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Abstract
Establishing sufficient skeletal muscle mass is essential for lifelong metabolic health. The

intrauterine environment is a major determinant of the muscle mass that is present during

the life course of an individual, because muscle fiber number is set at the time of birth. Thus,

a compromised intrauterine environment from maternal nutrient restriction or placental

insufficiency that restricts muscle fiber number can have permanent effects on the amount of

muscle an individual will live with. Reduced muscle mass due to fewer muscle fibers persists

even after compensatory or ‘catch-up’ postnatal growth occurs. Furthermore, muscle

hypertrophy can only partially compensate for this limitation in fiber number. Compelling

associations link low birth weight and decreased muscle mass to future insulin resistance,

which can drive the development of the metabolic syndrome and type 2 diabetes, and the

risk of cardiovascular events later in life. There are gaps in knowledge about the origins of

reduced muscle growth at the cellular level and how these patterns are set during fetal

development. By understanding the nutrient and endocrine regulation of fetal skeletal

muscle growth and development, we can direct research efforts toward improving muscle

growth early in life to prevent the development of chronic metabolic diseases later in life.
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Introduction
Epidemiological studies have demonstrated that lower

birth weight for a given gestational age increases an

individual’s risk of developing obesity (Valdez et al. 1994,

Ravelli et al. 1999), coronary heart disease (Barker et al.

1993, 2010), glucose intolerance (Hales et al. 1991, Phipps

et al. 1993, McKeigue et al. 1998), and type 2 diabetes

(Curhan et al. 1996, Rich-Edwards et al. 1999) later in

life. Small for gestational age (SGA) status at the time of

birth, defined arbitrarily as birth weight !10% on

standard pediatric growth curves (Battaglia & Lubchenco

1967), can result from many causes, one of which is

placental insufficiency (Platz & Newman 2008). Placental
insufficiency is defined as a smaller-than-normal placenta,

with or without specific transporter deficiencies, that

restricts nutrient flow from the mother to the fetus and

uniquely causes intrauterine growth restriction (IUGR;

Molteni et al. 1978, Marconi et al. 2006, Marconi & Paolini

2008, Regnault et al. 2013). Fetal IUGR leads to increased

perinatal and neonatal morbidity and mortality (Pollack &

Divon 1992, Tuuli et al. 2011), as well as the later-life

pathologies mentioned above. Although nearly every fetal

organ system is affected in IUGR, skeletal muscle growth is

particularly vulnerable because blood flow and nutrient

supplies are preferentially shunted to vital organs in
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response to decreasing fetal oxygenation (Tchirikov et al.

1998, Yajnik 2004a). As a result, skeletal muscle growth is

preferentially restricted (Yau & Chang 1993, Padoan et al.

2004, Larciprete et al. 2005, Beltrand et al. 2008).

Skeletal muscle serves several important metabolic

functions. First, resting energy expenditure varies

considerably based on the amount of lean mass that an

individual possesses (Mifflin et al. 1990, Nelson et al. 1992,

Taguchi et al. 2011). Based on estimates for the energy

required to maintain the muscle fractional protein

synthetic rate (Waterlow 1984, Tipton et al. 2003), it has

been proposed that greater muscle mass and increased

energy expenditure from muscle protein turnover may

contribute to the prevention of obesity (Newsholme 1978,

Wolfe 2006). Second, skeletal muscle accounts for 80%

of whole-body insulin-stimulated glucose uptake; thus,

muscle maintains whole-body insulin sensitivity

(DeFronzo et al. 1981). Third, several muscle secretory

products or ‘myokines’ improve insulin sensitivity (Basaria

& Bhasin 2012) and stimulate energy consumption

within adipose tissue (Bostrom et al. 2012). Finally,

sarcopenia, or the degenerative loss of skeletal muscle

mass and function, affects 30% of adults over the age of

65 years and is a large contributor to morbidity and

mortality (Doherty 2003). Thus, low muscle mass affects

adult health and has important implications for quality of

life, excess weight gain, and risk of developing insulin

resistance and type 2 diabetes.

Reduced fetal skeletal muscle growth is not fully

compensated after birth, as individuals who are born with

low birth weight have lower muscle mass in adulthood

(Gale et al. 2001, Kensara et al. 2005, Yliharsila et al. 2007).

As skeletal myofiber number is set at the time of birth

(Rowe & Goldspink 1969, Wigmore & Stickland 1983), it is

possible that disruptions in myofiber formation during

fetal life may not be fully recovered (Widdowson et al.

1972). In sheep models of maternal undernutrition or

placental insufficiency, skeletal muscle growth is prefer-

entially sacrificed and skeletal muscle mass is reduced

at birth (Du et al. 2010). Under such circumstances,

compensatory or ‘catch-up’ postnatal growth favors fat

deposition and not muscle development (Louey et al.

2005, De Blasio et al. 2007, Ford et al. 2007). In humans,

compelling associations link low birth weight and

decreased muscle mass to future insulin resistance

(Srikanthan & Karlamangla 2011), development of the

metabolic syndrome and type 2 diabetes (Barker et al.

2002, Whincup et al. 2008, Atlantis et al. 2009), and risk of

cardiovascular events later in life (Basaria & Bhasin 2012).

Thus, suppressed development of muscle in IUGR fetuses
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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could be a major contributor to their increased risk of

later-life sarcopenia, obesity, and diabetes.

