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Abstract
Thyroid hormones (THs) are produced by the thyroid gland and converted in peripheral

organs by deiodinases. THs regulate cell functions through two distinct mechanisms:

genomic (nuclear) and nongenomic (non-nuclear). Many TH effects are mediated by the

genomic pathway – a mechanism that requires TH activation of nuclear thyroid hormone

receptors. The overall nongenomic processes, emerging as important accessory mechanisms

in TH actions, have been observed at the plasma membrane, in the cytoplasm and

cytoskeleton, and in organelles. Some products of peripheral TH metabolism (besides

triiodo-L-thyronine), now termed ‘nonclassical THs’, were previously considered as inactive

breakdown products. However, several reports have recently shown that they may have

relevant biological effects. The recent accumulation of knowledge on how classical and

nonclassical THs modulate the activity of membrane receptors, components of the

mitochondrial respiratory chain, kinases and deacetylases, opened the door to the discovery

of new pathways through which they act. We reviewed the current state-of-the-art on the

actions of the nonclassical THs, discussing the role that these endogenous TH metabolites

may have in the modulation of thyroid-related effects in organisms with differing

complexity, ranging from nonmammals to humans.
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Introduction
General notions

The thyroid gland produces two main iodothyronines:

tetraiodo-L-thyronine (T4) and triiodo-L-thyronine (T3). In

humans, T4 is synthesized entirely within the thyroid and

acts as a pro-hormone to generate T3. Only 20% of the T3 in

circulation is secreted directly by the gland itself. The

remaining T3 derives from the peripheral monodeiodi-

nation of T4. Deiodinase activity regulates the local and

systemic availability of T3 and other iodothyronines.

Thyroid hormone (TH) deiodination is mediated by three
selenoenzymes: type 1 deiodinase (D1), preferentially

expressed in the liver and also expressed in the kidney,

thyroid, and pituitary; D2, present in the CNS, anterior

pituitary, brown adipose tissue, and placenta; and D3 in the

CNS, placenta, skin, and fetal tissue. For further details on

deiodinases, the reader is referred to Bianco (2011), Maia

et al. (2011), Orozco et al. (2012) and Luongo et al. (2013).

Other biochemical pathways are involved in TH

metabolism in addition to deiodination. Conjugation of

phenolic hydroxyl groups with sulfate or glucuronic acid

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-13-0573


Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Review R SENESE, F CIOFFI and others Nonclassical thyroid hormones 221 :2 R2
increases water solubility of substrates, facilitating biliary

and/or urinary clearance (Visser 1990). Decarboxylation

and deamination of THs lead to the formation of the so-

called acetic acid-TH analogs such as triiodothyroacetic

(Triac) and tetraiodothyroacetic (Tetrac) acids (Siegrist-

Kaiser & Burger 1994). Several transporters contribute to

the uptake of TH into the peripheral tissue, including

organic anion-transporting polypeptides (OATPs), L-type

amino acid transporters, monocarboxylate transporters

(MCT), and bile acid transporters see for a recent review:

Visser (2013).
TH actions

THs regulate cell functions through two distinct

mechanisms: genomic (nuclear) and nongenomic (non-

nuclear). Most effects of TH are mediated by the genomic

pathway – a mechanism that requires thyroid hormone

activation of nuclear receptors (TRs). This leads to a

conformational change allowing interaction with specific

thyroid hormone responsive elements located on the

promoters of THs target genes (Bassett et al. 2003, Moeller

& Broecker-Preuss 2011, Tata 2013, Pascual & Aranda

2013), regulating transcription rate. TRs homodimerize

or interact with other nuclear receptors such as the retinoic

X receptor (Forman et al. 1992, Bogazzi et al. 1994).

