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Abstract
Thyroid diseases, such as autoimmune disease and benign and malignant nodules, are more

prevalent in women than in men, but the mechanisms involved in this sex difference is still

poorly defined. H2O2 is produced at high levels in the thyroid gland and regulates

parameters such as cell proliferation, migration, survival, and death; an imbalance in the

cellular oxidant–antioxidant system in the thyroid may contribute to the greater incidence of

thyroid disease among women. Recently, we demonstrated the existence of a sexual

dimorphism in the thyrocyte redox balance, characterized by higher H2O2 production, due to

higher NOX4 and Poldip2 expression, and weakened enzymatic antioxidant defense in the

thyroid of adult female rats compared with male rats. In addition, 17b-estradiol

administration increased NOX4 mRNA expression and H2O2 production in thyroid PCCL3

cells. In this review, we discuss the possible involvement of oxidative stress in estrogen-

related thyroid pathophysiology. Our current hypothesis suggests that a redox imbalance

elicited by estrogen could be involved in the sex differences found in the prevalence of

thyroid dysfunctions.
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Introduction
Thyroid diseases are more prevalent in women than in

men. In the general population, the Framingham survey

indicated that the prevalence of diffuse or nodular goiter is

6.4% in women and 1.5% in men (Vander et al. 1968), and

the Wickham study reported a female-to-male thyroid

disease prevalence ratio of 6.6:1 (Tunbridge et al. 1977).

Additionally, the incidence of spontaneous hypothyroid-

ism is higher in women than in men, with a mean inci-

dence in women of 3.5/1000 survivors per year (2.8–4.5)
and in men of 0.6/1000 survivors per year (0.3–1.2)

(Vanderpump et al. 1995). Moreover, the detection of

thyroid autoantibodies is almost five times more common

in women than in men (Hollowell et al. 2002). The mean

incidence of Hashimoto’s disease among women is w3.5

cases/1000 people per year, whereas in men the incidence

is 0.8 cases/1000 people per year (Brent & Davies 2011).

The prevalence of hyperthyroidism in women is

w1%, and in men, it is approximately one-tenth of that,
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according to The National Health and Nutrition Exami-

nation Survey data from the USA, and it seems to be more

prevalent after puberty (Mandel et al. 2011). Therefore,

one can hypothesize that either sexual chromosomes

and/or gonadal hormones are able to profoundly affect

thyroid physiology and pathophysiology. In the present

review, we focus on the known effects of estrogen on the

thyroid gland and the possible involvement of reactive

oxygen species (ROS) in the marked sexual dimorphism

found in thyroid diseases, with women being most

affected.
Review

Estrogen receptors in the thyroid gland

For decades, the thyroid gland has been known to be a

target of estrogen (Molteni et al. 1979, Hampl et al. 1985,

Schaefer et al. 1986). Nuclear estrogen receptors ERa and

ERb are ligand-regulated transcription factors and are

classified as class I members of the superfamily of

steroid/thyroid hormone nuclear receptors (Green et al.

1986, Mangelsdorf et al. 1995, Couse & Korach 1999, Cui

et al. 2013). As such, binding of estrogen to ERs leads to the

translocation of the hormone–receptor complex into the

nucleus and interaction with DNA, specifically with

the estrogen-responsive elements present in the promoter

regions of target genes (Marino et al. 2006). In addition to

nuclear ERs, which mediate the majority of the known

effects of estrogens, some rapid effects of estrogens are

transduced by ERs present at the cell membrane that

activate intracellular signaling cascades (Pedram et al.

2006, Levin 2009, Cui et al. 2013). Membrane-localized

ERa and ERb activate Gaq and Gas, leading to the

activation of phospholipase C and adenyl cyclase respect-

ively in addition to activating ERK (Razandi et al. 1999).

Additionally, ERa directly binds to Gai and Gbg (Kumar

et al. 2007). However, some rapid effects of estrogens are

transduced by ER-independent pathways (Santen et al.

2009, Yue et al. 2010, Haas et al. 2012, Richardson et al.