An understanding of how fetal skeletal muscle growth

adapts to nutrient availability is important for determin-

ing how deficits in muscle growth contribute to metabolic

diseases in adulthood. Therefore, the objectives of this

article are to i) review the fundamentals of fetal myo-

genesis; ii) review the experimental studies showing that

fetal undernutrition from maternal dietary restriction or

placental insufficiency influences skeletal muscle growth;

iii) highlight the epidemiological studies showing that

low birth weight is associated with reduced muscle mass

in adulthood; and iv) discuss how insufficient muscle mass

as a result of IUGR might influence long-term metabolic

health. Finally, potential therapeutic approaches to

improving muscle mass in IUGR fetuses and research

needs in this area are addressed.
Skeletal muscle development

Proliferation and differentiation of myoblasts and

myofibers

Myoblasts are mononuclear cells that have the capacity

to proliferate and differentiate into skeletal myofibers

(Gerrard & Grant 2003, Zammit et al. 2006). Myoblasts,

as well as adipocytes and fibroblasts, differentiate from the

multipotent mesenchymal stem cell (MSC) population

in the developing human embryo (Pittenger et al. 1999).

Because both myocytes and adipocytes share a common

progenitor, the milieu of nutrients and growth factors in

early embryonic and fetal life could affect MSC commit-

ment to either a myogenic or an adipogenic lineage

(Du et al. 2013). Indeed, exposure of C2C12 myoblasts

to adipogenic inducers in vitro has been shown to convert

the differentiation pathway of myoblasts into that of

adipoblasts (Teboul et al. 1995).

Once differentiated, myoblasts are classified as

embryonic, fetal, or adult (Gerrard & Grant 2003).

Embryonic myoblasts fuse to form primary myofibers by

20% of the length of gestation in sheep (Russell & Oteruelo

1981). Primary myofibers provide the scaffolding for the

proliferation and differentiation of fetal myoblasts into

secondary myofibers (Beermann et al. 1978). Secondary

myofibers comprise the majority of myofibers and are

highly nutrient responsive (Ward & Stickland 1991, Dwyer

et al. 1994, Zhu et al. 2004). Secondary myogenesis occurs

between 20 and 70% of the length of gestation (Russell &

Oteruelo 1981) and involves the proliferation of fetal

myoblasts followed by the expression of muscle regulatory
Published by Bioscientifica Ltd.
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factors (MRFs) (Fig. 1a and b). MRFs are a set of helix–loop–

helix transcription factors, including MYF5, MYOD

(MYOD1), MRF4 (MYF6), and myogenin, that are

expressed in a sequential manner during the differen-

tiation process (Berkes & Tapscott 2005, Braun & Gautel

2011). Targets of the MRFs include proteins that regulate

the switch from proliferation to differentiation, including

retinoblastoma protein (RB (RB1)), which is an inhibitor

of cell-cycle progression. Cyclin D1 and cyclin-dependent

kinase 4 (CDK4) phosphorylate and inhibit RB to induce

proliferation (Weinberg 1995, Spiller et al. 2002). As

differentiation occurs, MYOD binds to myostatin, which

results in the withdrawal of myoblasts from the cell cycle

(Spiller et al. 2002). In addition, P21 inhibits CDK4 so that

RB remains dephosphorylated to reduce cell-cycle activity

(Guo et al. 1995). Cell-cycle withdrawal is concomitant

with the expression of MYOD, MYF5, and myogenin

(Sabourin & Rudnicki 2000; Fig. 1c).

Myogenesis is nearly complete by the end of gestation,

as a full complement of myofibers has been observed at the

time of birth in both mice and piglets (Rowe & Goldspink

1969, Wigmore & Stickland 1983). Postnatal muscle
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Figure 1

Key regulatory genes and proteins involved in fetal myogenesis.

(a) Schematic diagram showing the differentiation of proliferating

myoblasts into multinucleated myotubes and maturation into myofibers

during fetal life. (b) Expression of muscle regulatory factors (MRFs) during

myogenesis: PAX7 and MYF5 are expressed in the myoblast. The

progression of differentiation is marked by the temporal expression of

MYOD, MRF4, and myogenin. Desmin is the major intermediate filament

expressed in mature muscle and its expression increases during gestation.

(c) Targets of MRFs regulate the switch from proliferation to

differentiation: expression of cyclin D1 and CDK4 induces myoblast

http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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growth occurs primarily by myofiber hypertrophy, as has

been demonstrated in mice (White et al. 2010). Muscle

satellite cells (or adult myoblasts) reside between the basal

lamina and myofiber membrane (Yin et al. 2013). During

late fetal and early postnatal life, myofiber growth is

accompanied by the proliferation and fusion of satellite

cells with existing myofibers (Moss & Leblond 1971, White

et al. 2010). During later stages of postnatal life and into

adult life, increases in myofiber cross-sectional area occur

without significant changes in myonuclear number

(White et al. 2010). In response to extreme mechanical

loading, injury, inflammation, and/or anabolic hormone

stimulation, satellite cells serve as bona fide stem cells that

can proliferate and differentiate to create new muscle (Ten

Broek et al. 2010, Yin et al. 2013). Thus, satellite cells retain

plasticity and regenerative capacity during postnatal life.