TRs belong to a large family of ligand-dependent transcrip-

tion factors, which includes nuclear hormone receptors

for vitamins, xenobiotics, and sex steroids (Weitzel &

Alexander Iwen 2011). They are termed as TRa and TRb and

are encoded by two genes (a and b) located on two different

chromosomes (Cheng 2000) that express differently in

developing and adult tissues (Oetting & Yen 2007, Cheng

et al. 2010). Highest Tra1 (Thra) expression is in the brain,

with lower levels in the kidney, skeletal muscle, lungs,

heart, and liver, whereas Trb1 is expressed predominantly

in the kidneys and liver, and at lower levels in the brain,

heart, thyroid skeletal muscle, lungs, and spleen (Williams

2000). TRb isoforms are involved in lipid metabolism

(Pramfalk et al. 2011) by reducing serum lipids (Johansson

et al. 2005, Angelin & Rudling 2010, Shoemaker et al. 2012).

TRb disruption in mice impairs fatty acid (FA) oxidation

(Araki et al. 2009) even in the presence of TRa over-

expression (Gullberg et al. 2000, 2002). TRb agonists have

approximately tenfold greater affinity for TRb than TRa,

with a marked effect on the liver and efficacy in lowering of

cholesterol (Webb 2010, Ladenson 2011). Although T3

exerts many of its actions through canonical transcrip-

tional regulation, an increasing amount of evidence shows

that many of T3 effects are initiated outside the nucleus and
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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involve different signaling transduction pathways. These

effects are mediated by nongenomic actions. The overall

nongenomic processes are poorly understood but emerge

as important accessory mechanisms in TH actions and have

been observed at the plasma membrane, in the cytoplasm

and cytoskeleton, and in organelles (Wrutniak-Cabello

et al. 2001, Cheng et al. 2010). Membrane receptors,

consisting of specific integrin alpha V beta 3 (aVb3)

receptors, have been identified (Bergh et al. 2005). THs on

the cell surface trigger the serine–threonine kinase

(MPK/ERK) pathway via the integrin receptor (Bergh et al.

2005, Cody et al. 2007), initiating complex cellular events

(Lin et al. 2009a,b). In the cytoplasm, THs activate PI3K and

thereby downstream gene transcription of specific genes.

T3 also activates PI3K from the integrin avb3 hormone

receptor site (Lin et al. 2009b, Moeller & Broecker-Preuss

2011). Calcium is a second messenger regulated by THs

through the modulation of a Ca2C-ATPase (Galo et al.

1981). Del Viscovo et al. (2012) showed that THs exert

short-term nongenomic effects on intracellular calcium by

modulating plasma membrane and mitochondrial

pathways in rat pituitary GH3 cells. Furthermore, cellular

actions involving Akt/protein kinase B (shown in human

fibroblasts; Moeller et al. 2005) and AMP-activated protein

kinase (AMPK) (in mice) (Irrcher et al. 2008) are well

known. De Lange et al. (2008) showed that in rat skeletal

muscle, T3 stimulates FA and glucose metabolism through

rapid activation of AMPK and Akt/protein kinase B signal

transduction.

THs regulates mitochondrial activity and thus it

may perhaps not be surprising that the mitochondria

themselves are important target for THs. THs modulate

mitochondrial activity through two ways: direct or

indirect. The first requires the presence inside the

organelles of specific binding sites for THs that play

important physiological roles in regulation of the mito-

chondrial transcription apparatus (see for review, Cioffi

et al. (2013)). One of these binding sites, termed p43, has

been identified as a bona fide TR that binds to the D-loop

region that contains the promoters of the mitochondrial

genome (Wrutniak et al. 1995). By contrast, the indirect

way acts through increased, nuclear TR-dependent tran-

scription of factors that modulate the expression of

mitochondrial genes (see for review, Cioffi et al. (2013)).
The nonclassical THs

Besides T3, nonclassical THs exist. In the present review,

we summarize the highlights of their biological actions.
Published by Bioscientifica Ltd.
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Tetrac and Triac

In humans, the amount of Triac produced by the liver and

other tissues accounts for about 14% of T3 metabolism

(Siegrist-Kaiser & Burger 1994). Triac is weakly TRb-

selective, with a 1.5-fold affinity for TRb (Schueler et al.

