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Abstract
Pigment epithelium-derived factor (PEDF) is a pluripotent glycoprotein belonging to the

serpin family. PEDF can stimulate several physiological processes such as angiogenesis, cell

proliferation, and survival. Oxidative stress plays an important role in the occurrence of

diabetic retinopathy (DR), which is the major cause of blindness in young diabetic adults.

PEDF plays a protective role in DR and there is accumulating evidence of the neuroprotective

effect of PEDF. In this paper, we review the role of PEDF and the mechanisms involved in its

antioxidative, anti-inflammatory, and neuroprotective properties.
Key Words

" PEDF

" diabetes

" oxidative stress

" pericyte

" signal transduction

" redox balance
Journal of Endocrinology

(2014) 222, R129–R139
Introduction
Nontransmissible chronic diseases are increasing all over

the world, resulting in financial and logistical challenges

for all health care systems in the 21st century. Contribut-

ing to this scenario, diabetic retinopathy (DR), one of the

most devastating acquired vascular complications of

diabetes mellitus, is responsible for affecting overall life

quality worldwide. It has been estimated that the number

of Americans suffering from DR will be 16 million by 2050

(Milne & Brownstein 2013).

In DR disease, premature death of pericytes occurs

via apoptosis, and may result in a dramatic reduction in

retinal function, due to the formation of pericyte ghosts

in the basement membrane, subsequently leading to

nonproliferative DR (Amano et al. 2005, Hammes 2005,

Ejaz 2008). Pericytes are one of the main cell types of
retinal microvessels, playing an important role in retinal

capillary homeostasis via control of proliferation of

endothelial cells (ECs). Furthermore, experimental evi-

dence shows that pericytes are responsible for protection

of ECs against lipid peroxide-induced injuries, preserving

their capacity to produce prostacyclins (Yamagishi et al.

1993a,b). Therefore, in DR, major structural change

occurs, including thickening of the basement membrane,

hyperpermeability, and the formation of microaneurysms.

These changes ultimately predispose the capillaries to

neovascularization, angiogenesis, ECs injuries, and the

proliferative form of DR, which mostly results in vision

loss due to macular edema (Yamagishi & Matsui 2011).

Metabolic and signaling disturbances in diabetes can

initiate apoptosis in retinal capillaries and may culminate
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in pericyte apoptosis and depletion (Ejaz 2008, Yamagishi

& Matsui 2011). These disturbances include formation of

advanced glycation end products (AGEs), upregulation of

protein kinase C, the polyol pathway, focal leukostasis,

and oxidative stress. In DR, promoted by an islet-based

inability to secrete or failure of target tissues to optimally

respond to insulin, hyperglycemic events are common

and these, per se, promote the aberrant production of

reactive oxygen species (ROS) and an overwhelmed

detoxification system in insulin-responsive cells,

which leads to oxidative stress (Yamagishi et al. 2002a,

Newsholme et al. 2012). In this context, pigment

epithelium-derived factor (PEDF, a glycoprotein (50 kDa,

418 amino acids) widely expressed in most body tissues)

exerts anti-inflammatory functions, attenuating the

expression of chemical mediators, such as vascular

endothelial growth factor (VEGF), tumor necrosis factor

alpha (TNFa), and intercellular adhesion molecule 1

(ICAM1) in retinal vascular ECs (Zhang et al. 2008, 2011).

Recent advances in molecular and cell biology have

provided the basis for the discovery of inhibitory activity

of PEDF against cancers, such as osteosarcoma (Dass et al.

2007, Ek et al. 2007a,b,c, Ta et al. 2009), breast and prostate

cancers (Filiz & Dass 2012), and chondrosarcoma (Tan

et al. 2010). It also protects against oxidative stress, which

includes diabetic damage in the eye and angiogenic-

related disease (Yamagishi et al. 2003), vascular injuries

(Yoshida et al. 2006, Nakamura et al. 2007), and

neurotoxicity (Araki et al. 1998, Yabe et al. 2005a).

However, recent work has provided evidence that in

uncontrolled diabetes, PEDF levels in the retina and

vitreous fluids are low, which may contribute to pro-

liferative DR (Boehm et al. 2003, Yokoi et al. 2007).

