
Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Review
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Henrik Ortsäter1,2, Nina Grankvist3, Richard E Honkanen4 and Åke Sjöholm1,4,5
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Abstract
The prevalence of diabetes is increasing rapidly worldwide. A cardinal feature of most forms

of diabetes is the lack of insulin-producing capability, due to the loss of insulin-producing

b-cells, impaired glucose-sensitive insulin secretion from the b-cell, or a combination thereof,

the reasons for which largely remain elusive. Reversible phosphorylation is an important and

versatile mechanism for regulating the biological activity of many intracellular proteins,

which, in turn, controls a variety of cellular functions. For instance, significant changes in

protein kinase activities and in protein phosphorylation patterns occur subsequent to the

stimulation of insulin release by glucose. Therefore, the molecular mechanisms regulating

the phosphorylation of proteins involved in the insulin secretory process by the b-cell have

been extensively investigated. However, far less is known about the role and regulation of

protein dephosphorylation by various protein phosphatases. Herein, we review extant data

implicating serine/threonine and tyrosine phosphatases in various aspects of healthy and

diabetic islet biology, ranging from control of hormonal stimulus–secretion coupling to

mitogenesis and apoptosis.
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Type 2 diabetes: a growing epidemic

Type 2 diabetes (T2D) is a syndrome characterized by

disordered metabolism, resulting in hyperglycemia. The

most common and dreaded long-term complication

of diabetes is cardiovascular disease, which accounts for

75–80% of all diabetes-related deaths (Meetoo et al. 2007).

Diabetes is widespread and it is the fourth leading cause

of death in the USA (Meetoo et al. 2007). The expenses by

diabetes have been shown to be a major drain on health-

and productivity-related resources for healthcare systems

and governments. In the USA alone, the annual cost for

diabetes amounts to the considerable sum of $245 billion,

of which w97% is targeted to T2D (American Diabetes
Association 2013). Improved glycemia is a main focus

of T2D therapy and HbA1c levels of 5–6% (DCCT standard;

corresponding to 31–42 mmol/mol by IFCC standard) are

recommended treatment goals. However, more than 50%

of patients with T2D have a HbA1c level of O7%

(53 mmol/mol by IFCC standard) and are thus inade-

quately controlled (Koro et al. 2004).

Loss of glucose-sensitive insulin secretion of the

pancreatic b-cell is an early pathogenic event and

contributes significantly to the development of the

diabetic state (Ward et al. 1984, Bell & Polonsky 2001,

Grimsby et al. 2003). The changes in b-cell function in

diabetes include decline in glucose-sensitive insulin
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secretory output (Ward et al. 1984), disturbances in

pulsatile insulin release (Tengholm & Gylfe 2009), and

impaired insulin synthesis (Kahn & Halban 1997). Thus,

improvement of b-cell function is a major goal in the

clinical management of the disease.

Inadequacy of the pancreatic b-cell also results from

a combination of impaired secretory function and

insufficient b-cell mass. The ability of the b-cell to expand

its proliferative capacity in response to an increased

insulin demand may be of critical regulatory significance

for the development of diabetes (Sjöholm 1996, Lee &

Nielsen 2009). T2D patients exhibit a reduced b-cell mass,

possibly due to increased rates of apoptosis (Butler et al.

2003). Maintaining islet b-cell mass and adequate insulin

secretion to meet metabolic demands is crucial to avoid

glucose intolerance and the development of T2D.

There is a progressive and relentless deterioration in

b-cell function over time in T2D, regardless of therapy

allocation, such as insulin, glibenclamide, or metformin

treatment (Group 1998a,b), eventually leaving many

patients reliant on exogenous insulin replacement therapy.

The role of declining b-cell mass and function in the

development of T2D has drawn attention to the need for

agents that can halt this process. Moreover, in individuals

with established T2D, inhibition of the increased apopto-

sis may lead to restoration of b-cell mass and it may also

prevent pre-diabetic subjects to progress into overt T2D.
Regulation of insulin secretion

Pancreatic b-cells are equipped to rapidly sense ambient

glycemia. In order for the cells to respond appropriately

with insulin secretion, glucose must be metabolized

within the b-cells (Hedeskov 1980, Ashcroft & Rorsman

2012). Glucose rapidly enters the cells via the efficient

glucose transporter 2 (GLUT2 (GLUT1 in human islets))

that enables a balance between the extracellular and

intracellular concentration of glucose (Meglasson &

Matschinsky 1986, Newgard & McGarry 1995). Following

entry, glucose is phosphorylated by glucokinase, which

acts as a glucose sensor by controlling the amount of

glucose that traverses through the glycolytic pathway

(Matschinsky et al. 1998). Glucose metabolism results,

among other things, in increased production of ATP,

leading to an increased ATP:ADP ratio (Detimary et al.

1995), which (such as sulfonylurea drugs) closes the ATP-

sensitive KC (KATP) channels (Ashcroft et al. 1984, Cook &

Hales 1984). This causes depolarization of the plasma

membrane, opening of voltage-dependent Ca2C channels,

and influx of extracellular Ca2C. Elevation of cytosolic
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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Ca2C is the main trigger for granule translocation and

insulin exocytosis (Jonas et al. 1998). However, experi-

ments indicate that glucose retains an excellent ability to

secrete insulin even in the presence of maximally effective

concentrations of KC and diazoxide, which acts by

opening KC channels (Gembal et al. 1992, Komatsu et al.

1997). Thus, although signaling molecules other than ATP

and Ca2C must be involved in glucose sensing in the

b-cell, the precise nature by which these complementary

signals promote secretion and the KATP-independent

signaling pathways activated by glucose have remained

elusive. Insulin secretion is a complex process, tuned

by many mechanisms, and has been the topic of

excellent reviews (Ashcroft & Rorsman 2012, Rorsman &

Braun 2013).
Introduction to reversible protein
phosphorylation and protein phosphatases

In 1992, the Nobel Prize in Physiology or Medicine was

awarded jointly to Edmond H Fischer and Edwin G Krebs,

for their earlier discoveries revealing that the reversible

covalent attachment of phosphate to a protein functions

as a mechanism to regulate biological activity. The protein

that was reversibly phosphorylated was glycogen phos-

phorylase, and the proteins that catalyzed phosphory-

lation and dephosphorylation were termed phosphorylase

kinase and phosphorylase phosphatase respectively

(Sutherland & Wosilait 1955, Fischer et al. 1959, Krebs

et al. 1959). Today, this simple reaction, in which a kinase

catalyzes the transfer of phosphate from the gamma

position of a high energy phosphonucleotide (usually

ATP) to the side-chain hydroxyl of a protein (usually

serine, threonine, or tyrosine) and a phosphatase catalyzes

phosphate hydrolysis, is established as a fundamental,

if not paramount, mechanism by which eukaryotic cells

regulate virtually all aspects of cell biology. Accordingly,

there has been an intensive global effort to identify and

characterize the biological roles of these important

regulatory enzymes.

Sequence data from the human genome indicate

humans express w520 protein kinases, with w90 acting

as tyr-kinases and 428 acting as ser/thr kinases (Johnson &

Hunter 2005). Many kinases are highly conserved in

nature. However, the tyrosine kinases appear to have

evolved more recently, with the evolution of multicellular

eukaryote organisms (Alonso et al. 2004, Johnson &

Hunter 2005). To counter these kinases, humans have a

nearly equal number (w107) of phospho-tyr-phospha-

tases, suggesting that each tyr-kinase is countered by a
Published by Bioscientifica Ltd.
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single tyr-phosphatase (Alonso et al. 2004). In contrast, the

number of genes encoding proteins capable of catalyzing

the hydrolysis of phospho-ser/thr residues is more limited

(w40 genes). Estimates of total protein phosphate from

studies using [32P] labeling (Hunter & Sefton 1980, Hunter

et al. 1980) or proteomic analysis of phosphorylation sites

of human proteins (Olsen et al. 2006) are in agreement,

indicating that w98% of the phosphate in proteins is

attached to ser/thr residues, with !2% being attached

to tyrosine. Thus, the tyrosine kinases/phosphatases may

be viewed as ‘thoroughbreds’ acting extensively only

in the restricted arena of multicellular eukaryotes. Ser/thr

kinases/phosphatases are more primitive and are more

likely to act as the ‘work horses’ of reversible phos-

phorylation in both single and multicellular eukaryotes.

Clearly, both families are important and several excellent

reviews focus on ser/thr and tyrosine kinases (Manning

et al. 2002, Nolen et al. 2004, Taylor & Kornev 2011,

Endicott et al. 2012).

When compared with their kinase counterparts, less

is known about the biological roles played by protein

phosphatases (PPs). This is due, in part, to technical

difficulties associated with accurately measuring protein

dephosphorylation, and to early and lingering misconcep-

tions that phosphatases act as simple ‘housekeeping’ or
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Figure 1

Family tree of PTPs.
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pleiotropic enzymes. Today we know that phosphatases

are not simple housekeeping enzymes, rather they play

specific, active, and sometimes even dominant roles in

controlling both the levels of phosphorylation in cells and

the regulation of physiological processes (Alonso et al.