1990). Triac has been used to suppress thyroid-stimulating

hormone (TSH) secretion in TH-resistant patients

(Kunitake et al. 1989) and to increase metabolic rate in

obese patients (Dumas et al. 1982). It has been shown to be

more potent than T3 as both a b-adrenergic stimulator of

uncoupling protein 1 and inducer of lipoprotein lipase

mRNA, D3 activity, and mRNA (Medina-Gomez et al. 2003).

Triac inhibits expression and secretion of leptin in rat

primary white and brown adipocytes with a potency similar

to that of T3 (Medina-Gomez et al. 2004). The use of Tetrac

as a potential substitute for T4 has been studied in the

treatment of myxedema and for its ameliorating effect on

peripheral lipid metabolism in humans. The effects are

similar to those of T4, but require higher dosing (Lerman

1956). Tetrac is currently used in the clinic for the

treatment of TH resistance (Anzai et al. 2012). Therapeutic

doses of Triac to treat pituitary and thyroid disorders

exceed those required for T4 and T3 (Sherman & Ladenson

1992, Bracco et al. 1993), a property attributed to its short

half-life in humans and rodents (Pittman et al. 1980,

Moreno et al. 1994). Classic THs are transported within the

cell by TH transporters (Visser 2013). Tetrac does not seem

to depend on active transport, at least by the most

abundant transporter MCT8. Tetrac can replace T3 to

restore normal fetal mouse brain development in MCT8-

null mice (Horn et al. 2013).
Thyronamines

The structures of the thyronamines (TAMs), a novel class

of endogenous thyroid-signaling molecules, differ from T4

and deiodinated TH derivatives by the absence of a

carboxylate group on the alanine side chain. 3-Iodothyro-

namine (T1AM) and T0AM have been detected in vivo

(Scanlan et al. 2004, DeBarber et al. 2008) in the serum of

rodents and humans (Saba et al. 2010, Hoefig et al. 2011),

in rat liver, brain, and heart (Chiellini et al. 2007, Saba et al.

2010). Data from Piehl et al. (2008) present a role for

deiodinases in TAM biosynthesis, defining biosynthetic

pathways for T1AM and T0AM with T4 as a pro-hormone.

Seemingly in contrast, a recently developed method to

detect T1AM and T0AM in tissues and plasma (Ackermans

et al. 2010) failed to reproduce the above data. Using rats

treated with (13)C-labeled T4, the authors could detect
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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in vivo conversion of T4 to T3 but not to T1AM in plasma or

brain samples, neither any endogenous T1AM nor T0AM

was detected in the plasma from rats and plasma and in

thyroid tissue from humans. Indeed, iodothyronine

decarboxylation to iodothyronamines has not been

demonstrated directly, and the aromatic amino acid

decarboxylase was shown to be unable to catalyze

iodothyronine decarboxylation (Hoefig et al. 2012). In

line with this, data from Hackenmueller et al. (2012)

suggest that T1AM is not an extrathyroidal metabolite of

T4, yet is produced within the thyroid by a process that

requires a sodium–iodide symporter and thyroperoxidase,

the same biosynthetic factors necessary for T4 synthesis.

These data shed new light on the pathways potentially

involved in T1AM production and imply that the

enzymatic conversion of iodothyronine to iodothyro-

namine is not simple. Steady-state physiological T1AM

serum concentrations are similar to those of T3, and tissue

concentrations of its metabolite, T0AM, exceed T4 and T3

metabolites by two- and 20-fold respectively (Hart et al.

2006, Chiellini et al. 2007). Physiological receptor(s) of

TAMs remain to be identified. In TR receptor binding/gene

activation assays, T1AM showed no affinity for TRb and

TRa, and inability to modulate nuclear TR-mediated

transactivation (Chiellini et al. 1998). Studies surrounding

TAM association with other receptors concluded that

neither T0AM nor 3-T1AM activated Gas-coupled dopa-

mine D1 and b2 adrenergic receptors (Scanlan et al. 2004).