However, the postnatal satellite cell population is vulner-

able to fetal undernutrition. When pregnant mice were

undernourished during the last week of gestation, pups at

7 weeks of postnatal age had reduced muscle mass, a 33%

decrease in skeletal muscle precursor cells, and reduced

regenerative capacity in response to muscle injury in vivo
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proliferation by maintaining the inhibitor retinoblastoma protein (RB) in

its phosphorylated and inactive state. As differentiation is activated, MYOD

binds to myostatin and myoblasts withdraw from the cell cycle. In addition,

P21 inhibits CDK4, which results in the dephosphorylation of RB to reduce

cell cycle activity. This process results in the withdrawal of myoblasts from

the cell cycle and subsequent fusion into myotubes. Myotube maturation

and hypertrophy are stimulated by growth factors, amino acids, and

stretch/load activity (Molkentin & Olson 1996, Yang & Makita 1996, Gaster

et al. 2001, Zammit et al. 2006).
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(Woo et al. 2011). Whether the satellite cell population is

permanently compromised during pregnancies compli-

cated by IUGR in humans is an important question when

considering the long-term effects of the compromised

intrauterine environment.
Myofiber hypertrophy

Myofiber hypertrophy, or an increase in fiber diameter and

length with or without satellite cell fusion, occurs as a net

increase in balance between protein synthesis and

degradation. When the rate of protein synthesis exceeds

that of protein breakdown, the end result is net protein

accretion and myofiber hypertrophy. Nutrients and

growth factors are primary regulators of net protein

balance and myofiber hypertrophy. However, stretching

and loading of muscle also regulate muscle mass and

protein synthesis, even during fetal life (Racca et al. 2013).

Nutrients and growth factors coordinate net protein

accretion in skeletal muscle through the mammalian

target of rapamycin (mTOR). Two multiunit complexes

constitute mTOR: mTORC1 and mTORC2. The mTORC1

complex senses both intracellular and extracellular cues,

such as growth factors, amino acids, energy status, and

oxygen availability to either stimulate or inhibit cell

growth. Comprehensive reviews of mTOR signaling and

its coordination with cell growth in skeletal muscle are

available (Goodman et al. 2011, Dodd & Tee 2012,

Laplante & Sabatini 2012, Weigl 2012).

Under conditions of nutrient sufficiency (Fig. 2),

growth factors such as insulin and insulin-like growth

factor 1 (IGF1) bind to their respective tyrosine kinase

receptors, which phosphorylate insulin receptor substrate

1 (IRS1). IRS1 activates phosphoinositide 3-kinase and

protein kinase B (AKT) to stimulate mTORC1 (Takahashi

et al. 2002). Amino acids such as leucine can stimulate

mTORC1 independently of insulin or IGF1 by binding

to leucyl-tRNA synthetase and activating RAG GTPase

proteins, thus bringing Ras homolog enriched in

brain (RHEB) to the surface of the lysosome (Han et al.

2012). Based on these positive inputs, mTORC1 then

activates two major downstream effectors, ribosomal

protein S6 kinase and 4E-binding protein 1 (4EBP1).

mTORC1 phosphorylates the translation initiation

repressor 4EBP1, which then releases eukaryotic

initiation factor 4E and enables it to form the translation

initiation complex.

Under conditions of nutrient and energy restriction

(Fig. 2), rates of protein synthesis are decreased by the

activation of the tuberous sclerosis complex (TSC) and
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0567 Printed in Great Britain
suppression of mTORC1 activity. Limited oxygen and

energy availability to the cell are sensed by three key

proteins, all of which can activate TSC: hypoxia-inducible

factor (HIF), regulated in development and DNA damage

responses 1 (REDD1 (DDIT4)), and 5 0-AMP-activated

protein kinase (AMPK) (Hardie et al. 2012, Liu et al.

2012). AMPK, which is activated by an increased AMP:ATP

ratio, also inhibits eukaryotic elongation factor 2 and

peptide chain elongation (Leprivier et al. 2013). When

amino acids are not available, uncharged tRNAs activate

the protein general control nonrepressed 2 to phosphor-

ylate eIF2A and suppress mRNA translation (Dong et al.

2000, Saad et al. 2013).

In catabolic states such as starvation, cancer, and burn

injury, proteolytic pathways are activated in skeletal

muscle for the purpose of supplying amino acids to organs

such as the heart, liver, and brain (Biolo et al. 1995, Kadar

et al. 2000, Biolo et al. 2002). Two proteolytic systems are

active within skeletal muscle: ubiquitin–proteasome

pathway (mediated by ubiquitin ligases atrogin 1 and

muscle RING-finger protein 1 (MURF1 (TRIM63))) and the

autophagy–lysosome pathway. These pathways can

modulate one another and are under coordinated control

with protein synthetic pathways to maintain proper cell

size (Bonaldo & Sandri 2013). AKT and forkhead box

transcription factors (FOXO) play a crucial role in the

regulation of this process (Fig. 2). The translocation of

FOXO into the nucleus in its dephosphorylated state is

required for the upregulation of atrogin 1 and MURF1, as

well as for the transcription of autophagy-related genes,

including LC3 (MAP1LC3A) and BNIP3 (Mammucari et al.

2007, Zhao et al. 2007). With growth factor stimulation,

AKT phosphorylates FOXO, promoting its export from

the nucleus, which thereby suppresses proteolysis when

conditions favor protein synthesis. A recent report has also

shown that autophagy in skeletal muscle of starved rats is

regulated by insulin via mTORC1-mediated inhibition of

UNC 51 like kinase (ULK1; Naito et al. 2013).

