention and thereby can improve

the health of the whole population. However, the

question whether obesity prevention will reduce hyper-

tension and vice versa remains yet to be clarified. The

proper understanding of the important mechanisms in

obesity-related hypertension and other complex diseases

in experimental animals together with the precise

determination of the critical developmental periods for

the onset of these diseases might be the first step toward

the development of new therapies in human medicine.
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Kuneš J, Kadlecová M, Vaněčková I & Zicha J 2012 Critical developmental

periods in the pathogenesis of hypertension. Physiological Research

61(Suppl 1) S9–S17.
Published by Bioscientifica Ltd.

http://dx.doi.org/10.1093/eurheartj/ehq355
http://dx.doi.org/10.1001/jama.299.11.1345
http://dx.doi.org/10.1016/j.pharmthera.2012.11.004
http://dx.doi.org/10.2337/diabetes.54.7.1899
http://dx.doi.org/10.1073/pnas.0705667104
http://dx.doi.org/10.1161/01.HYP.25.4.560
http://dx.doi.org/10.1097/00004872-200412000-00019
http://dx.doi.org/10.1161/01.HYP.0000052314.95497.78
http://dx.doi.org/10.1161/01.HYP.15.5.519
http://dx.doi.org/10.1016/S0895-7061(01)02077-5
http://dx.doi.org/10.1074/jbc.R110.113175
http://dx.doi.org/10.2174/1573399810602040367
http://dx.doi.org/10.1097/00004872-200208000-00027
http://dx.doi.org/10.1152/ajpheart.00974.2011
http://dx.doi.org/10.5551/jat.12963
http://dx.doi.org/10.1515/JPM.2001.003
http://dx.doi.org/10.1196/annals.1286.035
http://dx.doi.org/10.1113/jphysiol.2009.186387
http://dx.doi.org/10.1113/jphysiol.2009.186387
http://dx.doi.org/10.1152/ajpheart.00075.2011
http://dx.doi.org/10.1097/00041552-199501000-00007
http://dx.doi.org/10.1161/01.HYP.35.3.807
http://dx.doi.org/10.1038/hr.2011.173
http://dx.doi.org/10.1111/j.1467-789X.2011.00942.x
http://dx.doi.org/10.1038/sj.jhh.1000949
http://dx.doi.org/10.1210/jc.83.11.3925
http://dx.doi.org/10.1210/jc.83.11.3925
http://dx.doi.org/10.1161/01.HYP.25.4.893
http://dx.doi.org/10.1161/01.HYP.25.4.893
http://dx.doi.org/10.1210/jcem-54-2-254
http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.099499
http://dx.doi.org/10.1038/hr.2010.9
http://dx.doi.org/10.1016/j.cell.2007.02.005
http://dx.doi.org/10.1042/CS20050271
http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-14-0368


Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y
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