T1AM, however, was found to be a potent agonist of trace

amine-associated receptor 1 (TAAR1), an orphan

G protein-coupled receptor (Zucchi et al. 2006). Rat and

mouse TAAR1 are activated by T1AM, with EC50 values of

14 and 112 nM respectively. The T1AM ligand pharmaco-

phore that activates TAAR1 was later characterized

(Hart et al. 2006, Tan et al. 2007, 2008, Snead et al.

2008). T1AM reduces activation of the proto-oncogene

c-fos (Manni et al. 2012). Ianculescu et al. (2009) reported

that the cellular uptake of T1AM occurs via specific,

saturable, and inhibitable transport mechanisms that are

sodium and chloride independent, pH dependent, TAM

specific, and do not involve candidate transporters of

monoamines, organic cations, or THs. By a novel RNAi

screening method, eight transporters of interest were

identified. Knockdown resulted in T1AM transport in

HeLa cells, but the physiological role of these transporters

remains unknown. Studies using COS-1 cells transfected

with multispecific OATPs, 1A2, 1B3, and 1C1, and the

specific TH transporters, MCT8 and MCT10, proved that

T1AM differentially inhibits T3 and T4 cellular uptake by

these transporters (Ianculescu et al. 2010). Notably, T1AM
Published by Bioscientifica Ltd.
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also inhibits both T3 and T4 uptake via MCT8, the most

specific TH transporter. T1AM has no effect on TH

transport by OATP1B3 and MCT10.

In mice, Scanlan et al. (2004) showed that a single i.p.

injection of T1AM rapidly induced an w10 8C drop in

body temperature that peaked 1 h after injection and dose

dependently disappeared after 4–6 h. The same authors

further showed that T1AM reduction on cardiac

performance was a direct effect and independent of

T1AM-induced hypothermia. In a rat working heart

preparation held at 37 8C, introduction of T1AM into the

perfusion buffer resulted in large and immediate decreases

in both heart rate and systolic aortic pressure. Additional

studies on the heart have further supported direct actions

of T1AM on this organ (Chiellini et al. 2007, Frascarelli

et al. 2008). A single i.p. dose of T1AM dramatically

switched fuel utilization away from carbohydrates and

toward lipids (Braulke et al. 2008). Siberian hamsters

(Phodopus sungorus), a hibernating rodent species, and

mice completely shifted their respiratory quotients (RQ)

from a normal, mixed carbohydrate and lipid value (0.90

for hamsters and 0.83 for mice) to a complete and

persistent lipid-related RQ value of w0.7 with elevated

urine ketone content. The RQ effect (4.5 h after injection)

lagged behind hypothermia, bradycardia, or hyper-

glycemia (1 h after injection). I.v. infusion with a low

T1AM dose (0.5 mg/kg) into nonfasted naive rats rapidly

increased endogenous glucose production and plasma

glucose, plasma glucagon, and corticosterone, but did not

affect plasma insulin (Klieverik et al. 2009). Contrastingly,

in i.c.v. injected (130 ng/100 g body weight (BW)) short-

term fasted male mice (Manni et al. 2012), T1AM failed to

ameliorate lipid profiles. It is known to possess a central

effect, namely hypophagia, as well as peripheral effects of

raised plasma glucose levels and reduced peripheral

insulin sensitivity (the latter being also seen after i.p.