2004). In this review, we will focus on PPs, emphasizing

their roles in pancreatic islets.

Phosphotyrosine phosphatases (PTPs) have received

the most recognition for playing precise and regulated

roles in cell signaling, and the 107 genes-encoding PTPs

can be divided into four families (Alonso et al. 2004;

Fig. 1). The largest family (class I Cys-base PTPs) contains

99 genes. Class I PTPs share a common catalytic

mechanism (Fig. 2). In this reaction, during the cleavage

of the scissile P–O bond, a covalent phospho-cysteine

intermediate is produced at the catalytic site. Hydrolysis

of the cysteinyl-phosphate intermediate is then facilitated

by the protonation of phenolic oxygen by a conserved

aspartic acid and the positioning of an activated water

molecule by a conserved active site, glutamine or serine.

Mutation of the conserved aspartic acid to alanine can

aid the identification of substrates, by producing

substrate-trapping mutants that retain the covalent

attachment at the catalytic cysteine (Flint et al. 1997,

Blanchetot et al. 2005).
Substrate specificity 
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Figure 2

Comparison of PTPase and PPP catalytic mechanism. (A) Schematic

representation of PTP-Cys-mediated hydrolysis of substrate derived from

the crystal structure of PTP1B (data from Barford et al. 1994). (B) Schematic

representation of metal ion-mediated hydrolysis of substrate derived from

the crystal structure of PP5C (data from Swingle et al. 2004). The attacking

hydroxide W1 is shown in blue and the leaving group of the substrate is in

green. The substrate, the planar PO3 moiety of the transition state, and the

phosphate product are all shown in red. Solid lines to the metal ions denote

metal–ligand bonds, and solid or dashed wedges indicate metal–ligand

bonds directed above or below the plane of the page respectively.

Wavy lines to the metal ions indicate strained contacts with poor

coordination geometry. Dotted lines indicate hydrogen bonds, and the

nearly dissociated axial bonds in the transition state are shown by

half-dotted double lines.
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The class I PTPs can be further divided into four

subgroups, with the most studied subgroup referred to

as the classical PTPs (38 genes). Classical PTPs are strictly

tyrosine specific and come in two forms, transmembrane

PTPases (21 genes) and non-receptor PTPase (17 genes).

The transmembrane PTPs have external ‘ligand-binding’

domains, a membrane-spanning domain, and a cytosolic

catalytic domain(s). In many ways, these PTPs mimic

the general characteristics of receptor-tyrosine kinases, the

enzymes that they commonly counter in a cell. The non-

receptor PTPs lack the extracellular and transmembrane

domains. They are generally cytosolic proteins, some of

which are anchored to membranes by prenylation.

The largest and most diverse family (in terms of

substrate specificity) of class-I cys-based PTPs are called

dual-specificity phosphatases (DSPs or DUSPs; 69 genes).

DSPs share the cys-based catalytic mechanism, and as their

name implies can act on phosphotyrosine and phospho-

threonine residues. Eleven DSPs have MAPK-targeting

motifs and may act exclusively at specific phosphotyrosine

or phosphothreonine sites on MAPKs. Nineteen are

considered atypical DSPs and they represent a poorly

characterized family of enzymes that lack MAPK-targeting

motifs (Alonso et al. 2004). PTENS (five genes) and

myotubularins (16 genes) are present in the DSP family,

but they appear to have evolved to specifically depho-

sphorylate the D3-phosphate of inositol phospholipids

(Wishart & Dixon 2002).

The human genome has only one gene encoding a

class II cysteine-based PTPs (ACP1), which encodes a low

(18 kDa) molecular weight protein. Humans express three

class III cysteine-based PTPs, which encode CDC25A,

CDC25B, and CDC25C. The CDC25 PTPs are well-

characterized phosphatases that function to dephosphor-

ylate cyclin-dependent kinases at their inhibitory dually

phosphorylated thr/tyr motifs. For further details on the

PTPs, see the excellent review by Alonso et al. (2004).

Phospho-ser/thr-phosphatases (PSPs) are divided

into three major families based on different catalytic

mechanisms (PPPs, phosphoprotein phosphatases; PPMs,

metal-dependent PPs; and FCP/SCP, aspartate-based phos-

phatases (Shi 2009); Fig. 3). Although the nomenclature

may suggest otherwise, the catalytic mechanism

employed by both PPPs and PPMs requires two metal

ions (Fig. 2B). All PPP family members share a common

catalytic domain, with ten absolutely conserved amino

acids at the active site (Swingle et al. 2004). Six act

to coordinate two metal ions (Fe/Zn) needed for the

activation of a water molecule, which functions as the

critical nucleophile during catalysis. The others position
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-14-0002 Printed in Great Britain
the incoming substrate for near perfect inline nucleophilic

attack by the activated water (Swingle et al. 2004). PPMs

are Mn2C/Mg2C-dependent phosphatases. PPMs evolved

a different folding strategy to produce a similar catalytic

mechanism that also utilizes metal ions in the activation

of a water molecule for the dephosphorylation reaction

(Shi 2009). Unlike PTPs, a covalent intermediate is not

produced during the reaction. The aspartate-based

catalysis mechanism utilized by FCP/SCP is different and

may be limited to a limited number of substrates

that contain random repeats of SYPTSPS (for review see

Shi (2009)).

Based on the number of genes encoding proteins with

phosphatase catalytic activity, PPMs represent the largest

family of human PSPs. The PPM family included pyruvate

dehydrogenase phosphatase and w16 genes encoding

O20 isoforms of the PP2C (Lammers & Lavi 2007). These

enzymes are insensitive to natural inhibitors (i.e. okadaic

acid, microcystin, cantharidin, and calyculin A), and the

actions of most PPMs are poorly understood. However,

due to their unique expression and subcellular localization

patterns, most are predicted to act on a single substrate or

limited substrates (Lammers & Lavi 2007).

The PPP family contains seven subfamilies (PPP1CA–

PPP1C7B; Fig. 3), which are encoded by only 13 human

genes yet together catalyze over 90% of all protein

dephosphorylation occurring in eukaryotic cells (Moor-

head et al. 2007, Virshup & Shenolikar 2009). Humans

have three genes encoding four isoforms of PP1 (PPP1CA,

PPP1CB, PPP1CC) with the two PPP1CC isoforms (called

PP1Cg1 and g2) produced by alternate splicing of the

PPP1CC gene). Two human genes encode nearly identical

(98%) isoforms of PP2A (PPP2CA, PPP2CB). PP4 (PPP4C)
Published by Bioscientifica Ltd.
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and PP6 (PPP6C) share 65% identity with PP2AC, but are

encoded by distinct genes (Honkanen & Golden 2002).

Humans express three highly homologous isoforms of

PP2B/calcineurin (PP2Ba, PP2Bb, and PP2Bg) and two

genes encode isoforms of PP7 (also called PPEF (PPEF1)).

PP5 is unique in the respect that humans only express a

single isoform of PP5. All PPP-family members are highly

conserved in nature (e.g. the ortholog of PP2Aa in

Neurospora crassa (bread mold) shares 87% amino acid

identity with human PP2Aa). Figure 4 shows a structural

comparison of PP1-MYTP1, PP2Ac-A-B, and PP5.

The ability of !15 gene products to counter w90%

of all cellular protein phosphorylation produced the

lingering misconception that PPP family enzymes act as

pleiotropic or simple housekeeping enzymes. More

recently, this popular, yet erroneous, belief has given

way to overwhelming data that indicate the actions of

most PPPs are dynamic and highly regulated. What the

early studies failed to reveal was that, although PPPs share

a structurally related catalytic core and identical catalytic

mechanisms, they function in the cell as multi-subunit

protein complexes. In cells, each PPP family member can

achieve many specific functions, because the protein

encoded by a PPP gene represents a catalytic subunit that

can interact with a distinct set of substrates and

interaction proteins. PP1 and PP2A are the most studied,

and to date nearly 200 PP1-interacting proteins have been

validated (Heroes et al. 2013). These PP1-interacting

proteins share little or no structural similarity beyond

their PP1-interacting domains and many are only
A B

PP1-MYPT1

Figure 4

Structural comparison of PP1-MYTP1, PP2Ac-A–B, and PP5. (A) PP1 (green) in

complex with myosin phosphatase targeting subunit MYPT1 (blue). (B) PP2A

holoenzyme: PP2A catalytic subunit (green) in complex with the PP2A

scaffold A (blue) and a B55-regulatory targeting subunit (yellow). (C) PP5 in

an inactive conformation. The catalytic domain is shown in green, N-terminal

http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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expressed in differentiated or highly specialized cells

(Virshup & Shenolikar 2009, Heroes et al. 2013). Therefore,

PP1 actually represents a vast array of PP1c-containing

holoenzymes, in which the structurally unrelated binding

partners control the subcellular localization, activity,

and substrate specificity of PP1 (Bollen et al. 2010, Heroes

et al. 2013).