Considering the epidemic challenge of diabetes and its

complications, a better understanding of DR, its

mechanisms, and targets will be essential to future new

strategies and treatments. In the following sections, first

the mechanisms and pathways that are involved in the

development of DR and pericyte loss is discussed and next

the inhibitory and protective role of PEDF will be

presented.
Role of oxidative stress and inflammation in the

development of DR

The Maillard process, a nonenzymatic reaction between

a reducing sugar and free amino groups in proteins (the

carbonyl group of the sugar reacts with the amino group

producing N-substituted glycosylamine and water), is

important for the development of DR. The glycosylamine
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0065 Printed in Great Britain
undergoes Amadori rearrangement to form various keto-

samines that undergo further rearrangement, important

for the creation of glycation products which can undergo

further complex reactions such as dehydration, conden-

sation, and rearrangement, and become permanently

cross-linked to form AGEs (Sato et al. 2006, Yamagishi

et al. 2007a, Yamagishi & Matsui 2011). During the

progression of diabetes, the formation and accumulation

of AGEs increase. Retinal pericytes are associated with

higher levels of AGEs, which then contribute to retinal

vascular hyperpermeability and DR (Yamagishi et al.

2002a, 2007a, Sato et al. 2006). AGEs, and signaling

stimulated by their receptors (RAGEs), can induce the

generation of intracellular ROS and provoke oxidative

stress, initiating vascular inflammation and complications

in diabetes (Fukami et al. 2004). Furthermore, AGE–RAGE

interaction can also cause apoptosis in retinal pericytes

and become embroiled in the early phase of DR (Hammes

et al. 1999, Yamagishi et al. 2002a,b).

Free radical (containing an unpaired electron) and

nonradical ROS can be produced through different

mechanisms including the plasma or organelle mem-

brane-bound NADPH oxidase (NOX) family of enzymes,

ischemia/reperfusion, inflammatory response, transition

metal ions, and inefficient electron transport chain

reactivity in organelles such as mitochondria. Some ROS

such as superoxide anion (O2%
K) or hydroxyl radicals

(OH%) are extremely unstable, whereas others such as

hydrogen peroxide (H2O2) are freely diffusible and

relatively long-lived, from nanoseconds to milliseconds

(Newsholme et al. 2012). In general, ROS are considered

highly reactive molecules as they tend to capture electrons

from other molecules (oxidation) and produce other ROS,

such as peroxynitrite (ONOOK), thiol-based radicals (RS%),

and others (Brownlee 2001). Moreover, these unstable

molecules can promote DNA damage by reacting with

nucleotides, proteins, and especially structural com-

ponents in the cell such as neutral lipids and phospholi-

pids of the membranes via a process known as lipid

peroxidation (propagation step of ROS; Finkel & Holbrook

2000). Lipid peroxidation changes the fluidity of cell

membranes, reduces the capacity to maintain defined ion

gradients (e.g. NaC and KC), and also increases membrane

permeability. Consequently, lipid peroxidation leads to a

loss of intracellular proteins, reduces Ca2C transport across

the cell and endoplasmic reticulum membranes, altering

mitochondrial voltage channels, and cell function (Dias &

Griffiths 2014).

It has been well-documented that high glucose, fatty

acids, and AGEs can increase intracellular ROS generation
Published by Bioscientifica Ltd.
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and induce apoptosis in retinal pericytes (Amano et al.

2002, Yamagishi et al. 2002a,b,c). High glucose and fatty

acid levels may overstimulate electron transport activity

in the mitochondria, leading to excessive generation of

superoxide (Newsholme et al. 2007).

Characterized by increased levels of ROS due to

excessive production and slow removal by the anti-

oxidant systems, the phenomenon of oxidative stress has

attracted attention in the last decades. The rationale for

this scientific interest arises from the fact that oxidative

stress, and consequently the change in the intracellular

redox state, occurs in several disease mechanisms (Krause

& de Bittencourt 2008, Cruzat et al. 2014), including the

complications of diabetes (Newsholme et al. 2007) and

aging (Ristow et al. 2009). The detrimental effects of AGEs
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Figure 1

A brief overview of the protective mechanisms mediated by PEDF in

conditions of oxidative stress caused by advanced glycation end products

(AGEs), NADPH oxidase activation and glycated LDL in pericytes and

endothelial cells (EC). (A) In LDL-exposed pericytes, PEDF can suppress the

binding of nuclear factor kappa B (NFkB) to DNA and, as a result, inhibit the

monocyte chemoattractant protein 1 (MCP1) (Zhang et al. 2008).
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on pericyte survival and function are mediated via

increased ROS generation, which then leads to apoptosis.