injection (Braulke et al. 2008, Klieverik et al. 2009)),

accompanied by pancreatic insulin production. Plasma

free T3 (fT3) levels were also lowered. Nonfasted, drug-

naive rats (Klieverik et al. 2009) treated with T1AM

(100 mg/kg) acutely increased endogenous glucose

production and hyperglucagonemia, while (in contrast

to the effect in fasted mice (Manni et al. 2012)) plasma

insulin decreased. T0AM had a similar effect that was less

profound (Klieverik et al. 2009). Interestingly, T1AM

injection in mice resulted in 12% of the injected dose in

the plasma, highlighting its systemic bioavailability

(Manni et al. 2012). Inhibition of T1AM conversion by

pretreatment with a mitochondrial amine oxidase

inhibitor, clorgyline (250 mg/100 g BW), prominently
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0573 Printed in Great Britain
increased T1AM serum levels, but prevented the hyper-

glycemia and reduction of fT3 levels. This led the authors

to indicate that a metabolite of T1AM causes these adverse

effects. Central effects of T1AM administration also

included amelioration of memory and reduction in pain

threshold (Manni et al. 2013). T1AM’s enhancing effect on

learning renders this compound useful in the treatment of

neurodegenerative diseases.
3,3 0,5 0-Triiodo-L-thyronine

3,3 0,5 0-T3 (reverse T3, abbreviated as rT3), a product of

5-deiodination of T4 by D1 and D3, is a potent initiator of

actin polymerization in astrocytes. It portrays similar

effectiveness to T4 and much more than T3 (Farwell et al.

2006). In hypothyroid rodents, neurons and astrocytes

develop poor actin cytoskeletons that T3 replacement

cannot rescue. However, rT3 initiates reappearance of

filamentous actin within minutes without altering total

actin mRNA or protein content (Farwell et al. 1990,

Siegrist-Kaiser et al. 1990). This rT3 property is attributed

to TRDa1, a native TR isoform that lacks a nuclear

localization signal and is present in the extranuclear

compartment of astrocytes and neurons. This isoform

has the ligand affinity and specificity required for of actin

polymerization by rT3. A study of the astrocytes of the

developing mouse cerebellum deprived of both TRs

showed that TRDa1 rescued the actin cytoskeleton’s

response to rT3 (Flamant & Samarut 2003). Thus, THs

may require TR regions that are not necessarily canonical

DNA-binding regions. rT3 also inhibits free FA levels in

chickens stimulated with dexamethasone or adrenaline

(Bobek et al. 2002).
3,5-Diiodo-L-thyronine

Several studies have indicated 3,5-diiodo-L-thyronine (T2),

an endogenous metabolite of T3, as a peripheral mediator of

several TH metabolic effects. Although conversion of T3 to

T2 has not been demonstrated in vitro, indirect evidence

indicates that T2 is indeed formed from T3 in vivo through

deiodination (Moreno et al. 2002). Serum concentrations of

T2 in humans are within the picomolar range (16 pM in

healthy individuals to 50 pM maximum in individuals with

nonthyroidal illness; Pinna et al. 1997). Rat intra-hepatic T2

concentrations are 1.5 fmol/100 mg (Moreno et al. 2002). To

date, results in hypothyroid rats suggest that T2 has specific

actions on resting metabolic rate (RMR) that are distinct

from those of T3: they are more rapid and not attenuated by

actinomycin D (see Fig. 1A and B; Lanni et al. 1996).
Published by Bioscientifica Ltd.
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Figure 1

Changes in RMR in hypothyroid (PCI) and euthyroid (N) rats after

administration of T4, T3, and the nonclassical thyroid hormone T2, with or

without simultaneous administration of actinomycin D. (A) Hypothyroid-

ism was chronically induced by combined treatment of propylthiouracil

(PTU) and IOP (PCI). N and PCI rats were acutely injected with 25 mg

iodothyronine/100 g body weight (BW). Each data-point shows the

meanGS.E.M. from four rats. Values are expressed as a percent change from

the value at time 0 (i.e. immediately before injection). Actual RMRs

(lO2 kg/0.75 per h) at time 0 were 1.01G0.12, 0.99G0.10, and 0.94G0.08

for PCICT3, PCIC3,5-T2, and PCICT4 groups respectively. (B) Actinomycin

D (8 mg/100 g BW) was injected in combination with 25 mg/100 g BW of

either T3 or 3,5-T2. Each data-point is the meanGS.E.M. from four rats.