Our laboratory and others have shown that the AKT–

mTORC1 signaling pathway is active in the skeletal muscle

of fetal sheep in response to a variety of anabolic stimuli

such as amino acids, insulin, and IGF1 (Shen et al. 2002,

Anderson et al. 2005, Brown et al. 2009). However, it is not

known whether the human IUGR fetus slows protein

synthetic rates in muscle via adaptation to reduced levels

of nutrients and growth factors or whether it activates

protein breakdown as a result of cellular stress. Probably,

these processes are not mutually exclusive; the fetus might

develop a slower growth rate in response to decreased

nutrient supply early in the course of placental
Published by Bioscientifica Ltd.
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Figure 2

Major signaling pathways that regulate myofiber growth. Under

conditions of nutrient sufficiency (depicted in green), nutrients (leucine),

and growth factors (insulin and IGF1) coordinate net protein accretion in

skeletal muscle through the mammalian target of rapamycin complex 1

(mTORC1). Leucine binds to its respective leucyl-tRNA synthetase and

activates RAG GTPase proteins, thus bringing Ras homolog enriched in

brain (RHEB) to the surface of the lysosome. Insulin and IGF1 bind to their

respective tyrosine kinase receptors, which phosphorylate insulin receptor

substrate 1 (IRS1). IRS1 activates phosphoinositide 3-kinase (PI3K) and

protein kinase B (AKT) to stimulate mTORC1. mTORC1 activates ribosomal

protein S6 kinase (S6K) and phosphorylates the translation initiation

repressor 4EBP1, which then releases eukaryotic initiation factor 4E (eIF4E)

and enables it to form the translation initiation complex. Under conditions

of oxygen and energy restriction (depicted in pink), hypoxia-inducible

factor (HIF), regulated in development and DNA damage responses 1

(REDD1), and 5 0-AMP-activated protein kinase (AMPK) decrease the rates of

protein synthesis by activating tuberous sclerosis complex (TSC) to suppress

mTORC1 activity. When amino acids are not available, uncharged tRNAs

activate the protein general control nonrepressed 2 (GCN2) to phosphor-

ylate eIF2A and suppress mRNA translation. Under conditions of cellular

stress (depicted in red), forkhead box transcription factor 3 (FOXO3) in its

dephosphorylated state is translocated into the nucleus to upregulate

ubiquitin-mediated proteolysis markers atrogin 1 and MURF1, as well as

the autophagy marker LC3. Dashed lines represent lack of signal.
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insufficiency, but then might activate catabolic pathways

in the setting of worsening hypoxia and increased

catecholamine and cortisol production as nutrient restric-

tion progresses. This is a fundamental area of future

investigation, as treatments to improve muscle growth

will vary based on whether growth is slowed because of

decreased anabolism or increased catabolism.
Nutrient and growth factor regulation of
fetal skeletal muscle growth
Growth factors

Skeletal muscle growth is regulated by several growth

factors, including IGF1, insulin, basic fibroblast growth
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0567 Printed in Great Britain
factor (bFGF), and transforming growth factor-b (TGFB)

(Allen & Rankin 1990, Frost & Lang 2012).

Several studies in humans, transgenic animals, and

cell lines have demonstrated that IGF1 regulates both

myoblast proliferation and myofiber hypertrophy. Igf1

heterozygous knockouts in mice have reduced muscle

mass (Powell-Braxton et al. 1993), whereas homozygous

knockouts have severe muscle hypoplasia due to both

decreased myocyte number and myofiber cross-sectional

area (Liu et al. 1993, Mavalli et al. 2010). Similarly,

mutations in the IGF1 and IGF1R genes in humans

cause both IUGR and postnatal growth restriction

(Woods et al. 1996, Abuzzahab et al. 2003). Conversely,

excessive IGF1 results in increased muscle mass and

hypertrophy in postnatal life, as demonstrated by
Published by Bioscientifica Ltd.
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overexpressing Igf1 in a transgenic mouse or by direct

i.v. infusion into rats (Coleman et al. 1995, Adams &

McCue 1998). In subconfluent myoblasts in vitro, IGF1

acts initially to promote proliferation (Rosenthal & Cheng

1995). In differentiated myotubes, IGFI promotes protein

synthesis (Harper et al. 1987, Coleman et al. 1995).

Insulin also functions as a potent fetal skeletal

muscle growth factor. Pancreatectomy in fetal sheep

results in growth-restricted fetuses with decreased upper

and lower extremity limb length (Fowden et al. 1989).

These experiments confirm lack of insulin as the cause

of growth restriction in cases of pancreatic agenesis in

humans (Lemons et al. 1979). Conversely, studies in

catheterized fetal sheep have shown that both insulin

and IGF1 infusions promote whole-body and muscle-

specific protein synthesis (Milley 1994, Boyle et al. 1998,

Shen et al. 2003). Furthermore, insulin infusion into

neonatal piglets stimulates skeletal muscle protein

synthesis (Davis et al. 2002). High doses of insulin (at

least 0.1 mM) increase protein synthesis and suppress

protein breakdown in both primary cultured and

immortalized myotubes in vitro (Gulve & Dice 1989,

Cassar-Malek et al. 1999, Shen et al. 2005), including

myotubes harvested and cultured directly from fetal

sheep (Harper et al. 1987).

Other growth factors, including bFGF and TGFB,

upregulate cyclin D1 levels in myoblasts, which then

stimulate proliferation and myogenesis (Rao & Kohtz

1995). Myostatin is a member of the TGFB family of

regulators and a potent inhibitor of myogenesis. Double-

muscled cattle carry an inactivating mutation in the

myostatin gene and have 20% more muscle than

normal-muscled cattle (Grobet et al. 1997). Myostatin-

null mice have two to three times greater muscle mass

than WTs (McPherron et al. 1997). These animals also

exhibit less insulin resistance and fat deposition,

demonstrating the important role of muscle in the

regulation of adipose tissue balance and insulin sensi-

tivity (Guo et al. 2012). Follistatin is an inhibitor of

myostatin and works through the activation of the

IGF1R. Mice overexpressing follistatin have a threefold

greater increase in myofiber diameter than those over-

expressing follistatin with a nonfunctional IGF1R

(Kalista et al. 2012).
Amino acids

Amino acids are essential for muscle protein synthesis. In

addition to forming the building blocks of proteins, amino

acids have important regulatory effects on mTORC1
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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activation and muscle protein synthesis. Amino acids

increase skeletal muscle protein synthesis in adults, both

under normal postprandial conditions and during cata-

bolic states such as after trauma and sepsis (Wolfe 2005,

Drummond & Rasmussen 2008). Increasing amino acid

delivery positively affects net protein balance in infants

born preterm or at term (Poindexter et al. 1997, Thureen

et al. 2003, Reynolds et al. 2008). In neonatal piglets,

mixed amino acid or leucine supplementation increases

muscle protein synthesis through mTORC1-dependent

pathways (O’Connor et al. 2003a,b, Suryawan et al.