2012). Another cell-surface receptor for estrogen has been

identified as the orphan G protein-coupled receptor

GPR30. Nevertheless, because GPR30 could also transduce

the effects of compounds other than estrogens, such as

chemokines (Catusse et al. 2010), the concept that GPR30

is an ER remains to be confirmed (Pedram et al. 2006, Levin

2009, Cui et al. 2013). Anyway, little is really known about

the participation of GPR30 in effects of estrogens on the

thyroid gland, although Vivacqua et al. (2006) have shown

that GPR30 mediates the proliferative effect of estrogen in
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0588 Printed in Great Britain
the thyroid cancer cell lines WRO and FRO because

knockdown of GPR30 in these cells reduces their estro-

gen-induced proliferation (Vivacqua et al. 2006).

ER-X, another plasma membrane ER, seems to play a

role during development (Toran-Allerand et al. 2002,

Cui et al. 2013), but the function of this receptor in

postnatal life is still elusive. An additional presumed cell

membrane ER is Gq-mER, which binds Gq (Qiu et al. 2003)

and seems to mediate estrogen’s effects on the hypo-

thalamic control of body temperature and energy homeo-

stasis (Qiu et al. 2006, Roepke et al. 2010).

ERa and ERb are expressed in the thyroid of both

female and male rats, though female thyroid expresses

higher ER levels than male thyroid (Stanley et al. 2010).

Estrogen upregulates its own receptor in the thyroid of

female and male rats, whereas gonadectomy reduces ER

levels in the thyroid of both male and female rats (Banu

et al. 2002). Vaiman et al. (2010) have shown that ERb

is detectable in benign and malignant lesions of human

thyroid and also in normal thyroid. However, they did not

detect ERa in 296 thyroid tissue samples (150 goiters, 90

papillary carcinomas, 19 follicular adenomas, 15 Hurthle

cell adenomas, six Hashimoto’s thyroiditis, five anaplastic

carcinomas, four medullary carcinomas, four follicular

carcinomas, two Hurthle cell carcinomas, and one

squamous cell carcinoma of the thyroid) by immuno-

histochemical analysis (Vaiman et al. 2010). Furthermore,

Ceresini et al. (2006) have shown that nuclear ERb

immunoreactivity is detectable not only in thyroid

follicular cells but also in endothelial cells in both

multinodular goiter and papillary thyroid carcinoma.

Thus, in the human thyroid, ERb seems to be the more

relevant ER isoform under physiological conditions

(Ceresini et al. 2006).

Thyroid cancer is the most common endocrine

malignancy. Thyroid neoplasms can be classified as

differentiated, which includes papillary and follicular

carcinomas; undifferentiated (anaplastic carcinoma);

tumors of parafollicular C cells (medullary carcinoma);

and poorly differentiated thyroid carcinoma (Salvatore

et al. 2011). Molteni et al. (1979) showed that thyroid

adenocarcinomas have a high estradiol-binding capacity.

The presence of ER was suggested to be higher in

neoplastic lesions than in normal tissues (Jaklic et al.

1995), and it apparently decreases with the degree of

malignancy (Hiasa et al. 1993, Tavangar et al. 2007),

although many authors have not observed this difference

(Métayé et al. 1993, Yane et al. 1994). The relationship

between ERa and ERb seems to differ among different

thyroid samples, with lower ERb-to-ERa mRNA ratios in
Published by Bioscientifica Ltd.
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follicular adenomas compared with normal tissues (Egawa

et al. 2001), indicating that the balance between the two

ERs might influence thyroid pathogenesis. Zeng et al.

(2007) have studied the effect of estradiol on proliferation

of thyroid carcinoma cell lines (KAT5, papillary thyroid

carcinoma cells and FRO, follicular thyroid carcinoma

cells) (Zeng et al. 2007). These authors found that estradiol

increased the cell proliferation rate and that this effect was

positively correlated with the level of ERa but negatively

with that of ERb. Consistent with these results, Chen et al.

(2008b) demonstrated that an ERa agonist stimulates

thyroid cancer cell proliferation, whereas an ERb agonist

reduces it (Chen et al. 2008b). Thus, not only the levels of

ER but also the balance between the expression of ERa and

ERb might affect the action of estrogen on the thyroid

gland.
Thyroid function regulation by estrogen

Estrogen profoundly affects thyroid function, either

directly or by regulating the hypothalamus–pituitary–

thyroid axis. Estrogen increases the thyrotropin (TSH)

response to thyrotropin-releasing hormone stimulation in

ovariectomized rats (Chen & Walfish 1978). Additionally,

the stimulatory effect of estradiol on thyroid radioiodine

uptake in ovariectomized and hypophysectomized rats

(Boccabella & Alger 1964) supports the hypothesis of a

direct action of estrogen on the thyroid. Because ERs are

expressed in both human and rat thyroid glands (Banu

et al. 2002, Arain et al. 2003) and estradiol increases the

proliferation rate of the FRTL-5 rat thyroid cell line

independent of TSH (Furlanetto et al. 1999), it is clear

that this hormone also regulates thyrocytes through a

direct action.