Values are expressed as a percent change from the time 0 value (i.e.

immediately before injection). Actual RMRs (lO2/kg0.75/h) at time 0 were

1.06G0.15, 0.98G0.12, and 1.44G0.04 for PCICT3Cactinomycin D, PCIC

3,5-T2Cactinomycin D, and NCT3Cactinomycin D groups respectively.

(C) RMRs (lO2 kg/0.75 per h) at time 0 were 1.41G0.03, 1.39G0.04, and

1.42G0.03 for NCT3, NC3,5-T2, and NCT4 groups respectively.

Figure adapted from Moreno et al. (2002), republication approved by

the Endocrine Society.
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T3 injection to euthyroid animals resulted in combined T3

and T2 patterns on RMR (see Fig. 1C). T3, propylthiouracil

(inhibiting type 1 deiodinase and thyroid peroxidase

activity), and iopanoic acid (inhibiting the activity of all

three deiodinases) combined treatment showed a long-term

induction of RMR. T2 is thus predominantly responsible for

short-term induction of RMR (Fig. 1A; Moreno et al. 2002).

The metabolic effects of T2 also underlined the ability of this

hormone to improve survival of hypothyroid rats to cold

with persistent increased energy expenditure (Lanni et al.

1998). Furthermore, uponT2 administration tohypothyroid

rats, the RMR and FA oxidation increases in the muscle

mitochondria are accompanied by mitochondrial transloca-

tion of the FA transporter FAT/CD36, ensuring effective

increases in metabolic rate (Lombardi et al. 2012). Several

data support the ability of T2 to stimulate mitochondrial

activities in a very rapid manner (Lanni et al. 1992, 1993,

1994, Goglia 2005, Cavallo et al. 2011), excluding

short-term genomic action of T2. Chronic treatment of

hypothyroid rats with T2 revealed a different picture: T2

upregulated protein levels of ATP synthase subunits (alpha,

beta, F(o)I-PVP, and OSCP; Mangiullo et al. 2010). Increase

in b-subunit mRNA accumulation suggested indirect tran-

scriptional regulation by T2 through activation of the

transcription factor, GA-binding protein/nuclear respir-

atory factor-2 (Mangiullo et al. 2010). Moreover, D1 activity

in the rat anterior pituitary has been shown to be increased

transiently after a single injection of T2, while in a

reaggregate culture of anterior pituitary, T2 has been

demonstrated to stimulate D1 at 24 h after its application,

dose dependently (Baur et al. 1997).

T2, as a nonclassical TH, is able to prevent BW gain

when administered i.p. to rats fed a high-fat diet without

inducing T3-related undesirable side effects (tachycardia,

cardiac hyperplasia, and decreased TSH levels), at least

at the administered dose (25 mg/100 g BW for 4 weeks)

(Lanni et al. 2005, De Lange et al. 2011, Moreno et al.

2011). At this dose, by almost doubling hepatic FA

oxidation rate, T2 efficiently prevented HFD-induced

i) hepatic fat accumulation, ii) insulin resistance, and

iii) increase in serum triglycerides (TGs) and cholesterol

levels (Lanni et al. 2005). T2 stimulated mitochondrial

uncoupling, decreased ATP synthesis, and increased fat

burning, thus counteracting obesity (Lanni et al. 2005).

An important consequence of the above-described

effects of T2 included increased skeletal muscle insulin

sensitivity, due to an increased response to insulin of

Akt/PKB phosphorylation, and sarcolemmal glucose

transporter 4 accumulation (Moreno et al. 2011). Impor-

tantly, T2 also induced biochemical and structural shifts
Published by Bioscientifica Ltd.
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toward glycolytic myofibers (Moreno et al. 2011). For an

overview of T2’s effects on metabolism, see Fig. 2.