It has been shown that AGE-modified BSA (AGE–BSA) has

the potential to stimulate glucose transport into retinal

pericytes followed by an elevation in ROS production

therefore provoking cell death. The activation of

AGE-sensitive cell surface receptors, such as RAGE,

or nonreceptor-dependent pathways may be involved in

increasing ROS generation (Schmidt et al. 2001; Fig. 1).

The BCL2 family of proteins are key players in the

regulation of apoptosis. The anti-apoptotic members of

this family, such as BCL2, inhibit apoptosis by blocking

the release of cytochrome c from mitochondria. However,

the pro-apoptotic members of this family, including BAX,

enhance the release of cytochrome c, which subsequently
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(B) In AGE-exposed pericytes, PEDF is able to attenuate caspase 3 activity

by improving the ratio of BCL2/BAX (Yamagishi et al. 2002a,c). (C) In

AGE-exposed EC, PEDF can reduce reactive oxygen species (ROS) generation

by downregulating p22PHOX and gp91PHOX thus suppressing NADPH oxidase

activity (Yoshida et al. 2009, Yamagishi et al. 2006a). A full colour version of

this figure is available at http://dx.doi.org/10.1530/JOE-14-0065.

Published by Bioscientifica Ltd.

http://dx.doi.org/10.1530/JOE-14-0065
http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-14-0065


Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Review M ELAHY and others Protective mechanisms of
PEDF against ROS

222 :3 R132
leads to activation of different caspase molecules (such as

caspases 3 and 9) that cleave various downstream pro-

caspases within the cell to induce full-blown apoptosis

(Cory & Adams 2002, Broadhead et al. 2009). Furthermore,

inflammatory reactions and apoptosis are initiated as a

result of activation of MAP kinase/RAS, nuclear factor

kappa B (NFkB), AKT, and p38 in addition to key molecules

in apoptotic pathways, for example forkhead transcription

factors (FOXO) and c-JUN (Min et al. 1999, Alikhani et al.

2007). During pericyte apoptosis, caspase 3, a key enzyme

required for the execution of apoptosis, increases in

concentration due to a decreased ratio of BCL2/BAX.

Oxidative stress can result in direct, free radical-based

DNA damage, but can also trigger redox pathways required

for transcriptional activation. NFkB in retinal pericytes

is extremely sensitive to the redox status of the cells, and

normally remains in an inactive form, as it is bound with

an inhibitory IkB protein. Several inflammatory stimuli,

such as TNFa, and also elevated levels oxidative stress can

promote specific signal transducing pathways to enable

phosphorylation of the IkB and subsequent degradation

by the 26S proteosome (Sethi et al. 2008). The phosphoryl-

ation of IkB releases NFkB from IkB protein and permits

NFkB to translocate to the nucleus (Heck et al. 2011). The

subunit composition of NFkB can vary, although NFkB p65

(Rel A) and NFkB p50 (NFkB1) are the classical NFkB

pathway components studied in inflammation (Sethi et al.

2008). Many target genes related to pro-inflammatory

response (e.g. NFkBIA, NFkB1, COX2, MYD88, and IRAK1)

are cyclically activated by NFkB. The imbalance

between NFkB and IkB has several consequences, such as

hyper-inflammation and loss of cell repair and function,

which lead to apoptosis and DR disease evolution (Duarte

et al. 2013).
Summary of the key roles of PEDF and potential

mechanisms of protection in oxidative stress conditions

Apoptosis and PEDF: balance of BCL2 and BAX PEDF has

neurotrophic and neuroprotective effects on dopamin-

ergic neurons (Falk et al. 2009), as well as protective effect

on pericytes. A dose-dependent effect of PEDF on BCL2

was observed in cultured cortical neurons where PEDF

upregulated the expression of BCL2 and promoted

neuronal survival against oxidative stress (Sanchez et al.

2012). In photoreceptor cells, the nuclear translocation of

apoptosis-inducing factor (AIF) from mitochondria inter-

membrane space during apoptosis results in chromatin

condensation and DNA fragmentation. The upregulation

of BCL2 by PEDF leads to inhibition of the nuclear
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0065 Printed in Great Britain
translocation of AIF, resulting in prevention of the

apoptosis in both in vitro and in vivo (Murakami et al.

2008). PEDF significantly prevents the arrest of DNA

synthesis in cultured AGE-exposed pericytes by reversing

the reduction in expression of BCL2, as well as inactivating

BAX expression in retinal pericytes and thus aids pericyte

survival (Fig. 1; Yamagishi et al. 2002a,c).