2008, 2012).

Studies that address the effects of amino acids on

skeletal muscle growth during fetal life are more limited.

One study carried out by de Boo et al. (2005) showed that a

mixed amino acid infusion administered for 4 h increased

whole fetal protein accretion in fetal sheep studied during

late gestation. Our laboratory showed that a mixed amino

acid infusion activated signaling through mTORC1 within

the skeletal muscle of fetal sheep, but only when there was

a concurrent rise in insulin concentrations (Brown et al.

2009). Further studies to determine the interactive roles of

amino acids and growth factors in the regulation of fetal

skeletal muscle development are needed.
Reduced fetal skeletal muscle growth: insights
from models of fetal undernutrition

Effects of fetal undernutrition on myoblast proliferation

and myofiber number

Studies in mice and pigs have shown that myofiber

number is set around the time of birth (Rowe & Goldspink

1969, White et al. 2010). Similar growth patterns have

been observed in humans, as DNA content in the

gastrocnemius muscle increases exponentially between

weeks 15 and 25 of gestation and plateaus by term

(Widdowson et al. 1972). Thus, conditions that deprive

the fetus of nutrients and growth factors during myofiber

formation can have a lasting impact on myofiber number.

Studies of maternal nutrient restriction during preg-

nancy in a variety of animal models have shown dramatic

effects of reduced nutrient supply on the establishment

of fetal myofiber number, with secondary myofibers being

more vulnerable to restricted fetal nutrient supply than

primary myofibers in sheep and pigs (Ward & Stickland

1991, Dwyer et al. 1994, Zhu et al. 2004). In rats fed 30% of

an ad libitum diet during gestation, secondary myofiber

number within the fetal soleus and lumbrical muscles was

decreased by 30% (Wilson et al. 1988). When pregnant
Published by Bioscientifica Ltd.
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sheep were diet restricted by 50% during early gestation

and mid-gestation, which are coincident with the

maximal period of myoblast proliferation (Fahey et al.

2005a), fetal myofiber number was decreased at mid-

gestation and this effect persisted when tested at 8 months

of age (Zhu et al. 2004, 2006). Guinea piglets born to

mothers who had a 40% reduction in feed intake during

the entirety of gestation had 25% less myofibers within

glycolytic muscle types (Dwyer & Stickland 1992a).

Similar reductions in myofiber number were observed

when the duration of maternal dietary restriction in

guinea pigs was shortened, but still overlapped with the

peak period of secondary myofiber formation (Dwyer et al.

1995). Runted piglets, or those piglets that weigh 60% of

the mean litter weight, have persistent deficits in myofiber

number and muscle mass as adults (Powell & Aberle 1980).

They also become fatter and less insulin sensitive (Poore &

Fowden 2004). Myofiber number in pigs positively

correlated with average daily weight into early adulthood

(70–130 days of postnatal age), providing evidence that

myofiber number influences postnatal muscle growth

trajectory (Dwyer et al. 1993).

The mechanisms for restriction of muscle fiber number

from fetal undernutrition are not understood, though

there is evidence for the suppression of fetal myoblast cell-

cycle activity. In a model of placental insufficiency

resulting from sheep bred to produce litters of multiple

lambs of variable birth weight (from 2 to 5 kg), low-birth-

weight lambs had less muscle DNA and decreased

percentage of nuclei entering the S-phase of the cell

cycle, indicative of fewer myonuclei per myofiber and

decreased cell-cycle activity compared with larger lambs

(Greenwood et al. 1999, 2000). This is not unexpected,

given that maternal nutrient restriction results in

reductions in circulating fetal plasma IGF1 concentrations

in rats (Straus et al. 1991), guinea pigs (Dwyer & Stickland

1992b), and sheep (Lee et al. 1997, Osgerby et al. 2002,

Costello et al. 2008, Ward et al. 2008). However, it should

be noted that total myofiber number was not different

between small and large lambs in this study (Greenwood

et al. 1999). There remain many unanswered questions

about the interaction between the effects of chronic

nutrient restriction and subsequent decreases in fetal

growth factor concentrations on myoblast proliferation

and the capacity for compensatory muscle growth.
Effects of fetal undernutrition on myofiber hypertrophy

Studies that extend maternal dietary restriction into late

gestation to evaluate the effects on fetal myofiber
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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hypertrophy are more limited. When pregnant sheep

were fed 70% of a control diet beginning at day 26 of

gestation, the fetal semitendinosus muscle weight was

decreased by 20% on day 135 of gestation (Osgerby et al.

2002). When pregnant sheep were diet restricted by 50%

during mid-gestation to late gestation (days 85–115 of

a 145-day gestation period), individual muscle weights

of offspring at 2 weeks of life were decreased by 15–20%

compared with controls (Fahey et al. 2005b). A shorter

but more severe dietary restriction allowing 30% of

ad libitum intakes for 7 days during late gestation in

sheep resulted in decreased muscle weights compared

with controls (Greenwood et al. 1999). In a model of

placental insufficiency in sheep bred to produce multiple

lambs per litter, the trajectory of muscle growth was

decreased in small, runted lambs compared with large

lambs, as measured by weight over time between 85 and

130 days of gestation. The muscle protein:DNA ratio on

day 130 of gestation in small lambs was also decreased

(Greenwood et al. 1999).