Proteomic analysis of intracellular and mitochondrial

proteins (Silvestri et al. 2010) revealed that mitochondria

were the principal targets of T2’s normalizing effects on

changes induced by high-fat diet (HFD). BN-page analysis

revealed that T2 partially restored individual OXPHOS

complex (predominantly complexes I and II) levels

induced by HFD. Additionally, T2 augmented the activities

of respiratory complexes, with respect to both HFD (except

complex V) and N animals (except complex IV). In rats

pre-fed a HFD, subsequent T2 administration reduced

hepatic fat and hyperlipidemia via the same biochemical

pathways described previously (Mollica et al. 2009).
Fatty acid oxidation
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Figure 2

Thyroid synthesis of thyroid hormones (THs) and administration effects of

nonclassical THs. Question mark, thyroid synthesis of T2 and T1AM is

currently still under debate. Peripheral synthesis of nonclassical THs by

deiodinase activity (see text) is not indicated. Administration of non-

classical THs (for explanations of treatments, see text) indicated in color.

White, Triac incubation in rat primary cultures; yellow, i.p. administration
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T2 carries out its antilipidemic effects via activation of

two important factors involved in lipid metabolism:

AMPK and nuclear deacetylase sirtuin 1 (SIRT1). AMPK is

a known sensor of cellular ATP levels (Ruderman et al.

2013), and SIRT1 regulates metabolic balance in response

to increases in cellular NADC:NADH ratios. It has recently

been identified to be a crucial target abating, diet-induced

obesity in rodents (Rodgers et al. 2005, Lagouge et al. 2006,

Gerhart-Hines et al. 2007). After simultaneous adminis-

tration to rats receiving a high-fat diet, rapid induction of

hepatic FA oxidation by T2 (within 6 h) was concomitant

with hepatic activation of SIRT1, an activity persisting

over time. Increased phosphorylation of AMPK was obser-

ved after 4 weeks of treatment (De Lange et al. 2011).
Hypophagia

Reduction pain threshold

Amelioration of memory

Fatty acid oxidation

Insulin resistance

Glycolysis
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Insulin synthesis
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of T2 in rats on a high-fat diet; green, i.p. or i.v. administration of T1AM in

mice; grey, i.v. administration of T1AM in mice; red, i.c.v. administration of

T1AM to fasted mice; blue, i.c.v. administration of T1AM to mice; and

purple, rT3 administration to mice. Arrows pointing upward, upregulation;

arrows pointing downward, downregulation; double horizontal arrows,

no change; and absence of arrows, no effect reported to date.
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Induction of SIRT1 led to deacetylation of peroxisome

proliferator-activated receptor g coactivator-1a and sterol

receptor element binding protein-1c (SREBP-1c), associ-

ated with induction and reduction of expression of genes

involved in FA oxidation and lipogenesis respectively

(De Lange et al. 2011). These findings provide a clue to

explain T2’s effectiveness in lowering hepatic fat accu-

mulation and counteracting insulin resistance with

respect to T3. In a similar system, T3 has increased hepatic

lipogenesis (Cable et al. 2009).

A second clue indicating that T2 has contrasting effects

on hepatic lipogenesis involving SREBP-1c was found

in vitro. T3 increases an active precursor of SREBP-1c in

HepG2 cells without modulating SREBP-1c transcription

(Gnoni et al. 2012). T2, however, blocks proteolytic cleavage

and thus activation of SREBP-1c (Rochira et al. 2013)

independent of transcription. Consequently, FA synthase

expression reduced. The resulting inhibitory effect of T2 on

lipogenesis is concordant with in vivo findings (De Lange

et al. 2011) and mechanistically complementary to

SIRT1-dependent deacetylation of SREBP-1c (De Lange

et al. 2011). The liver is not the only organ in which T2

activates SIRT1: T2 has been shown to act through SIRT1

activation in the kidney (Shang et al. 2013). Treatment with

T2 prevented diabetic nephropathy (DN) in a diabetic

rat model via SIRT1-dependent deacetylation and p65,

a subunit of nuclear factor-kB, inactivation, thus inhibiting

the inflammatory process crucial to this pathology. In rat

mesangial cells, the DN phenotype was induced by

exposure to high glucose, and treatment with T2 under

these conditions counteracted the DN phenotype.