PEDF and inflammatory signal transduction The protec-

tive effect of PEDF on retinal pericytes exposed to high-

glucose or H2O2 is via stimulation of antioxidative

mechanisms, such as inhibition of ROS production, and

normalizing or enhancing the level of antioxidant

enzymes such as phospholipid hydroperoxide/glutathione

peroxidase (GSH-Px). PEDF is able to induce and increase

the mRNA expression level of GSH-Px (Yamagishi et al.

2002a,c, Amano et al. 2005). However, the role of PEDF

in regulating the levels and activity of the other major

antioxidant enzymes – catalase and Cu/Zn superoxide

dismutase (SOD) – has yet to be elucidated. Similarly,

JAK2/STAT3 and ERKs (ERK1/2) are activated in bovine

retinal capillary ECs (BRECs) (Zheng et al. 2010) and

human retinal pigment epithelial cells (ARPE-19) respect-

ively (Tsao et al. 2006). PEDF decreased the level of

mitochondria-generated ROS, suppressed JAK2/STAT3

activation, leading to lower VEGF mRNA expression

(Zheng et al. 2010). On the contrary, PEDF can induce

ERK1/2 phosphorylation and activation and protect ARPE-

19 cells against H2O2-mediated oxidative stress (Tsao et al.

2006). Similar pathways are involved in PEDF-mediated

protection in cerebellum granule cells (Taniwaki et al.

1995, 1997), hippocampal neurons (DeCoster et al. 1999),

and spinal motor neurons (Bilak et al. 1999) against

glutamate toxicity. PEDF can induce ERK1/2 phosphoryl-

ation followed by phosphorylation and activation of

cAMP-responsive element-binding protein (CREB) – the

two key molecules in the cell survival signal transduction

pathway – therefore providing protective properties in

cultured rat cerebellar granule cells (CGCs) (Yabe et al.

2005b). Interestingly, the protective effect of PEDF has

been observed in immature CGCs rather than mature cells

(Taniwaki et al. 1995, Araki et al. 1998). The suggested

mechanism underlying glutamate neurotoxicity is the

elevation of intracellular Ca2C as a result of opening

N-methyl-D-aspartate (NMDA) channels. The high free

intracellular Ca2C leads to activation of Ca2C-dependent

enzymes – nucleases, proteases, protein kinases, and

protein phosphatases – and may also lead to the

generation of free radicals. It has been postulated that

PEDF can block the initial signal transduction, which leads
Published by Bioscientifica Ltd.
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to the opening of NMDA channels as well as maintain

Ca2C homeostasis through removal of excess Ca2C, thus

helping cell survival (Taniwaki et al. 1997).

As mentioned before NFkB is one of the transcription

factors activated during oxidative stress. PEDF inhibition

of this particular pathway results in protection for AGE-

exposed mesangial cells. In this situation, the coupling

of RAGE and AGE can initiate downstream signaling and

stimulate ROS-generated inflammatory and thrombogenic

reactions via redox-sensitive transcriptional factor NFkB.

PEDF can inhibit ROS generation, attenuating NFkB

activation and subsequently inhibiting the expression of

inflammatory and thrombogenic genes such as monocyte

chemoattractant protein 1 (MCP1), vascular cell adhesion

molecule 1 (VCAM1), and plasminogen activator inhibitor

1 (PAI1) (Ide et al. 2010). Furthermore, there is a

correlation between MCP1 protein abundance in vitreous

fluids and progression of proliferative DR (Mitamura et al.

2001). However, PEDF can inhibit AGE-induced over-

expression of MCP1 in ECs by suppressing the generation

of intracellular ROSs (Inagaki et al. 2003). This may be

similar to the situation in retinal pericytes when exposed

to glycated LDL. This oxidizing factor could activate the

NFkB pathway and lead to overexpression of MCP1. PEDF

has an inhibitory effect on MCP1 expression, which

consequently results in decreased cell permeability and

leakage and ultimately neovascularization in DR (Fig. 1).

It also has been shown that PEDF can suppress the binding

of NFkB to DNA and its transcription activation in a cell-

type-specific manner (Yabe et al. 2001, Zhang et al. 2008).

Production of pro-inflammatory cytokines can be inhib-

ited by the activation of NFkB or CREB in cultured

microglia (Sanagi et al. 2005), neonatal astrocytes (Yabe

et al. 2005a), and rat culture CGCs (Yabe et al. 2005b).

PEDF regulates the level of these transcription factors and

therefore acts as a neuroimmune modulator in the CNS

(Sanagi et al. 2005).