Normalizing dietary intake after early maternal

nutrient restriction (days 30–70) in pregnant sheep,

however, resulted in compensatory myofiber hypertrophy

as evidenced by fewer myofibers but larger fiber cross-

sectional area compared with controls (Fahey et al. 2005b,

Zhu et al. 2006). The phenomenon of postnatal catch-up

growth after fetal growth restriction has been well

described in a variety of species, including in humans

(Jimenez-Chillaron & Patti 2007, Tudehope et al. 2013).

However, the extent to which muscle growth is able to

fully compensate during postnatal life after nutrient

restriction in utero is not entirely clear. Longer-term

follow-up of sheep into adolescence and adulthood after

mid-gestation nutrient restriction has shown accelerated

fat deposition at the expense of lean mass growth (Louey

et al. 2005, De Blasio et al. 2007, Ford et al. 2007). In

undernourished fetal rats, compensatory myofiber hyper-

trophy in the diaphragm occurs through postnatal day 21,

though adult myofiber cross-sectional area is ultimately

smaller (Prakash et al. 1993). These results, taken together,

indicate decreased protein accretion and fetal myofiber

hypertrophy as a result of fetal undernutrition, with

partial, but not complete capacity for compensatory

muscle growth during postnatal life.
Effects of fetal undernutrition on myofiber maturation

A complex schema exists for defining muscle fiber types

in mammals based on a variety of features, including

the predominant type of myosin heavy chain (MHC)
Published by Bioscientifica Ltd.
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expressed (type I, type IIa, type IIx, and type IIb),

contractile machinery and speed of contraction, distri-

bution of oxidative and glycolytic enzymes, and mito-

chondrial density (Pette & Staron 2001, Schiaffino &

Reggiani 2011). Fiber type composition of skeletal muscle

can undergo changes based on environmental influences

(Simoneau & Bouchard 1995), as myofibers can be affected

by neuromuscular activity, exercise training, mechanical

loading, and aging (Pette & Staron 2001). Additionally,

maternal dietary restriction results in fiber type transitions

in offspring, generally favoring increased type I fiber

expression. For example, studies that have evaluated

fiber type shifts in the late fetal or early neonatal period

after maternal dietary restriction in both sheep and rats

found either a relative increase in type I oxidative fibers or

a relative decrease in glycolytic type II fibers (Fahey et al.

2005b, Prakash et al. 1993, Costello et al. 2008). Runted

piglets have more type I fibers than their appropriately

grown littermates (Wank et al. 2000, Bauer et al. 2006).

These findings are not uniformly consistent, as pups of

undernourished pregnant mice exhibited a shift from type

I to type IIa and IIb fibers at 7 weeks of age (Woo et al.

2011). However, any adaptation in MHC expression that

develops in response to fetal undernutrition does not

appear to persist and, in fact, may shift during the lifespan.

For example, when fiber type assessments were extended

into the adolescent period in offspring of nutrient-

restricted sheep, glycolytic type II fibers predominated

(Zhu et al. 2006, Daniel et al. 2007). Low-birth-weight

humans evaluated at 19 years of age had a decreased

proportion of type IIa fibers compared with a control

group with normal birth weights (Jensen et al. 2007).

Further work in this area is required to determine the long-

term significance of fiber type shifts as a result of fetal

undernutrition.
Skeletal muscle growth is particularly vulnerable in

the fetus exposed to fetal undernutrition from

placental insufficiency

Placental insufficiency is a condition whereby a poorly

functioning placenta restricts nutrient supply to the fetus,

preventing normal fetal growth (Figueras & Gardosi 2011).

If placental insufficiency begins early in pregnancy, the

entire process of myogenesis is at a high risk of getting

attenuated and/or disrupted. Deficient skeletal muscle

mass is a characteristic of the human fetus affected by

IUGR (Yau & Chang 1993, Padoan et al. 2004, Larciprete

et al. 2005, Beltrand et al. 2008). Placental insufficiency

commonly begins early in pregnancy so that nutrient
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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restriction to the fetus is chronic, progressive, and severe,

often leading to preterm delivery when fetal well-being is

severely compromised (De Jesus et al. 2013). Fetal skeletal

muscle growth is particularly vulnerable during placental

insufficiency, because blood, oxygen, and nutrients are

preferentially shunted to vital organs (Tchirikov et al.

1998, Yajnik 2004a). Consequently, at least in animal

models of placental insufficiency, skeletal muscle weight

is disproportionately reduced compared with body

weight (Desai et al. 1996, Greenwood et al. 2000, Bauer

et al. 2003).

Placental size and function, fetal growth, and fetal

nutrient and growth factor availability have been well

characterized in a sheep model of chronic and progressive

placental insufficiency, which was developed to mimic a

natural condition of placental and fetal growth restriction

that occurs in sheep that carry their pregnancies in the hot

summer months (PI-IUGR; Bell et al. 1987; Fig. 3). The

PI-IUGR model accurately reflects the characteristics that

occur during human pregnancies affected by conditions

that cause placental insufficiency and IUGR (Barry et al.

2008). Similar to maternal dietary restriction during

pregnancy, fetal plasma insulin and IGF1 concentrations

in PI-IUGR fetuses are 50% of the normal values as early as

70% of the total length of pregnancy (Fig. 3; de Vrijer et al.