Iodide transport is a fundamental step in thyroid

hormone synthesis, which is catalyzed by the NaC/IK

symporter (NIS; Dai et al. 1996, Smanik et al. 1996,

Eskandari et al. 1997, Dohan et al. 2003). In FRTL-5 cells,

estrogen reduces Nis (Slc5a5) gene expression in the

presence of TSH (Furlanetto et al. 1999) and decreases

cell iodide uptake in either the presence or the absence

of TSH (Furlanetto et al. 2001). However, treatment of both

ovariectomized adult and intact prepubertal rats with

estrogen significantly increases thyroid iodide uptake

(Lima et al. 2006), indicating that in vivo but not in vitro

estrogen has a stimulatory effect on NIS. The difference

between the two models might be related to the presence

of thyroid stromal cells in vivo because these cells express

ERa and Eb and could play a role in the thyroid response to

estradiol (Gantus et al. 2011).
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0588 Printed in Great Britain
Thyroperoxidase (TPO) plays a key role in the

biosynthesis of thyroid hormones. TPO is a heme-

containing glycoprotein bound to the apical membrane

of thyroid cells, which in the presence of H2O2 catalyzes

iodide oxidation, iodination of tyrosyl residues in the

thyroglobulin (Tg) molecule, and coupling of iodo-

tyrosines, leading to the formation of thyroid hormones

(Ruf & Carayon 2006). In addition to the fundamental role

in thyroid hormone biosynthesis, TPO is also the main

thyroid autoantigen, and autoimmune thyroid disease

is more frequent in women (Braverman & Utiger 2000,

Bresson et al. 2005). The administration of estradiol to

both intact and ovariectomized rats increases TPO activity

(Lima et al. 2006), indicating that estrogen stimulates not

only thyroid iodide uptake but also iodide organification.

In summary estrogen has a general stimulatory effect

on thyroid function, at least in rats, increasing iodide

uptake and TPO activity, which would be expected to

increase thyroid hormone biosynthesis. However, the

effect of estrogen and the consequences of ovariectomy

on serum thyroid hormone and TSH concentrations are

controversial and seem to depend on the model used

(Böttner & Wuttke 2005, Seidlová-Wuttke et al. 2005,

Sosić-Jurjević et al. 2005, Lima et al. 2006, Marassi et al.

2007, Abdel-Dayem & Elgendy 2009, Pantaleão et al.

2010). In addition, estrogen increases thyroxine-binding

globulin (TBG) production both in vivo in women

(Dowling et al. 1956, Robbins & Nelson 1958, Doe et al.

1967) and in vitro by hepatocytes of Rhesus monkeys

(Glinoer et al. 1977). Thus, it is difficult to make a clear

distinction between increases in serum thyroid hormone

levels induced by estrogen directly, by increasing thyroid

function, or indirectly, through an increase in TBG levels.
NADPH oxidases and thyroid physiology

Thyrocytes produce large amounts of H2O2 during their

lives. At the apical membrane of thyrocytes, H2O2 acts as a

TPO cosubstrate in thyroid hormone biosynthesis and is

produced by calcium-dependent NADPH oxidases (NOX),

namely dual oxidase (DUOX) (Dupuy et al. 1999, De

Deken et al. 2000, Ameziane-El-Hassani et al. 2005). The

NOX/DUOX family is composed of seven members,

NOX1–NOX5 and DUOX1/2, which are differentially

expressed among tissues (Weyemi & Dupuy 2012). The

biological roles of NOXs are quite diverse, but the first

physiological function described was related to the

immune response, as NOX2 is activated during the

neutrophil respiratory burst. However, other processes,

such as cellular proliferation, apoptosis inhibition,
Published by Bioscientifica Ltd.
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calcium release, and hormone biosynthesis, are well