PP2A, PP4, and PP6 also gain regulation and substrate

specificity by assembling into a number of different multi-

subunit holoenzymes that share a common catalytic

subunit. For this family, PP2A is best studied. PP2A

commonly functions as a three-protein holoenzyme.

Most human cells express both the catalytic subunit

(PP2Ac) and an A-subunit that functions as a scaffold to

tether PP2Ac to a number of different regulatory/targeting

B-subunit. In humans, there are 15 genes encoding four

families of B-subunits that produce O21 B-isoforms, many

of which are expressed only in certain types of cells or

during different stages of development (Shi 2009, Virshup

& Shenolikar 2009). The final composition of the PP2A-

holoenzyme is then derived from the combinatorial

assembly of one of the two isoforms of PP2Ac, one of the

two isoforms of PP2A-A, and one of the O20 B-subunits

(Virshup & Shenolikar 2009, Sents et al. 2013). Therefore,

substrate specificity, subcellular targeting, and control of

PP2A holoenzyme activity is usually regulated by assembly

and mainly determined by the regulatory B-subunits

(Virshup & Shenolikar 2009, Lambrecht et al. 2013, Sents

et al. 2013). Similar regulatory, targeting, and control

mechanisms are starting to emerge from studies of PP4 and
C

PP2Ac/A/B PP5

inhibitory/TPR-targeting domain in yellow, and a unique C-terminal

inhibitory domain in blue. The images were generated using PyMol based on

protein data bank accession number 1S70 (Terrak et al. 2004; PP1-MYTP1),

3DW8 (Xu et al. 2008; PP2Ac/A/B), and 1WA0 (Yang et al. 2005; PP5). Arrows

indicate the catalytic site with metal ions shown as red spheres.

Published by Bioscientifica Ltd.
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PP6, which have their own scaffold and regulatory

proteins (Chen et al. 2008, Couzens et al. 2013). In

addition, there are a few examples (i.e. a4) in which

interaction of certain B-type regulatory proteins are shared

by PP2A, PP4, and PP6 (Chen et al. 1998, Kloeker et al.

2003, Breitkreutz et al. 2010).

PP2B, more commonly called calcineurin, is the target

of cyclosporin A, which is useful in a clinical setting as a

strong immunosuppressive agent. Both calcineurin and

PP7 are insensitive to okadaic acid and microcystin

(Huang & Honkanen 1998, Honkanen & Golden 2002),

and both calcineurin and PP7 are regulated by calcium.

For calcineurin, the catalytic-A subunit is maintained in

an inactive/inhibited state by the binding of an inhibitory

protein, commonly call calcineurin B. Calcineurin only

becomes active upon the calcium-mediated association

with Ca2C-bound calmodulin (Shi 2009). PP7 is also

activated by calcium; however, the C-terminal domain of

PP7 contains calmodulin-like and EF-hand-like domains

that appear to directly bind Ca2C (Huang & Honkanen

1998, Huang et al. 2000, Honkanen & Golden 2002).

Calcineurin expression is high in brain, while the

expression of PP7 is limited, mostly to retina (Huang &

Honkanen 1998, Shi 2009).

PP5 is unique in the respect that the catalytic,

regulatory, and substrate-targeting domains of PP5 are

encoded by a single gene and expressed as a single

polypeptide (Honkanen & Golden 2002, Golden et al.

2008). The catalytic core of PP5 is similar in structure to

that of the catalytic subunit of PP1, PP2A, PP4, and PP6,

and like these PSPs, PP5 is sensitive to inhibition by

okadaic acid, calyculin A, cantharidin, and microcystins

(Honkanen & Golden 2002, Swingle et al. 2004, 2007,

Virshup & Shenolikar 2009). Indeed, the vast majority of

the studies that use these natural inhibitors to study PPP

actions in cells draw conclusions that implicate PP1 and

PP2A in the processes that are being studied, failing to

acknowledge that PP4, PP5, and PP6 are also widely

expressed in human tissues and potently inhibited by

these natural compounds (Swingle et al. 2004, 2007,

Virshup & Shenolikar 2009). Unlike PP1 and PP2A, the

catalytic activity of PP5 is minimal when PP5 is not

associated in a complex with other proteins (Golden et al.

2008). This is because when PP5 is alone, the N-terminal

domain of PP5 folds back over the catalytic site, producing

an auto-inhibitory complex that blocks substrate access

to the catalytic site (Golden et al. 2008). The N-terminal

region of PP5 also contains three tetratricopeptide repeat

(TPR) domains, which mediate the binding of PP5 to

proteins that contain TPR-docking sites. The best studied
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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interaction for PP5 is the interaction with heat shock

protein 90 (HSP90; Skarra et al. 2011). PP5 binds HSP90 via

interactions between the N-terminal TPR domains of PP5

and a C-terminal TPR-docking domain in HSP90 (Silver-

stein et al. 1997, Ramsey et al. 2000, Russell et al. 2006,

Skarra et al. 2011). Upon binding, PP5 appears to undergo a

conformational change allowing substrate access to the

active site (Yang et al. 2005). To date, w110 proteins have

been identified with TPR-docking domains, suggesting

that PP5 could also play many unique cellular roles.

Currently, PP5 is known to affect stress, hormone- (i.e.

glucocorticoid receptor (GR)) and metabolic-mediated

signaling cascade (Amable et al. 2011, Skarra et al. 2011,

Grankvist et al. 2012, 2013). However, the mechanism

controlling PP5 interactions and activity remains largely

unexplained.
PPs in b-cell proliferation and apoptosis

Protein tyrosine phosphatases

Protein tyrosine phosphatases (PTPs) are a superfamily of

enzymes which oppose the roles of their protein tyrosine

kinase counterparts (Andersen et al. 2001). In relation to

b-cell apoptosis, PTPN2 (also known as TC-PTP or PTP-S2;

a member of the first nontransmembrane subfamily of

PTPs), has attracted interest. PTPN2 was identified a

candidate gene for T1D, which is expressed in pancreatic

b-cells (Ylipaasto et al. 2005, Todd et al. 2007). Further-

more, PTPN2 expression was regulated by cytokines

(Cardozo et al. 2001, Moore et al. 2009). Transfection

with PTPN2 siRNAs inhibited basal- and cytokine-induced

PTPN2 expression in rat b-cells and dispersed human islets

cells. Decreased PTPN2 expression exacerbated interleukin

b (ILb)Cinterferon g (IFNg)-induced b-cell apoptosis and

turned IFNg alone into a proapoptotic signal (Moore

et al. 2009). Inhibition of PTPN2 amplified IFNg-induced

STAT1 phosphorylation, whereas double knockdown of

both PTPN2 and STAT1 protected b-cells against cytokine-

induced apoptosis, suggesting that STAT1 hyperactivation

is responsible for the aggravation of cytokine-induced

b-cell death in PTPN2-deficient cells (Moore et al. 2009).

Further studies have shown that PTPN2 modulates

pancreatic b-cell apoptosis via regulation of the BH3-

only protein BIM (Santin et al. 2011). PTPN2 knockdown

exacerbated type 1 IFN-induced apoptosis in INS1E,

primary rat, and human b-cells. PTPN2 silencing and

exposure to type 1 and 2 IFNs induced BAX translocation

to the mitochondria, cytochrome c release, and caspase 3

activation. There was also an increase in BIM
Published by Bioscientifica Ltd.
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phosphorylation that was at least in part regulated by

JNK1. From these data, it can be concluded that PTPN2

confers cytoprotective effects to pancreatic b-cells.

However, such an anti-apoptotic role of PTPN2 cannot

be generalized to other PTPs.

In contrast to the anti-apoptotic role played by

PTPN2, ablation of PTP1B increases b-cell proliferation in

vivo (Fernandez-Ruiz et al. 2014). Morphometric analysis

of pancreatic islets from Ptp1bK/K mice showed a higher

b-cell area, concomitantly with higher b-cell proliferation

and a lower b-cell apoptosis when compared with islets

from their respective WT cognates (Fernandez-Ruiz 2014,

#249). At a functional level, isolated islets from Ptp1bK/K

mice exhibited enhanced glucose-stimulated insulin

secretion. Moreover, Ptp1bK/K mice were able to partially

reverse streptozotocin-induced b-cell loss, all indicating

that inhibition of PTP1B activity in islet cells may be a

therapeutic avenue to promote islet function.

PTP-BL is a nonreceptor PTP that is expressed in b-cells

under the control of the MODY5 gene product, HNF1b

(Lee et al. 1999, Thomas et al. 2004). In mature b-cells

HNF1b expression is low, but forced induction of HNF1b

leads to enhanced rates of apoptosis, altered regulation of

the cell cycle, and inhibition of stimulated insulin

secretion in b-cells, suggesting that control of HNF1b

expression may be important for the regulation of b-cell

viability and function (Welters et al. 2006). Stably

transfected insulin-producing cells, expressing the WT

form of PTP-BL, display compromised cell proliferation

but with no change in the rate of cell apoptosis (Welters

et al. 2008). Furthermore, cells overexpressing PTP-BL were

less responsive toward mitogenic stimulation by Wnt3a.