2006, Thorn et al. 2009, Macko et al. 2013). Other sheep

models of chronic placental insufficiency caused by pre-

pregnancy reduction of placental attachment sites or

uteroplacental embolization also demonstrate decreased

fetal insulin and IGF1 concentrations (Owens et al. 1994,

Eremia et al. 2007), as do human IUGR fetuses (Nicolini

et al. 1990, Lassarre et al. 1991, Leger et al. 1996, Iniguez

et al. 2006). Leucine flux from the mother to the fetus is

decreased by 90% of the length of gestation in PI-IUGR

sheep (Fig. 3; Brown et al. 2012, Regnault et al. 2013).

Similarly, amino acid transport across the placenta is

impaired in the third trimester of human IUGR preg-

nancies (Cetin et al. 1992, Paolini et al. 2001).

Two of the distinguishing features that separate

models of placental insufficiency from maternal dietary

restriction are fetal hypoxemia and increased production

of counter-regulatory hormones. In the PI-IUGR sheep

model, norepinephrine and cortisol concentrations are

increased (Leos et al. 2010), and fetuses are severely

hypoxemic (Regnault et al. 2007, Leos et al. 2010),

consistent with evidence from severe IUGR in human

pregnancies (Pardi et al. 1993). Oxygen sensors such as HIF

(HIF1A) and AMPK (PRKAA1) might play a role in the

regulation of fetal muscle growth under conditions of

placental insufficiency, as has been shown in placentas
Published by Bioscientifica Ltd.
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Figure 3

Progressive physiological changes in a model of placental insufficiency-

induced IUGR (PI-IUGR) in relation to fetal myogenesis. Pregnant sheep

were housed in an environmental chamber with elevated ambient

temperatures to restrict placental growth (PI-IUGR) beginning on day 40

for a maximum of 80 days during their 145-day gestation period. Placental

weights, fetal weights, and fetal lengths were compared between PI-IUGR

sheep and sheep housed in thermo-neutral conditions (controls) during

early gestation (day 55), mid-gestation (days 90 and 103), and late

gestation (day 135). At mid- and late-gestation time points, surgery was

performed in PI-IUGR and control sheep for the placement of fetal

umbilical and arterial sampling catheters to compare umbilical and fetal

oxygenation, circulating fetal growth factor concentrations, and fetal

glucose and amino acid (AA) concentrations. Arrows (Y) represent changes

in parameters in PI-IUGR animals compared with controls;4, no change in

PI-IUGR animals and controls. A schematic showing the progression of fetal

myogenesis during ovine gestation is shown at the top of the figure (Fahey

et al. 2005a, Regnault et al. 1999, 2002, 2007, Limesand et al. 2006, de Vrijer

et al. 2006, Ziebell et al. 2007, Arroyo et al. 2008, 2009, Thorn et al. 2009,

Brown et al. 2012, Macko et al. 2013).

Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Review L D BROWN Regulation of fetal skeletal
muscle growth

221 :2 R21
collected from human IUGR pregnancies (Cindrova-

Davies et al. 2013).
Relationships between low birth weight and
skeletal muscle mass in humans

Epidemiological evidence supports that reduced muscle

mass in adulthood is, in part, due to environmental

influences from placental insufficiency during fetal life.

Such evidence has been generated by studies carried out in

infants with a birth weight !2500 g at term gestation or

who were documented as SGA. Two important studies

using epidemiological data from the third National Health

and Nutrition Examination Survey (NHANES) cohort have

identified low birth weight as an early predictor of reduced

muscle growth in childhood. Hediger et al. (1998) first

demonstrated an overall deficit in the amount of

muscularity estimated by anthropometric measurements

of upper-arm circumference in SGA infants compared with

appropriately sized for gestational age (AGA) infants up to

3 years of age. Baker et al. (2010) further showed that while

head circumference growth is maintained between

2 months and 8 years of age in SGA children compared
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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with AGA children, muscle growth remains stunted.

When body composition was measured by dual-energy

X-ray absorptiometry (DXA) in adolescents, low birth

weight was found to be associated with decreased lean

body mass independent of age, sex, pubertal stage,

physical activity, and height (Singhal et al. 2003). Even

as early as the immediate neonatal period, lean body mass

was found to increase between 36 and 41 weeks in AGA

neonates, but not in SGA neonates (Lapillonne et al. 1997).

The association between birth weight and muscle

mass extends into adulthood. Several large population-

based studies have found that low birth weight predicts

lower adult muscle mass (measured by DXA) in men and

women during young adulthood (Kahn et al. 2000),

middle-ages (Sayer et al. 2004, Kensara et al. 2005,

Yliharsila et al. 2007), and late adulthood (Gale et al.

2001). Monozygotic twin studies in both men and women

have found that the lower-birth-weight twin had less lean

body mass and more subcutaneous fat than the heavier

twin, supporting the consistent observation that the

intrauterine environment, independent of genetic influ-

ences, predicts lean mass in adulthood (Loos et al. 2001,

2002). Even as late as the seventh decade of life, 25% of the
Published by Bioscientifica Ltd.
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variation in lean body mass was explained by birth weight

(Gale et al. 2001). As obesity is generally associated with

excess lean as well as fat mass, obesity found following

low birth weight presents a unique mechanism that may

not necessarily be due to increased energy intake that

characterizes most cases of adult obesity.
↓ Nutrient flow from the mother to the fetus

↓ Fetal muscle mass

↓ Fetal nutrients
Amino acids

Glucose
Oxygen

↓ Fetal growth factors
Insulin
IGF1

↓ Myoblast
proliferation

↓ Myofiber
number

↓ Myofiber
hypertrophy

↑ Adult metabolic disease

+

Figure 4

Proposed mechanisms for reduced skeletal muscle growth during

conditions of fetal undernutrition. During conditions of fetal under-

nutrition (from either maternal dietary restriction or placental insuffi-

ciency), nutrient delivery to the fetus (amino acids, glucose, and oxygen)

and circulating fetal growth factors (insulin and IGF1) are restricted. The

combination of decreased supply of growth factors and nutrients leads to

reduced rates of myoblast proliferation and myofiber hypertrophy,

ultimately leading to reductions in fetal skeletal muscle mass. The dashed

line indicates pathways yet to be determined for how decreased fetal

muscle mass contributes to an increased risk of adult metabolic diseases

such as obesity, coronary heart disease, and type 2 diabetes.
Effects of IUGR on skeletal muscle growth and
function and long-term metabolic health