documented (Berdad & Krause 2007). Thyrocytes express

both DUOX1 and DUOX2 at the apical membrane, but

the source of H2O2 that sustains production of thyroid

hormones (TH) seems to be DUOX2. The evidence that

supports this idea is that mutations in Duox2, but not in

Duox1, are associated with congenital hypothyroidism,

and that mice deficient in Duox2, but not Duox1, are

hypothyroid (Johnson et al. 2007, Donkó et al. 2010,

Grasberger 2010). Both DUOX enzymes need the presence

of their corresponding maturation factor, called DUOXA,

to exit the endoplasmic reticulum and reach the apical

plasma membrane (Grasberger & Refetoff 2006), where

these proteins form stable complexes at the cell surface

that are essential for DUOX activity (Morand et al. 2009).

NOX4 is also present in thyrocytes, but it is localized

intracellularly, specifically in endoplasmic reticulum and

the nuclear membrane, and does not seem to be involved

in TH biosynthesis (Weyemi et al. 2010). In contrast to

DUOX enzymes, which need the presence of DUOXA for

their activity, NOX4 seems to be more active in the
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Figure 1

NADPH oxidase (NOX) enzymes expressed in the thyroid gland.

DUOX-derived H2O2 is used as a cosubstrate by thyroperoxidase (TPO) for

thyroid hormone biosynthesis at the apical membrane of thyrocytes. NOX4

produces ROS in intracellular compartments. NAPDH, NAD; NADPC,

http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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presence of p22phox or possibly Poldip2 (Lyle et al. 2009),

but this enzyme is constitutively active. NOX4 is detected

in the nuclear or perinuclear regions of the cells and most

probably acts as an intracellular signaling oxidase (Leto

et al. 2009) (Fig. 1).
ROS and thyroid pathophysiology

As H2O2 is a ROS and might thus react with cellular

components such as lipids, proteins, and DNA, some

authors argue that H2O2 generated for TH biosynthesis

could be toxic to thyrocytes. Maier et al. (2006) showed

that the rat thyroid gland has a high level of DNA

oxidative damage in comparison with other tissues, such

as liver, spleen, and lung, indicating that the high

frequency of somatic mutations and tumor initiation

found in this organ is due to the oxidative environment

that thyroid cells are subjected to during their long lives

(Maier et al. 2006). In addition, carcinogenic effects of

H2O2 on thyrocytes have been clearly demonstrated in

two different in vitro studies. When a rat thyroid cell
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NADH; DUOX, dual oxidase; DUOXA, dual oxidase maturation factor;

NIS, sodium/iodide symporter; POLDIP2, polymerase delta-interacting

protein 2; ROS, reactive oxygen species.
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line (PCCL3) was incubated with nonlethal H2O2 concen-

trations, the numbers of single- and double-strand breaks

in DNA increased, as did the phosphorylation of histone

H2AX, a marker of double-strand breaks (Driessens et al.

2009). Moreover, H2O2 exposure induced RET/PTC

rearrangement formation in a human thyroid cell line,

which was abolished when catalase was added to the

incubation medium (Ameziane-El-Hassani et al. 2010).

In fact, any disturbance in ROS generation or

consumption will promote ROS accumulation that can

contribute to thyroid dysfunction. In this context, it is

important to note that the site of ROS formation is closely

linked to the type and extent of the damage. This can be

explained by the short half-life of ROS molecules due to

their high reactivity and the presence of antioxidant

mechanisms in the whole cell (Block & Gorin 2012).

DUOX enzymes are localized at the apical membrane of

thyrocytes, physically and functionally interacting with

TPO, and creating a producer–consumer unit that restricts

the amount of H2O2 released into the lumen of follicular

cells (Fortunato et al. 2010, Song et al. 2010). Furthermore,

glutathione peroxidase 3 (GPx3), also located in the apical

cell surface, and other intracellular antioxidant enzymes

and molecules, such as GPx1, superoxide dismutase,

catalase, and peroxiredoxins, most probably destroy

H2O2 before it can react with DNA in the nucleus

(Schweizer et al. 2008). On the other hand, NOX4 is an

intracytoplasmatic ROS-generating enzyme, possibly

located at the endoplasmic reticulum, and nuclear

membrane where it was recently found in other cell

types (Chen et al. 2008a,b, Weyemi et al. 2010, Spencer

et al. 2011). Thus, H2O2 released by NOX4 can be linked to

genomic instability.