Although only performed in a b-cell line, these data suggest

that PTP-BL may play a role in the regulation of cell-cycle

progression in b-cells, and that it interacts functionally

with the components of the Wnt signaling pathway. Future

studies are needed to determine whether PTP-BL plays a

regulatory role during b-cell proliferation in vivo. For

example, it will be interesting to determine whether forced

expression of PTP-BL inhibits adaptive b-cell proliferation

in response to reduced insulin sensitivity.
Ser/thr PP1

PP1 is regulated by its interaction with a variety of protein

subunits that target the catalytic subunit (PP1C) to specific

subcellular compartments and determines its localization,

activity, and substrate selectivity (Cohen 2002). In the

field of b-cell research, the PP1 regulatory subunit

PPP1R15A has attracted special interest. PPP1R15A targets
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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PP1 to the endoplasmic reticulum (ER) and is induced

under conditions of ER stress (Rutkowski et al. 2006).

The physiological response to ER stress is a collection of

cellular events aiming to alleviate ER stress by decreasing

overall protein synthesis through phosphorylation of the

eukaryotic initiation factor 2a (eIF2a), through enhanced

protein folding capacity by increased expression of

chaperones and through activation of mechanisms for

protein degradation (Ortsäter & Sjöholm 2007). The

function of PPP1R15A is to serve as the regulatory subunit

of the PP1A catalytic domain. Through their interaction,

PPP1R15A and PP1C dephosphorylate eIF2a and thus

exert a regulatory feedback that can allow for re-initiation

of protein synthesis and thereby allows for the expression

of stress-induced genes (Novoa et al. 2003). Inhibition

of PP1-mediated dephosphorylation of eIF2a by the

compound salubrinal was found to be cytotoxic by itself

in b-cells and in isolated islets of Langerhans. In addition,

salubrinal potentiated fatty acid-induced ER stress and

apoptosis (Cnop et al. 2007, Ladriere et al. 2010). Besides

being a part of ER-stress signaling, PP1 plays a pivotal role

in glucose-induced stimulation of overall translation in

b-cells, which depends on a PP1-mediated decrease in Ser51

phosphorylation of eIF2a (Vander Mierde et al. 2007).

Thus, the steady-state level of eIF2a phosphorylation in

b-cells is the result of a balance between folding-

load-induced phosphorylation and PP1-dependent

dephosphorylation. Because defects in the pancreatic ER

kinase–eIF2a signaling system lead to b-cell failure and

diabetes, deregulation of the PP1 system could likewise

lead to cellular dysfunction and disease.
Ser/thr PP2A

The PP2A family of enzymes is a major class of ser/thr PPs.

They are also one of the most abundant cellular proteins,

accounting for w1% of total cellular protein and some

80% of all cellular ser/thr PP activity (Janssens & Goris

2001, Shi 2009). Evidence suggests that PP2A activation

can be linked to apoptosis, e.g. activation of caspase-3

causes cleavage of the regulatory A subunit of PP2A, which

in turn increases PP2A activity (Santoro et al. 1998). As

discussed below, PP2A may have a critical role in b-cell

survival and demise. Exposure (for at least 24 h) of insulin-

secreting cells to the phosphatase inhibitor, okadaic acid,

at concentrations inhibiting PP1, PP2A, PP4, PP5, and

PP6, reduces cell proliferation and insulin secretion. The

reduced proliferation was found to be related to the

induction of apoptosis as evident by morphological

criteria and the occurrence of DNA fragmentation
Published by Bioscientifica Ltd.

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-14-0002


Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y
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(Krautheim et al. 1999). Of particular interest is that PP2A

is hyper-activated by chronic exposure to high glucose

(Arora et al. 2013) and ceramide (Kowluru & Metz 1997),

which are both well-known inducers of b-cell apoptosis. In

the case of glucose, it was found that siRNA-mediated

knockdown of the catalytic subunit of PP2A (PP2Ac)

markedly attenuates glucose-induced activation of PP2A

(Arora et al. 2013). Moreover, metabolizable – but not non-

metabolizable – glucose derivatives induce Leu309 methyl-

ation of the catalytic subunit of PP2A. As a consequence,

knockdown of the cytosolic leucine carboxymethyl

transferase 1 (LCMT1), which carboxymethylates PP2Ac,

significantly attenuates PP2A activation induced by high

glucose. It was also found that glucose exposure induced

LCMT1 expression, as well as the PP2A regulatory subunit

B55a. Taken together, the data indicate that high glucose

exposure hyperactivates PP2A via the induction of the

methylating enzyme LCMT1 and the regulatory subunit

B55a. Recent experiments have established a link between

glucose-induced activation of PP2A and nuclear import of

forkhead box O1 (FOXO1) in b-cells (Yan et al. 2012).

Under conditions of oxidative stress evoked by high

glucose stimulation, FOXO1 associates with the PP2A

holoenzyme composed of the catalytic C, structural A, and

B55a regulatory subunits. Knockdown of B55a in INS1

cells reduced FOXO1 dephosphorylation, inhibited

FOXO1 nuclear translocation, and attenuated oxidative

stress-induced cell death (Yan et al. 2012). This mechanism

may be relevant also in vivo because both B55a and

nuclear Foxo1 levels were increased under hyperglycemic

conditions in db/db mouse islets, an animal model of

T2D (Yan et al. 2012). Taken together, these data tell us

that PP2A may play a role for glucotoxicity in b-cells via

dephosphorylation of FOXO1 and that prevention of

PP2A hyperactivation may confer protection against

glucotoxicity.
Ser/thr PP2B/calcineurin

PP2B or calcineurin is a two-subunit enzyme, with a 58- to

64-kDa catalytic and calmodulin-binding subunit –

calcineurin A – that is tightly bound to a regulatory

19-kDa calcium-binding regulatory subunit – calcineurin B

(Klee et al. 1988).

Calcineurin is a Ca2C-activated cytosolic phosphatase

that is critical for antigen-stimulated T lymphocyte

activation (Crabtree & Olson 2002). Therefore, pharma-

cologic calcineurin inhibition is highly effective in

preventing allograft rejection. However, calcineurin is

also expressed in b-cells (Tamura et al. 1995, Ebihara et al.
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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1996, Redmon et al. 1996), where it has two well-described

molecular targets, the nuclear factor of activated T cell 2

family of transcription factors (Lawrence et al. 2001) and

the cAMP-responsive element-binding protein (CREB)

transcriptional co-activator, transducer of regulated

CREB activity 2 (TORC2) (Screaton et al. 2004). Through

dephosphorylation-mediated nuclear localization of these

targets, calcineurin integrates Ca2C and cAMP signals

generated by physiologic stimuli, such as hyperglycemia

and incretin receptor activation, to alter gene expression

(Lawrence et al. 2001, 2002, Screaton et al. 2004). CREB is a

cAMP- and Ca2C-responsive transcriptional activator that

is required for b-cell proliferation and survival (Jhala et al.

2003, Inada et al. 2004, Hussain et al. 2006). Glucose and

incretin hormones promote synergistic CREB activity

by inducing the nuclear re-localization of TORC2, a

co-activator for CREB (Screaton et al. 2004, Koo et al.

2005, Shaw et al. 2005). In islet cells, under basal

conditions, when CREB activity is low, TORC2 is phos-

phorylated and sequestered in the cytoplasm by 14-3-3

proteins (Screaton et al. 2004). In response to feeding

stimuli, TORC2 is dephosphorylated, enters the nucleus,

and binds to CREB located at target gene promoters

(Bittinger et al. 2004, Screaton et al. 2004, Koo et al. 2005).

Ser275 of TORC2 is a 14-3-3 binding site that is

phosphorylated under low-glucose conditions and

which becomes dephosphorylated by calcineurin in

response to glucose influx (Jansson et al. 2008). Depho-

sphorylation of Ser275 is essential for both glucose- and

cAMP-mediated activation of CREB in b-cells and islets,

demonstrating the essential role of calcineurin activity in

b-cell physiology.

Given this role of calcineurin in b-cell biology, it is

not surprising that pharmacologic calcineurin inhibition –

necessary to prevent rejection in the setting of islet

transplantation – is associated with post-transplant b-cell

failure. New-onset diabetes mellitus after transplantation

is a frequent complication after kidney transplantation,

with an incidence of 15–30% (Cosio et al. 2002, Kasiske

et al. 2003).

Several studies show that calcineurin inhibitors

can target b-cells directly. Tacrolimus (FK506), a calcineurin

inhibitor used in clinical practice to suppress islet graft

rejection, induces b-cell apoptosis as evident by TUNEL

staining in cultured human islets within 48 h of exposure

(Soleimanpour et al. 2010). This study identified insulin

receptor substrate 2, a known CREB target and upstream

regulator of the PI3K/Akt pathway, as a calcineurin target

in b-cells. It was found that tacrolimus decreased

Akt phosphorylation, suggesting that calcineurin could
Published by Bioscientifica Ltd.
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regulate replication and survival via the PI3K/Akt pathway

(Soleimanpour et al. 2010). Similarly, rapamycin and

cyclosporin A (also calcineurin inhibitors) decrease cell

viability in human and rat pancreatic islets (Ozbay et al.