Populations around the world are faced with epidemic

increases in the incidence of obesity and diabetes. In the

USA, more than one-third of adults and 17% of children and

adolescents are obese (Ogden et al. 2012). Projections show

that one in three Americans will develop diabetes by 2050

(Boyle et al. 2010). Compelling associations link low birth

weight and decreased muscle mass to the development

of the metabolic syndrome and type 2 diabetes (Whincup

et al. 2008, Atlantis et al. 2009) and an increased risk of

cardiovascular events later in life (Basaria & Bhasin 2012).

Thus, it is imperative that all major factors that contribute to

diabetes and obesity risk be investigated, including the role

of disproportionately reduced muscle mass.

The amount of muscle mass has major impact on fat

deposition, insulin sensitivity, strength, and locomotion.

Interactions between muscle mass, fat mass, and fat

distribution (visceral vs subcutaneous) have been demon-

strated, supporting the concept that reduced capacity for

muscle growth favors and accelerates visceral fat depo-

sition and obesity (Yajnik 2004b, Kensara et al. 2005). For

example, intrauterine growth patterns contribute to the

‘thin-fat’ phenotype of Indian diabetic patients. This

phenotype is characterized by less muscle mass but greater

body fat and central obesity (Yajnik 2004b). Infants born

in India compared with infants born in the UK are lighter,

shorter, and thinner, but have similar subscapular skin

fold thicknesses, indicating smaller muscle mass but

preserved fat mass (Yajnik et al. 2003). There are also

direct links between low birth weight and insulin

resistance, with evidence that insulin signaling pathways

within human skeletal muscle are disrupted as a result of

an IUGR pregnancy (Ozanne et al. 2005, Jensen et al.

2008). The effects of low birth weight have also been

shown to affect muscle strength. Grip strength is a

measure of muscle strength and predictor of quality of

life, morbidity, and mortality (Rantanen et al. 2000).

Epidemiological studies have shown a positive correlation

between birth weight and grip strength in adulthood

(Inskip et al. 2007), primarily through the association of

lean mass composition (Yliharsila et al. 2007, Ortega et al.
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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2009). One study comprehensively evaluated grip

strength, maximal isometric voluntary contraction

(MVC) of the quadriceps femoris, and muscle fatigue

before and after an 8-week training program in women

who had a ponderal index (PI, a marker of thinness)

recorded at the time of birth. Results showed that women

born with a PI !10%, reflecting IUGR during the

pregnancy, had 11% lower grip strength, 9–24% lower

MVC, and a higher rate of muscle fatigue both before and

after training compared with women who had a normal PI

at the time of birth (Brutsaert et al. 2011). In summary,

these findings implicate structural and functional deficits

in muscle as major contributors to an increased risk of

later-life development of metabolic and cardiovascular

diseases in those born with a low birth weight due to IUGR

(Barker et al. 2005, Barker 2006, Warner & Ozanne 2010).
Potential for improving fetal muscle growth in
IUGR: future research directions

Clinical attempts at increasing maternal nutrition during

human pregnancy to improve fetalgrowthhavebeen largely
Published by Bioscientifica Ltd.
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unsuccessful. Nutritional supplements with balanced

energy and proteins given to pregnant mothers at a high

risk of having an IUGR fetus increased birth weight, though

whether this promoted fat deposition vs lean mass was not

determined (Rush et al. 1980). Current postnatal nutritional

interventions for IUGR neonates designed to increase body

weight favor fat deposition over muscle growth. The

problem is magnified when preterm birth is considered.

Almost all extremely low-birth-weight preterm infants

experience postnatal growth restriction in the neonatal

intensive care unit, even when they are born AGA (Dusick

et al. 2003, Ehrenkranz et al. 2006). Preterm birth alone can

disrupt normal skeletal muscle development, as preterm

infants who are not IUGR have decreased lean mass and

increased fat mass at the time of discharge compared with

normal full-term infants (Johnson et al. 2012).

Promisingly, however, specific nutrient and growth

factor supplementation studies in sheep models of placental

insufficiency have yielded encouraging results. Chronic,

low-dose IGF1 infusions into IUGR sheep fetuses, either

by direct fetal i.v. infusion or by intra-amniotic supple-

ments, improved fetal organ growth (Eremia et al. 2007).

Additionally, short-term amino acid infusion given directly

to PI-IUGR sheep fetuses increased protein accretion rates

by suppressing protein breakdown rates, although whether

this affected skeletal muscle growth specifically is yet to be

determined (Brown et al. 2012). The use of large animal

models of chronic placental insufficiency, such as the

PI-IUGR model, allows for the manipulation offetal substrate

and hormone concentrations during critical windows in

muscle development. This strategy will provide critical

information about the optimal timing and type of supple-

mentationto improvemusclegrowth in IUGRfetuses, aswell

as determine cellular deficits that might explain how

myoblast proliferation and myofiber hypertrophy become

permanently impaired (Fig. 4). Targeting strategies to

promote fetal muscle development could improve the

potential for postnatal muscle growth, thereby minimizing

the risk of developing long-term insulin resistance and

chronic metabolic diseases in IUGR individuals.
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