We have previously compared DUOX and TPO

activity in hypofunctioning thyroid lesions, and we

found a negative correlation between these enzyme

activities (Ginabreda et al. 2008). H2O2 can oxidize many

proteins, changing their functions. Therefore, we pro-

posed the hypothesis that H2O2 produced by DUOX could

oxidize TPO, changing its activity, once both proteins are

colocalized at the plasma membrane. Utilizing a hetero-

logous system, we showed that indeed, H2O2 produced by

DUOX reacts with TPO, decreasing its activity (Fortunato

et al. 2010).

It has been suggested that ROS can contribute to

autoimmune thyroid diseases, such as Hashimoto’s

thyroiditis and Graves’ disease (Burek & Rose 2008). Tg

and TPO are major autoantigens involved in autoimmune

diseases (McIntosh & Weetman 1997). Tg fragmentation

can occur during iodination and coupling of tyrosine
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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residues in TH biosynthesis, forming immunoreactive

peptides. Interestingly, it seems that Tg cleavage is a

reaction that involves H2O2 produced in the apical

membrane of thyrocytes (Duthoit et al. 2000, Raad et al.

2013). Raad et al. (2013) studied the effects of the main

cytokines involved in Hashimoto’s thyroiditis and Graves’

disease, interferon g (IFN-g) and IL4/IL13 respectively, on

DUOX expression and activity. IL4 and IL13 increase

DUOX2 and DUOXA2 expression and calcium-dependent

H2O2 generation, and IFN-g treatment inhibits DUOX

gene expression and blocks induction of Th2 by DUOX2/

DUOXA2 (Raad et al. 2013). Taken together, the findings

mentioned above indicate that DUOX enzymes could be

involved in thyroid autoimmune pathophysiology.

Some studies have shown increases in peroxide

content, lipid peroxidation, and the activity of the

antioxidant enzyme catalase and GPx during goitrogenesis

in rats (Poncin et al. 2008, Thomasz et al. 2010). The source

of ROS during goitrogenesis has not been demonstrated,

but NOX4 is a good candidate, according to recent

findings. In the thyroid, NOX4 is present in activated,

tall columnar cells and absent in quiescent, flat cells,

indicating a role in thyrocyte functional activity. It is

important to note that NOX4 and p22phox mRNA levels,

as well as intracellular ROS generation, increase in a dose-

dependent manner when human thyrocytes are incubated

with TSH, indicating that ROS produced by NOX4 can act

as second messengers in TSH signaling, as they do in other

models (Weyemi et al. 2010).

A pro-oxidative environment can be involved in all

steps related to carcinogenesis, such as initiation, pro-

motion, and progression (Scandalios 2005). The main

function of NOX is ROS production. Therefore, changes

in NOX expression and/or activity could be related to

carcinogenesis. ROS can directly interact with cellular

macromolecules, such as nucleic acids leading to nucleo-

tide oxidation and single- and double-strand breaks,

thereby promoting genomic instability. However, a wide

range of signaling pathways are redox-sensitive, so an

increase in ROS can modulate autonomous cell growth

and immortality (Block & Gorin 2012). Some previous

studies evaluated DUOX expression and activity in

samples of thyroid carcinomas, but no significant

differences in the activity or expression of these enzymes

were detected between normal and cancerous tissues

(Lacroix et al. 2001, Ginabreda et al. 2008). In this

context, NOX4 has gained attention in thyroid patho-

physiology because its expression is higher in thyroid

tumors in comparison with normal tissue. In fact, normal

thyroid cells overexpressing an activated Ras oncogene
Published by Bioscientifica Ltd.
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have increased NOX4 expression and activity, which is

implicated in the stimulation of the DNA replication rate

and DNA damage, leading to cellular senescence (Weyemi

et al. 2012).
Estrogen effects on thyroid redox balance

A large body of evidence correlates different thyroid

dysfunctions with redox imbalance, generally due to

NOX activation. Our group proposed that the higher

prevalence of thyroid diseases in women could be, at least
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Figure 2