2011, Barlow et al. 2012) and in clonal insulin-producing

cells (Plaumann et al. 2008). Mechanistically, calcineurin

inhibition activates the dual leucine-zipper-bearing kinase

(DLK), which in turn activates apoptotic MAPK signaling

(Merritt et al. 1999, Plaumann et al. 2008). Human b-cell

proliferation decreases exponentially with increasing age

(Meier et al. 2008). Thus, studies of human b-cells, which

are often carried out on islets from elderly donors, often

fail to detect b-cell proliferation. Therefore, studies of

b-cell proliferation are often carried out on b-cells

obtained from rodent donors. In such studies, tacrolimus

decreased b-cell proliferation by 72% in C57Bl/6 mice

compared with vehicle-treated controls (Goodyer et al.

2012). These results lend support to experiments carried

out in mice lacking calcineurin in b-cells (Heit et al. 2006).

Mice with a b-cell-specific deletion of the calcineurin

phosphatase regulatory subunit b1 develop age-dependent

diabetes, characterized by decreased b-cell proliferation

and mass, reduced pancreatic insulin content, and

hypoinsulinemia. Moreover, b-cells lacking calcineurin

activity have a reduced expression of established regula-

tors of b-cell proliferation, such as MafA, Beta2, and Pdx1

(Heit et al. 2006). The impact of calcineurin on b-cell

function is complex because, transgenic overexpression of

active calcineurin in b-cells phenocopied mice with a

b-cell-specific deletion of the calcineurin and resulted in

decreased b-cell mass and hyperglycemia (Bernal-Mizrachi

et al. 2010). These mice, which express a constitutively

active form of calcineurin under the insulin gene

promoter, exhibit glucose intolerance (Bernal-Mizrachi

et al. 2010). In vitro studies of islets isolated from such mice

demonstrated that decreased b-cell mass was accompanied

by decreased proliferation and enhanced apoptosis

(Bernal-Mizrachi et al. 2010). Taken together, these

results demonstrate that pharmacological inhibition of

calcineurin and genetic calcineurin deletion markedly

inhibit rodent b-cell proliferation and promote b-cell

apoptosis, which should be taken into account when

treating patients in the need of immunosuppression. This

may be especially important with patients displaying

insulin resistance as the diabetogenic effect of tacrolimus,

and cyclosporin A is more pronounced in insulin resistant

obese rats (Rodriguez-Rodriguez et al. 2013).

While the vast majority of data suggest that calci-

neurin inhibition reduces b-cell viability and may cause

a diabetes phenotype, the situation is different when it
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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comes to b-cell death induced by either proinflammatory

cytokines (Grunnet et al. 2009) or glucocorticoids (Ranta

et al. 2006, 2008).

Treatment of isolated rats or human islets with

cytokines promotes b-cell apoptosis by the intrinsic

apoptotic pathway along with dephosphorylation of the

proapoptotic protein BAD at ser136 (Grunnet et al. 2009).

This particular serine residue is a target for calcineurin

(Wang et al. 1999). In concordance, supplementation of

tacrolimus to the cytokine-containing cell media pre-

vented BAD dephosphorylation and cytokine-induced

cytotoxicity (Grunnet et al. 2009), showing that – under

these circumstances – calcineurin inhibition is favorable

for b-cell viability.

The situation is similar under conditions of glucocor-

ticoid exposure in culture. Although glucocorticoid-

induced b-cell apoptosis has not been demonstrated

in vivo, it is clear that these steroid hormones are cytotoxic

to b-cells during ex vivo culture conditions (Ranta et al.

2006, 2008, Avram et al. 2008, Reich et al. 2012, Fransson

et al. 2013). Glucocorticoids activate calcineurin, which

in turn dephosphorylates the apoptotic protein BAD

(Tumlin et al. 1997). Such a mechanism has also been

demonstrated in insulin-producing cells (Ranta et al.

2006). Inhibition of calcineurin activity by tacrolimus

and deltamethrin in insulin-secreting INS1 cells reduced

apoptosis provoked by the synthetic glucocorticoid

analog dexamethasone (Ranta et al. 2008). Thus, direct

inhibition of calcineurin activity in b-cells decreases cell

viability and reduces b-cell function. Of note, the situation

is different for b-cell death induced by cytokines and

glucocorticoids. In such cases, inhibition of calcineurin

counteracts the cytotoxic effect of cytokines and gluco-

corticoids. Pharmacological inhibitors are never 100%

specific, so these seemingly contradictory findings may be,

at least partly, explained by effects that are independent of

calcineurin. For example, tacrolimus can inhibit NF-kB

activity, leading to the inhibition of NO formation (Tunon

et al. 2003).
Ser/thr PP2C

Identification of PP2C isoforms traces back to the 1980s

(Hiraga et al. 1981, Pato & Adelstein 1983). PP2C enzymes

act on a variety of substrate classes, e.g. kinases, receptors,

channels, and transcription factors, thereby affecting

quite diverse physiological effects, e.g. stress response,

metabolism, and cell cycle (Klumpp et al. 2006). In

contrast to most other ser/thr PPs, inhibitors such as

okadaic acid, microcystin, tautomycin, or inhibitor
Published by Bioscientifica Ltd.
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proteins I1 and I2 have no effect on PP2C isoenzymes.

Hitherto PP2C isoforms have not been implicated in b-cell

apoptosis. However, they are sensitive to stimulation by

unsaturated fatty acids (Krieglstein et al. 2008). In this

aspect, PP2C isoforms have been linked with fatty acid-

induced apoptosis in neural and endothelial cells (Schwarz

et al. 2006) and similar mechanisms may be operative in

pancreatic b-cells.
Ser/thr PPs 4, 6, and 7

The ser/thr PPs 4, 6, and 7 have not been studied with

regards to their possible implications in b-cell apoptosis.

The catalytic subunit of PP4 is expressed in islets of

Langerhans as evident by immunohistochemistry (http://

www.proteinatlas.org), where it is located in the nucleus

(Veluthakal et al. 2006). Neither PP6 nor PP7 catalytic

subunit expression has been documented in b-cells.
Ser/thr PP5

PP5 is another member of the PPP family (Andreeva &

Kutuzov 1999, Swingle et al. 2004) that is highly conserved

among species and expressed in most, if not all,

mammalian cells. However, the roles of PP5 in biology

and disease are only beginning to emerge (Yong et al.

2007, Amable et al. 2011, Hinds et al. 2011), and the

influence of PP5 on b-cell function is still unknown. The

human gene encoding PP5 (PPP5C) is localized on

chromosome 19 (Xu et al. 1996). PP5 has been reported

to be present both in the nucleus and cytosol (Chinkers

2001). It has been proven difficult to study the biological

role of PP5, partly because until recently, only a few

physiological substrates have been identified. The poly-

unsaturated fatty acid, arachidonic acid, and the structural

component of caveolae, caveolin-1, have both been

shown to activate PP5 (Ramsey & Chinkers 2002, Taira &

Higashimoto 2013). A high-throughput screening effort

identified chaulmoogric acid as a compound that activate

PP5 at fairly high concentrations (Cher et al. 2010).

Suramin was identified as a novel PP5 activator by its

competitively binding to a domain of PP5 and thereby

causing its activation (Yamaguchi et al. 2013). During

standard conditions, PP5 is predominately in an inactive

state (Sinclair et al. 1999), causing a very low basal activity

that represent !1% of the total measurable phosphatase

activity. A unique characteristic of PP5 is that it is

expressed as a single polypeptide, which consists of a

phosphatase catalytic domain near its C-terminus and a

regulatory domain at the N-terminus (Becker et al. 1994,
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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Golden & Honkanen 2003). An additional feature, unique

for PP5 among its family members, is the extended

N-terminal region containing multiple TPR domains, by

which PP5 mediates protein–protein interactions (Das

et al. 1998). PP5 is associated with numerous proteins

involved in diverse signaling networks, including Hsp90

in complex with the GR (Chen et al. 1996, Silverstein et al.

1997), the cell division cycle (CDC16/CDC27/CDC37)

subunits of the anaphase-promoting complex (Ollendorff

& Donoghue 1997, Vaughan et al. 2008), cryptochrome

2 (Zhao & Sancar 1997), ataxia–telangiectasia and

Rad3-related (Zhang et al. 2005) ataxia–telangiectasia and

Rad3-mutated (Ali et al. 2004) DNA-dependent protein

kinase catalytic subunit (Wechsler et al. 2004), apoptosis

signal regulating kinase 1 (ASK1; Morita et al. 2001),

Hsp90-dependent heme-regulated eIF2a kinase (Shao et al.

2002), Rac GTP-binding protein (Gentile et al. 2006), the

A-regulatory subunit of PP2A (Lubert et al. 2001), Raf

proto-oncogene ser/thr protein kinase (von Kriegsheim

et al. 2006), stress-induced phosphoprotein 1 (Skarra et al.