In relation to AGE-induced apoptosis in podocytes

(epithelial cells around glomerular capillaries), restoration

of transcriptional activity of peroxisome proliferator-

activated receptor gamma (PPARg) is the proposed

pathway for PEDF protection, although it did not affect

the AGE-induced reduction in PPARg protein expression

(Ishibashi et al. 2013). The antagonist effect of PEDF/RAGE

also contributes to activation of PPARg therefore inhibit-

ing generation of ROS. PPARg activation by PEDF can

inhibit platelet-derived growth factor (PDGF)-induced

migration and proliferation of smooth muscle cell (SMC)

as well as suppress macrophage-mediated inflammatory

reactions (Yang et al. 2010, Wang et al. 2012) which
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0065 Printed in Great Britain
ultimately would lead to atherosclerosis as a result of

ROS-induced signal transduction involving angiotensin II

mediated EC activation and SMC proliferation (Nishikawa

et al. 2000, Sorescu et al. 2002).

PEDF and NADPH NOX-mediated ROS production and

initiation of the redox-dependent signaling cascade as a

result of Ang II expression and stimulation is an important

event in vascular injury and inflammation (Yamagishi

et al. 2005). PEDF can inhibit NOX ROS generation and in

the case of MOLT-3 T cells, an immortalized T cell line, it

leads to blocking and suppressing Ang II-induced VEGF

expression (Yamagishi et al. 2006a). The protective effect

of PEDF via its antioxidative effect has also been observed

in Ang II-exposed human umbilical vein ECs (HUVECs).

The activation of redox-sensitive transcription factor

NFkB, and as a result, overexpression of MCP1 in

HUVECs, is induced by activation of Ang II. PEDF can

protect HUVECs via downregulation of the mRNA level of

p22PHOX associated with NOX4 and gp91PHOX associated

with NOX2. These subunits are membrane-bound com-

ponents of NOX. A reduction in the level of these proteins

can inhibit Ang II-induced ROS production (Yamagishi

et al. 2005).

Studies on vascular hyperpermeability and oxidative

stress in retinal ECs also include examination of the role of

NOX and its various membrane components. NOX will be

critical to superoxide and subsequently H2O2 generation

(via SOD) in PEDF-stimulated ECs (Fig. 1). Some findings

suggest that PEDF has an inhibitory effect on AGE-

mediated VEGF-induced vascular hyperpermeability via

suppression of VEGF expression (Yamagishi et al. 2006b,

Yoshida et al. 2009). The latter authors have also shown

that NOX activity has an important role in elevating ROS

generation and ultimately in apoptosis and increased cell

permeability. PEDF can downregulate p22PHOX and

gp91PHOX mRNA levels and subsequently suppress NOX

protein levels and activity (Yamagishi et al. 2006b, 2007b,

Yoshida et al. 2009). Reduced NOX activity inhibits NFkB-

dependent VEGF expression in ECs, affecting EC’s vascular

lining permeability and inhibiting ROS generation (Fig. 1).

Furthermore, PEDF also has a protective effect in H2O2-

induced retinal pigment epithelium (RPE) permeability.

It has been shown that in H2O2-induced oxidative stress,

PEDF is able to suppress the stress-activated p38/MAPK

signaling pathway by inhibiting the phosphorylation and

activation of a key substrate (HSP27; Ho et al. 2006). In

a leptin-induced ROS generation model, PEDF inhibited

VEGF expression, thus potentially eliminating the
Published by Bioscientifica Ltd.
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angiogenic effect of leptin and protecting ECs through

its antioxidant properties (Yamagishi et al. 2003).

Adhesion of leukocytes and inflammatory cells to the

capillary endothelium (leukostasis) is one of the possible

mechanisms of DR, which can be related to ICAM1 levels.

In AGE-induced oxidative stress conditions, ICAM1 over-

expression may result in retinal leukostasis. PEDF can

inhibit the overexpression of ICAM1 in ECs via its

antioxidative properties (Yamagishi et al. 2006c).