A hypothesis for thyroid dysfunctions related to estrogen exposure

through NADPH oxidase activation. Estrogen signaling activates the

production of ROS by NOX4 and DUOX in the thyroid tissue and may

contribute to the establishment of an environment prone to the

http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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in part, due to sex-related differences in the thyroid redox

environment. Utilizing rats as a model, we have shown

higher H2O2 production and NOX4 expression in the

thyroid of adult female rats in comparison with their

male counterparts, but not in prepubertal animals, in

which serum estradiol concentration is not significantly

different between sexes (Fortunato et al. 2013). Weyemi

et al. (2010) reported that in normal human thyroid

tissue, NOX4 immunostaining is intracytoplasmic

(Weyemi et al. 2010). However, although we confirmed

that NOX4 immunostaining in the thyroids of both male
+

idative
mage

ogen 

 oxidation,
ic instability

 RET/PTC
slocation

TPO

NOX4

p22 phox

POLDIP2

development of cancer and/or autoimmune disorders. DUOX, dual oxidase;

DUOXA, dual oxidase maturation factor; NOX4, NAPDH oxidase 4;

POLDIP2, polymerase delta-interacting protein 2; ROS, reactive oxygen

species; TPO, thyroperoxidase.
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and female rats is intracytoplasmic, we have also detected

NOX4 immunostaining at the plasma membrane of

thyrocytes. Furthermore, we have found higher NOX4

expression in the thyroid of female rats in the proestrus

phase of the estrous cycle (characterized by an estrogen

peak) and higher NOX4 expression and H2O2 production

in PCCL3 cells treated with 17b-estradiol, indicating a

role for estrogen in this process. DUOX2 was not different

when we compared the thyroids from male and female

rats, but estrogen also increased DUOX2 expression both

in vivo and in vitro (unpublished data). In addition,

catalase expression and activity, together with levels of

thiol groups, were lower in adult female thyroid

(Fortunato et al. 2013). Taken together, these results

show sex-related differences in thyroid redox balance,

with increased ROS production and decreased antiox-

idant defense in female thyroid (Fig. 2).

Although we have demonstrated the stimulatory

effect of estrogen on NOX4 expression and activity,

some questions remain to be elucidated. How could

NOX4 be involved in estrogen-related thyroid dysfunc-

tion? First of all, because NOX4 is located intracellularly,

the H2O2 produced by the enzyme could cause genomic

instability through its reaction with cellular DNA. Cells

overexpressing activated Ras oncogene have increased

NOX4 expression and activity, which is responsible for the

stimulation of DNA replication and DNA damage, leading

to cellular senescence (Weyemi et al. 2012). In contrast,

NOX4 and DUOX2 seem to regulate cell cycle entry via the

p53-dependent pathway. PDGF-induced proliferation in

HS68 fibroblast cells is abolished after NOX4 or DUOX2

knockdown, due to reduced ERK1 phosphorylation and

increased levels of p53 and the cell cycle inhibitor protein

p21 (Salmeen et al. 2010). It is important to note that

estradiol is able to induce proliferation in normal and

cancerous thyroid cells through ERK1/2 phosphorylation,

so H2O2 produced by NOX4 could be involved in this

signaling pathway (Manole et al. 2001, Kumar et al. 2010).

Vascular endothelial growth factor (VEGF) is a proangio-

genic factor with a central role in the function, develop-

ment, and growth of blood vessels. Thyroid VEGF is

upregulated by estrogen, and thyroid weight, vascular

area, and VEGF protein expression are lower in ovari-

ectomized rats in comparison with sham-operated rats and

ovariectomized rats treated with 17b-estradiol (de Araujo

et al. 2010). Interestingly, in PCCL3 cells, an increase in

intracellular ROS, elicited by iodide deprivation, induces

HIF-1a and VEGF protein expression, but concomitant

treatment with the antioxidant N-acetyl-cysteine

abolishes the effects of iodide deprivation (Gérard et al.
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0588 Printed in Great Britain
2009). Thus, it is tempting to speculate that NOX4 could

also be involved in the regulation of thyroid VEGF

expression induced by estradiol and iodide deprivation.
Summary and conclusions

In this review, we propose that ROS could be involved in

the sexual dimorphism found in thyroid dysfunctions.

Future studies are necessary to evaluate the involvement

of NOX4-generated ROS in the estrogen-signaling

pathway in thyrocytes. Elucidating this issue is crucial to

improving our knowledge of the mechanisms involved in

thyroid pathophysiology and will allow us to determine

whether NOXs are potential therapeutic targets for

thyroid dysfunctions.
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Donkó A, Ruisanchez E, Orient A, Enyedi B, Kapui R, Péterfi Z, de Deken X,
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