2011), and the Ga12/Ga13 subunits of heterotrimeric

GTP-binding proteins (Yamaguchi et al. 2002).

PP5 has been recently shown for the first time to play

a role in the b-cells (Grankvist et al. 2012). During the

progression toward T2D, b-cells are often exposed to a

combination of high levels of glucose and fatty acids,

resulting in the production of the so-called gluco-

lipotoxicity, which is associated with increased pro-

duction of reactive oxygen species (ROS; Oprescu et al.

2007). In turn, increased levels of ROS cause initiation of

apoptosis, resulting in a reduced b-cell mass (Butler et al.

2003). Several studies have indicated that PP5 is acting

in the regulation of signaling cascades activated by

oxidative stress.

Elevated levels of ROS can induce the association of

PP5 with ASK1, leading to reduced ASK1 phosphorylation

at Thr845, and thereby causing ASK1 inactivation (Morita

et al. 2001, Huang et al. 2004, Zhou et al. 2004, Kutuzov

et al. 2005). This suggests that PP5 can suppress the

oxidative stress-induced apoptosis by averting sustained

activation of ASK1 and its downstream target, JNK. PP5

may accordingly act as a negative regulator of the

ASK1/JNK signaling pathway and in so doing protect

cells from apoptosis (Morita et al. 2001, Kutuzov et al.

2005, Mkaddem et al. 2009). This concept was supported

by the recent publication (Grankvist et al. 2012) indicating

that islets from mice lacking PP5 were more susceptible

toward stress-induced apoptosis than WT cognates. In

addition, PP5-deficient mice had lower fasting glycemia

and improved glucose tolerance compared with the WT
Published by Bioscientifica Ltd.
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mice, suggesting a novel role for PP5 in the regulation of

glucose homeostasis. These findings cannot be explained

by a difference in islet mass between the PP5-deficient and

WT mice, because no difference was observed (Grankvist

et al. 2012). Furthermore, a high-fat diet treatment for 10

weeks revealed that the mice lacking PP5 gained markedly

less weight, did not accumulate visceral fat, and displayed

enhanced insulin sensitivity compared with the WT

littermates (Grankvist et al. 2013). Another group (Hinds

et al. 2011) also recently published studies indicating that

embryonic fibroblasts from PP5 knockout mice did not

accumulate lipids after adipogenic stimuli. Together, these

studies suggest that PP5 may play a previously unrecog-

nized role in both glucose and lipid metabolism. Never-

theless, additional studies are necessary to further address

the role of PP5 in glucose homeostasis and b-cell function.

Table 1 presents the summarized view on the role of

different PSPs in b-cell biology.
Table 1 Summary of the protein phosphatases’ effects on pancrea

Protein name Intervention Biological mater

Protein tyrosine phosphatases
PTPN2 Downregulation with siRNA INS1E cells, rat a

human islets
PTP1B Global genetic deletion Mice

PTP-BL Stable over expression INS1 cells

Se/thr protein phosphatases
Ppp1R15A Pharmacological inhibition

by salubrinal
INS1E cells, rat,

human islets

PP2A High glucose or ceramide
exposure

INS1 832/13 cell
and rat islets

PP2A High glucose exposure INS1 and bTC-3
PP2B (calcineurin) Pharmacological inhibition

by tacrolimus, rapamycin,
and cyclosporin A

Human and rat
islets, MIN6 ce

PP2B (calcineurin) Pharmacological inhibition
by tacrolimus

C57Bl/6j mice in

PP2B (calcineurin) b-cell-specific genetic
deletion

Mice

PP2B (calcineurin) b-cell-specific transgenic
overexpression

Mice

PP2B (calcineurin) Pharmacological inhibition
by tacrolimus or delta-
methrin

Human and rat
islets

PP5 Downregulation with siRNA
or use of islets isolated
from Ppp5cK/K mice

MIN6 cells and
mouse islets

PP5 Global genetic deletion MIN6 cells and m
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PPs and islet hormone secretion

Significant changes in protein kinase activities and in

protein phosphorylation patterns occur subsequent to the

stimulation of b-cell insulin release by nutrients (Newgard

& McGarry 1995, Jones & Persaud 1998, Sjöholm 1998).

Therefore, the molecular mechanisms regulating phos-

phorylation by protein kinases of proteins involved in the

insulin secretory process by the b-cell have been exten-

sively investigated. However, far less is known about the

role and regulation of protein dephosphorylation by

various PPs.

While early investigators reported the presence of

phosphatase activity in pancreatic islets (Taljedal 1967,

Lipson et al. 1979, Lernmark et al. 1980, Colca et al. 1984),

the identity of these enzymes was unknown at the time.

More contemporary studies have established that i) the

b-cell contains ser/thr and tyrosine PP activity
tic b-cells

ial Effect on b-cells References

nd Promotes cytokine-induced
apoptosis

Moore et al. (2009) and
Santin et al. (2011)

Promotion of b-cell
proliferation and reduced
islet cell apoptosis

Fernandez-Ruiz (2014, #249)

Compromised cell proli-
feration but no change in
the rate of cell apoptosis

Welters et al. (2008)

and Induce apoptosis and aug-
ment fatty acid-induced
apoptosis and controls
glucose-mediated
translation

Cnop et al. (2007), Vander
Mierde et al. (2007) and
Ladriere et al. (2010)

s Enhanced PP2A activity and
loss of GSIS

Kowluru & Metz (1997) and
Arora et al. (2013)

cells FOXO1 activation Yan et al. (2012)

lls
Increased apoptosis Plaumann et al. (2008),

Soleimanpour et al.
(2010), Ozbay et al. (2011)
and Barlow et al. (2012)

vivo Inhibition of b-cell
proliferation

Goodyer et al. (2012)

Develops age-dependent
diabetes alongside loss of
b-cell mass

Heit et al. (2006)

Glucose intolerance and loss
of b-cell mass

Bernal-Mizrachi et al. (2010)

Attenuation of cytokine-
and glucocorticoid-
induced apoptosis

Ranta et al. (2008) and
Grunnet et al. (2009)

Promotes glucocorticoid-
and palmitate-induced
apoptosis

Grankvist et al. (2012) and
Fransson et al. (2013)

ice Improves glucose tolerance Grankvist et al. (2012, 2013)
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(Gagliardino et al. 1991, Sjöholm et al. 1993b, Chen &

Ostenson 2005); ii) stimulation of protein phosphorylation

by direct activation of PKA and PKC with forskolin or

phorbol ester, respectively, results in a stimulated insulin

secretion (Sjöholm 1991, Arkhammar et al. 1994, Hisatomi

et al. 1996); iii) physiological stimuli of insulin secretion

increase b-cell phosphorylation state (Jones & Persaud

1998); and iv) short-term treatment of b-cells or permea-

bilized rat pancreatic islets with the specific PP inhibitor

okadaic acid promotes Ca2C entry and insulin exocytosis

(Ämmälä et al. 1994, Haby et al. 1994, Hisatomi et al. 1996,

Larsson et al. 1997). These combined findings point to an

important functional role for protein (de)phosphorylation

in regulation of the stimulus–secretion coupling in the

b-cell. The role of PPs in b-cell function and insulin

secretion is nonetheless poorly understood.
Ser/Thr-PPases

Identification and characterization PPP types 1

and 2A were identified in crude RINm5F b-cell homogen-

ates by both enzymatic assay and western blot analysis

(Sjöholm et al. 1993b). They were also characterized

in terms of their sensitivity to the inhibitory actions of

several compounds isolated from cyanobacteria, marine

dinoflagellates, and marine sponges, (viz. okadaic acid,

microcystin-LR, calyculin-A, and nodularin). It was found

that okadaic acid was the least potent inhibitor (IC50

w10K9 M and IC100 w10K6 M), while the other

compounds exhibited IC50 values of w5!10K10 M and

IC100 w5!10K9 M (Sjöholm et al. 1993b).

Role in insulin stimulus–secretion coupling The

mechanisms that regulate insulin secretion were electro-

physiologically investigated in single b-cells (Haby

et al. 1994). The secretory responses were substantially

increased by conditions that promote protein phosphoryl-

ation, such as activation of protein kinases A and C or

inhibition of PPP family members (PP1, PP2A, and PP4–

PP6) by okadaic acid. These results suggest that, although

Ca2C is required for the initiation of exocytosis, modu-

lation of exocytosis by protein kinases and phosphatases is

of much greater quantitative importance. Similar findings

were reported by other groups (Mayer et al. 1994). It

should be noted, however, that not all investigators have

arrived at this conclusion (Tamagawa et al. 1992, Ammon

et al. 1996, Murphy & Jones 1996, Sato et al. 1998,

Krautheim et al. 1999). In some of these studies, PP

inhibitors (e.g. okadaic acid) were added to intact cells,

sometimes for long periods of time. It is important to keep
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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in mind that inhibitors such as okadaic acid may exert

non-specific effects and toxicity when added to intact

cells. The agent is known to interfere with membrane

integrity by non-specific mechanisms. Loss of membrane

integrity will disrupt, for instance the Ca2C gradient over

the membrane, causing massive uncontrolled Ca2C influx

that may cause apoptosis. A more physiologic way of

studying the roles of PP by using inhibitors is to apply

these acutely to permeabilized cells or in patch clamp

settings, in which Ca2C gradients are not operative.