Table 1 summarizes the suggested mechanisms of

PEDF action in various cell types and PEDF-mediated

survival in oxidative stress conditions.
Pericyte–EC communication and PEDF

The communication system between pericytes and ECs

during angiogenesis and maturation of the vasculature

system consists of several complex paracrine signaling

pathways such as PDGFb, activated transforming growth

factor beta, VEGF, angiopoietin 1 (Ang I), and its

antagonist angiopoietin 2 (Ang II) (Milne & Brownstein

2013). The regulatory effect of PEDF on paracrine signaling

and its role in the maintenance of homeostasis between

pericytes and ECs are also dependent on the antioxidative

function of PEDF. Platelet activation and aggregation is

a common cause of vascular complications in diabetic

patients and oxidative stress via the action of AGEs

(Yamagishi et al. 2001). The antioxidative activity of

PEDF can reduce the production of NOX-driven super-

oxide, and can inhibit platelet activation and aggregation

as well as have a detrimental effect on AGEs in diabetic rat

models (Yamagishi et al. 2009).

Moreover, both in vivo and in vitro hyperglycemic

conditions can result in activation of NFkB in retinal

pericytes which can upregulate BAX and TNFa (Romeo

et al. 2002). Ang I has a protective effect on pericytes in

such conditions; however, Ang II accelerates TNFa- and

hyperglycemia-induced apoptosis as well as pericyte

migration from retinal capillaries, which lead to pericyte

loss and EC proliferation (Cai et al. 2008, Pfister et al.

2008). In a high-glucose ROS-induced condition, the

mRNA ratio of Ang II to Ang I increases and consequently

elevates the VEGF mRNA level in pericytes (Amano et al.

2005). This may disrupt pericyte–EC interactions and

induce angiogenesis-related gene expression. Through its

antioxidative properties, PEDF can inhibit pericyte apop-

tosis, modifying VEGF-mediated gene expression and

ultimately delaying or even halting the progression of

DR (Amano et al. 2005).
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0065 Printed in Great Britain
Clinical implications and possible future studies

In the normal adult eye (especially in macular region), the

concentration of PEDF is tenfold higher than VEGF, which

may suggest that PEDF is the main factor responsible for

the low number of blood vessels associated with macular

avascularity (Kociok & Joussen 2007, Kozulin et al. 2010).

However, the level of PEDF in the vitreous of the eye in

patients suffering from proliferative diseases such as PDR

is significantly lower than in the normal eye, which

may be a biomarker of oxidative stress in the eye, and

the pharmacological upregulation or administration

of PEDF may be a therapeutic strategy to address PDR

(Yokoi et al. 2007). The imbalanced ratio of VEGF and

PEDF bring the concept of anti-angiogenic therapy into

perspective. Anti-VEGF antibodies have been used clini-

cally and showed significant positive results, but the

efficacy is limited by short half-life (10 days). Therefore,

to maintain the therapeutic effect, regular dosing is

required, although repetitive injections carry substantial

risks for the patient, such as retinal detachment,

endophthalmitis, cataract formation, ocular hyperten-

sion, and submacular hemorrhage. In this approach,

using PEDF (a potent anti-angiogenic molecule) seems a

promising strategy. However, the short half-life is still an

issue. In this regard, some new delivery systems have been

tested in order to increase the efficiency of delivery and

half-life of the PEDF gene therapy method. The examples

include adeno-associated virus vector-mediated PEDF

delivery, which has been recently described (Streck et al.

2005, Park et al. 2011, He et al. 2012). However, because

of its potential carcinogenic properties, immunogenicity,

uncertain quantitative expression, and lower production

rate, this application is limited for therapy. Other studies

have also used poly(D,L-lactide-coglycolide acid) nanopar-

ticles for efficient PEDF gene delivery, but processing and

formulation lead to loss of activity of PEDF (Pai et al. 2009).

Polyethylene glycol is a polyether with many applications

in medicine and has recently been used to improve the

pharmacokinetic and pharmacodynamic properties of

administered PEDF. This strategy provided promising

results for long-term therapy of PDR as well as other

retinal angiogenic diseases (Bai et al. 2012).
Conclusion

Pericytes and ECs respond in different ways to oxidative

stress. AGE-induced ROS inhibits the growth of pericytes.

Oxidative stress commonly occurs in chronic diseases such

as diabetes mellitus, thus PEDF could protect retinal
Published by Bioscientifica Ltd.
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pericytes exposed to such stress through its antioxidative

properties as well as through inhibition of EC activation.

PEDF may act directly on ECs to prevent inflammation-

mediated pro-proliferative responses, therefore playing a

protective role against angiogenesis. Furthermore, PEDF

could affect or upregulate anti-apoptotic gene expression

in neural cells that can improve neuronal survival. Taken

together, PEDF is emerging as a novel and suitable

candidate for new therapeutic approaches in neuro-

degenerative disorders and vascular complications in

diseases such as diabetes mellitus.
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