Indeed, the inhibitory effect of okadaic acid on GSIS

in intact cells was mimicked by the inactive analog

1-nor-okadaone; in contrast, okadaic acid stimulated insulin

secretion from permeabilized cells (Ratcliff & Jones 1993).

In one study, it was shown that the inhibitory effect of

leptin on insulin secretion in rat and human islets is

associated with decreased expression and activation of a

PP1-like enzyme (Kuehnen et al. 2011).

In another study (Sjöholm et al. 1995), the effects of

known insulin secretagogues and intracellular second

messengers on the activities of cation-independent ser/thr

PPs in insulin-secreting RINm5F b-cells were investigated.

The stimulation of intact RINm5F cells with the insulin

secretagogues, L-arginine, L-glutamine, KC, or extracellular

ATP elicited time-dependent changes in PPP activities with

an early decrease in type 1-like and/or type 2A-like PPP

activity that gradually returned to normal levels. Addition

of cAMP, cGMP, or prostaglandins E2 and F1a at widely

different concentrations to RINm5F cell homogenates

failed to affect PPP activities. In contrast, addition of

physiological concentrations of adenine nucleotides,

known to increase upon nutrient stimulation, to RINm5F

b-cell homogenates inhibited PP2A-like and, to a lesser

extent, PP1-like PPP activity. It was concluded that insulin

secretagogues cause time- and concentration-dependent

inhibitory effects on RINm5F b-cell PPP activities, which

may contribute to the increase in the phosphorylation

state that occurs after stimulation of insulin release

(Sjöholm et al. 1995). Thus, inhibition of protein depho-

sphorylation may be a regulatory mechanism controlling

the stimulus–secretion coupling in insulin-producing

cells. However, there are also contradictory findings:

Murphy & Jones (1996) reported that PP1/2A was

stimulated by glucose and required for GSIS in rat islets.

The reasons for these discrepancies remain unknown at

this time, but may relate to different models used.

In another study (Sjöholm et al. 2002), it was

demonstrated that glycolytic and Krebs cycle intermedi-

ates, whose concentrations increase upon glucose stimu-

lation, not only dose dependently inhibited ser/thr PP
Published by Bioscientifica Ltd.
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enzymatic activities but also directly promote insulin

exocytosis from permeabilized b-cells. Thus, fructose-1,6-

bisphosphate, phosphoenolpyruvate, 3-phosphoglyce-

rate, citrate, and oxaloacetate inhibited PPPs and

significantly enhanced insulin exocytosis, non-additive

to that of okadaic acid, at micromolar Ca2C concen-

trations. In contrast, the effect of GTP was potentiated by

okadaic acid, suggesting that the action of GTP does not

require PPP inactivation. It was concluded that specific

glucose metabolites and GTP inhibit b-cell PP activities

and directly stimulate Ca2C-independent insulin exo-

cytosis. The glucose metabolites, but not GTP, seem to

require PP inactivation for their stimulatory effect on

exocytosis. Thus, an increase in phosphorylation state,

through inhibition of protein dephosphorylation by

metabolic intermediates, may link glucose sensing to

insulin exocytosis in the b-cell.

Although disputed (MacDonald & Fahien 2000), a

messenger role has been postulated for L-glutamate in

linking glucose stimulation to sustained insulin exocytosis

in the b-cell (Maechler & Wollheim 1999), but the precise

nature by which L-glutamate controls insulin secretion

remains elusive. Effects of L-glutamate on the activities of

PPPs and Ca2C-regulated insulin exocytosis in INS1E

b-cells were investigated (Lehtihet et al. 2005). Glucose

was found to increase L-glutamate contents and promote

insulin secretion from INS1E cells. L-glutamate also dose

dependently inhibited PP enzyme activities, mimicking

the specific PPP inhibitor, okadaic acid. L-glutamate and

okadaic acid directly and non-additively promoted insulin

exocytosis from permeabilized INS1E cells in a Ca2C-

independent manner. Thus, an inhibition of protein

dephosphorylation by glucose-derived L-glutamate may

link glucose sensing to sustained insulin exocytosis.

It has been additionally demonstrated that inositol

hexakisphosphate (InsP6), whose concentration in b-cells

transiently increases upon glucose stimulation (Larsson

et al. 1997), dose dependently and differentially inhibits

enzyme activities of ser/thr PPPs in physiologically

relevant concentrations (Lehtihet et al. 2004). However,

and in contrast to previous findings in rat islets

(Gagliardino et al. 1997), none of the hypoglycemic

sulfonylureas tested (glipizide, glibenclamide, and tolbu-

tamide) affected PP1 or PP2A activity at clinically relevant

concentrations in RINm5F cells. The reasons for this

discrepancy remain elusive at this time; however, in part

they may be due to different cell subclones, experimental

conditions, and phosphoprotein substrates used.

The insulin secretagogue L-arginine, an immediate

metabolic precursor to polyamines, was reported to cause
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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a rapid and transient decrease in PP1 activity in RINm5F

b-cells (Sjöholm et al. 1995). It was previously reported that

polyamines dose dependently suppress PP1-like activity

when added to RINm5F cell homogenates at physiologic

concentrations, while having minor and inconsistent

effects on PP2A-like activity (Sjöholm & Honkanen

2000). The IC50 value for spermine on PP1-like activity

was w4 mM. The inhibitory effect was reproduced and of

comparable magnitude on purified PPs types 1A and 2A.

On the other hand, when endogenous polyamine pools

were exhausted by 4 days of exposure to the specific

L-ornithine decarboxylase inhibitor D,L-a-difluoromethy-

lornithine (Sjöholm et al. 1993a), there was an increase

in PP2A-like activity. Quantitative western analysis

revealed that the amount of PP2A protein did not change

after this treatment. It was concluded that polyamines

cause time-and concentration-dependent inhibitory

effects on the PPP activities of RINm5F b-cell, which may

contribute to the increase in phosphorylation state that

occurs after secretory stimulation. Figure 5 shows the

proposed model of PPP regulation of insulin stimulus–

secretion coupling.

Elegant work by the Kowluru laboratory has eluci-

dated in great detail how PP2A is regulated (Kowluru

2005). The catalytic subunit of PP2A is subject to several

means of post-translational modification: i) reversible

carboxylmethylation at Leu309, catalyzed by a PP methyl-

transferase, results in activation of the enzyme, holo-

enzyme assembly, and substrate association (Kowluru et al.

1996). As ebelactone, an inhibitor of methyl esterases, not

only delayed demethylation of PP2A but also decreased

GSIS, a negative role was suggested for PP2A in normal rat

islet GSIS (Kowluru et al. 1996). On the other hand, genetic

silencing of the catalytic subunit of PP2A in INS1 832/13

insulinoma cells by siRNA was found to abrogate GSIS

(Jangati et al. 2007). Carboxylmethylation of the catalytic

subunit of PP2A was inhibited by certain glucose

metabolites and by increased cytosolic Ca2C (Palanivel

et al. 2004), leading to inactivation of the enzyme. It was

suggested that this mechanism facilitates hyper-

phosphorylation of exocytotic proteins, thereby augment-

ing insulin secretion. ii) Phosphorylation at Tyr307 has

been shown to inhibit PP2A catalytic activity, whereas

nitration of Tyr307 alleviates the enzyme from inactivation

by phosphorylation (Kowluru & Matti 2012). iii) Phos-

phorylation at Thr304 results in inactivation of PP2A

(Kowluru & Matti 2012).

Not only secretion, but also protein synthesis,

may also be translationally regulated by reversible

phosphorylation. It was suggested that glucose-stimulated
Published by Bioscientifica Ltd.
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Figure 5

Regulation of b-cell PP activities and their effects on the insulin stimulus–

secretion coupling. Glucose, the b-cell’s main stimulus, is taken up across

the plasma membrane by the facilitative GLUT (GLUT2). The sugar is further

metabolized in the glycolytic pathway and TCA cycle to yield coupling

factors suppressing PP activity, thereby activating influx of Ca2C that sets in

motion the exocytotic release of insulin. The ATP generated during glucose

catabolism also serves to close KC channels, causing depolarization, and as

a substrate for cAMP formation. Receptor-operated, G protein-coupled

signaling pathways through phospholipase C–PKC and AC are also

depicted. See text for details. AC, adenylyl cyclase; DAG, diacylglycerol;

ER, endoplasmic reticulum; G, GTP-binding protein; Gln, glutamine; Glu,

glutamate; GLUT2, glucose transporter 2; GTP, guanosine trisphosphate;

InsP3, inositol trisphosphate; InsP6, inositol hexakisphosphate; KATP,

ATP-dependent KC channel; OA, okadaic acid; PIP2, phosphatidylinositol

bisphosphate; PKC, protein kinase C; PLC, phospholipase C; PP, protein

phosphatase; R, receptor; TPA, 12-O-tetradecanoyl phorbolacetate; VGCC,

voltage-gated Ca2C channel.
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translation in the b-cell requires a PP1-mediated

decrease in Ser51 phosphorylation of eIF2a, an important

factor controlling translational fidelity (Vander Mierde

et al. 2007). In addition, in INS1 832/13 cells, glucose

dephosphorylates elongation factor 2, probably through

activation of PP2A (Yan et al. 2003). This suggests that

INS1 832/13 cell protein translation rates are controlled by

glucose-induced reversible phosphorylation of elongation

factor 2.

Control of transcription factors may also be regulated

by reversible phosphorylation: in INS1E cells, high glucose

downregulates the expression of PPARa, leading to

decreased fatty acid oxidation, through activation of
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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PP2A and inactivation of AMPK, a cellular energy gauge

(Ravnskjaer et al. 2006). Also other important enzymes of

critical regulatory role in GSIS appear regulated by

phosphorylation. For instance, acetyl-CoA-carboxylase –

which catalyzes malonyl-CoA formation – was found to be

activated by magnesium and glutamate probably through

an okadaic acid-sensitive PP2A-like enzyme (Kowluru et al.

2001), an effect that may stimulate b-cell anaplerosis

through provision of long-chain fatty acids.

PP2B (calcineurin) has also been implicated in the

control of islet hormone secretion: Renstrom et al.

(1996) showed that the inhibitory effect of several

neurotransmittors known to inhibit insulin secretion
Published by Bioscientifica Ltd.
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(viz. somatostatin, galanin, and epinephrine) was associ-

ated with an activation of PP2B. Conversely, this

inhibition of secretion was prevented by PP2B inhibitors.

As PP2B inhibitors (e.g. cyclosporine-A) are used in islet

transplantation for immunosuppressive purposes, the

physiological role of the enzyme in islets is clinically

very relevant. While short-term PP2B inhibition stimu-

lates insulin secretion (Ebihara et al. 1996), long-term

inhibition of the enzyme – or overexpression of its

inhibitory regulators (Peiris et al. 2012) – may cause

b-cell functional suppression and demise (Sjöholm

1994). PP2B is also required for proper cAMP-stimulated

gene transcription in HIT b-cells (Schwaninger et al. 1995).
Phosphotyrosine phosphatases

Vanadate inhibits most PTPs and has been shown to exert

direct glucose-dependent insulinotropic effects in isolated

rodent islets by mechanisms involving phosphoinositide

hydrolysis and Ca2C handling (Fagin et al. 1987, Zhang

et al. 1991). Interestingly, vanadium salts have also been

found to exert anti-diabetic and islet-protective effects in

various and widely different diabetic animal models, such

as streptozotocin (Pederson et al. 1989), 90% pancreatect-

omy (Nakamura et al. 1995), and Zucker diabetic fatty rats

(Winter et al. 2005), adding further credence to PTPs as

inhibitors of insulin secretion also in vivo.

The PTPs IA-2 (ICA-512) and IA-2b (phogrin) are major

autoantigens in T1D (Torii 2009), located in secretory

granules, but developmentally differentially regulated.

Whereas expression of phogrin appears insensitive to

factors that influence b-cell function, IA-2 expression

seems regulated by glucose, cAMP, and autocrine insulin

(Lobner et al. 2002). In vivo, genetic disruption of IA-2

or phogrin results in glucose intolerance due to impaired

insulin secretion (Henquin et al. 2008). However, it is

likely that both enzymes are regulating the stability and/or

loading of secretory granules, rather than influencing the

exocytotic process per se. Thus, the main effects of PTPs

on insulin secretion seem inhibitory.
PPs and diabetes

Surprisingly, little is known regarding the role of different

PP in islets in diabetic states, in spite of the fact that

PTPs IA-2 and phogrin are important autoantigens in T1D.

Nonetheless, work from the Östenson laboratory

(Östenson et al. 2002) reported a 60% overexpression of

PTP s in the islets of Goto–Kakizaki rats, a lean genetic

model of T2D. Importantly, downregulation of PTPs led
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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to increased GSIS in these normally ‘glucose-blind’ islets.

The authors concluded that increased expression of PTPs

may be of pathogenetic significance for the defective

insulin secretion in GK rat islets. Interestingly, the

same group reported that genetic variation in receptor

PTPs is associated with T2D in Swedish Caucasians

(Langberg et al. 2007).

Another connection to both T1D and T2D may be

ceramide, which is formed during sphingomyelin break-

down by proinflammatory cytokines such as IL1 (Mullen

et al. 2012). Ceramide may inhibit b-cell mitogenesis and

insulin production (Sjöholm 1995), possibly through the

activation of JNK and the transcription factor ATF2 (Welsh

1996). Many effects of ceramide are believed to be

mediated by a ceramide-activated PPP (CAPP), a PP2A-

like enzyme expressed in islets (Kowluru & Metz 1997).

The genetic silencing of the a isoform of the PP2A catalytic

subunit, achieved through siRNA knockdown, was found

to significantly reduce CAPP enzymatic activity in INS

832/13 cells (Jangati et al. 2006).

The Kowluru lab also reported that the catalytic

subunit of PP4, present in INS1 cell nuclei, can be

regulated by IL1 the following: exposure of the INS1 cells

to IL1 led to the expected increase in NO formation, but

also reduced the expression, carboxylmethylation, and

enzymatic activity of PP4 (Veluthakal et al. 2006). PP4

catalytic subunit was found to form complex with nuclear

lamin-B, which regulates nuclear envelope assembly. The

authors proposed that IL1/NO-induced inhibition of

PP4 expression and enzymatic activity may aid keeping

lamin-B phosphorylated and thereby make it amenable for

pro-apoptotic caspases that may lead to b-cell death

(Veluthakal et al. 2006).

This effector system may also be relevant in T2D,

as studies have shown that cytokines such as IL1 are

produced by islet cells and increased by glucotoxicity

(Maedler et al. 2002).

Another connection between T2D and ceramide is

the lipotoxicity prevailing in T2D. While IL1-induced

ceramide is formed from sphingolipids, islet ceramide

accumulating under conditions of hyperlipidemia appears

to be derived from de novo synthesis from free fatty acids

(FFAs; Shimabukuro et al. 1998). Thus, islet ceramide and

CAPP may be increased by two different mechanisms in

T2D: a glucotoxic pathway involving paracrine/autocrine

IL1 promoting sphingomyelin breakdown and a lipotoxic

pathway in which ceramide is generated from FFAs. These

two pathways, which normally potentiate each other’s

toxicity, may thus additively or synergistically activate

islet CAPP.
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In islets of T2D Goto–Kakizaki rats, the magnesium

and glutamate-sensitive PP2A-like enzyme mentioned

earlier (Kowluru et al. 2001) appears to be dysregulated,

in that the activation of ACC by magnesium and

glutamate seems to be markedly reduced (Palanivel

et al. 2005). The pathophysiological relevance of this

derangement is unclear at this time, but could conceivably

result in reduced formation of long-chain fatty acids

and contribute to the loss of GSIS in this widely used

animal model.

Elegant studies from the Kowluru laboratory have

provided in-depth mechanistic insights into the role of

PP2A in islets under diabetes-like glucotoxic conditions

(Arora et al. 2013). During chronic hyperglycemia,

mimicked by high glucose in vitro, PP2A becomes

hyperactivated – an effect coupled to loss of GSIS.

Knockdown by siRNA of the PP2A catalytic subunit

prevented this hyperactivation. Also, glucose, but not

non-metabolizable sugars, augmented the carboxylmethy-

lation of Leu307 of the catalytic subunit (Arora et al. 2013).

High glucose increased the expression of a regulatory

subunit of PP2A, which has been implicated in islet

dysfunction during glucotoxicity. No clear role for ER

stress in glucose-induced activation of PP2A could be

found. Authors proposed that exposure of the b-cell to

high glucose results in exaggerated PP2A activity and

subsequent loss of GSIS.
Future prospects

To understand how protein dephosphorylation is

regulated within the islet and how this controls hormone

secretion, apoptosis, and proliferation, thorough and deep

mechanistic studies are clearly needed. With the excep-

tion of PP5, which is the only member of the PPP family

with the catalytic and regulatory subunit encoded by

one gene, knockdown strategies targeting the catalytic

subunits will not probably be a fruitful avenue to follow in

order to explore the function of ser/thr PPs. Elimination of

the regulatory subunits is likely to be more exact in

targeting specific cellular functions. Knockdown experi-

ments should be followed by an investigation of changes

in the phoshoproteome to further pinpoint which

proteins that are targeted. Furthermore, characterization

of the different PSPs/PTPs expressed in the various islet cell

types may prove important not only from a diabetes

pathogenic perspective but may also offer clues to

development of novel antidiabetic drugs.
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