Co-treatment with T2 and sirtinol – a specific SIRT1

inhibitor (Shang et al. 2013) – abolished deacetylation of

p65. T2 leads to dephosphorylation of JNK independent

of SIRT1, and did not associate with abating the DN

phenotype (Shang et al. 2013). Thus, SIRT1 activation plays

a crucial role in T2’s relieving effect on DN.

As a first step in projecting rodent data to study T2’s

metabolic effects in humans, two healthy volunteers

were administered T2 (1–4 mg/kg BW) acutely. After 6 h, a

significant increase in RMR was detected in both patients.

Daily T2 administration for 28 days increased RMR byw15%

and decreased BW by about 4 kg. Ultrasonography

revealed that one subject showed reductions in steatosis.

Additionally, total serum cholesterol levels were lowered,

and no side effects were recorded (Antonelli et al. 2011).

A mechanism by which T2 reduces cholesterol in the serum

(Lanni et al. 2005, Antonelli et al. 2011, De Lange et al. 2011)

was recently called into question. T2’s LDL-lowering effects

are independent of the LDL receptor (Goldberg et al. 2012),
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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as determined by feeding a western type diet to LDL

receptor-deficient mice (LdlrK/K) and treating with T2. The

diet was chosen because dietary absorption of cholesterol

and TG drives hepatic apoB production, especially in

LdlrK/K mice. These mice develop much higher levels of

cholesterol and atherosclerosis. T2 had no effect on TG

levels, probably due to increased lipolysis, but led to marked

reductions in liver apoB and circulating apoB48 and

apoB100 (Goldberg et al. 2012).

To study whether the lipid-lowering effects of T2 were

directly acting on the liver, or if they were secondary to

changes in endocrine or metabolic pathways, primary rat

hepatocytes, overloaded with lipids (to obtain ‘fatty

hepatocytes’) and treated with T2 (10K5 M) have been

employed (Grasselli et al. 2011a). This experimental setup

demonstrated that T2 reversed the effects induced by lipid

overload in these cells, thus supporting a direct effect of T2.

Moreover, rat hepatoma (FAO) cells defective for

functional TRs were used to answer whether T2-mediated

lowering of hepatic lipid profiles even requires TR action

(Grasselli et al. 2011b). Exposure to pharmacological doses

of T2 (10K5 M) for 24 h reversed the effects induced by FAs

and increased mitochondrial uncoupling, thus indicating

that the actions of T2 in these cells are independent of

transcriptionally functional TRs.

Intracellular action of T2 also is described in avian cells

during fetal development and cell differentiation (Incerpi

et al. 2002). T2 regulates DNA synthesis, cell-cycle proteins

(Alisi et al. 2004), and several membrane-associated

transport systems, whose activity is related to cell

proliferation (Incerpi et al. 2002, 2005). T2’s effect on the

NaC–HC exchanger was identified for 14-day- and 19-day-

old cells, whereas the effect on amino acid transport was

present at late stages of embryo development. Both

transport systems were activated through a signal trans-

duction pathway involving the PKC, MAPK, and PI3K

pathways (Incerpi et al. 2002). Moreover, T2 exerts a

short-term inhibitory effect on the NaC–KC-ATPase, the

magnitude of which strongly correlates to the develop-

mental age of the isolated cells (Scapin et al. 2009). The

NaC–KC-ATPase inhibition is mediated through the

activation of PKA, PKC, and PI3K (Scapin et al. 2009).

Signal transduction pathways contributing to the

modulation of the sodium pump by T2 are involved in

the control exerted on cell proliferation.

Recently, it has been shown that T2 exerts short-term

effects on intracellular calcium concentrations and NO

release by modulating plasma membrane and mito-

chondrial pathways in pituitary GH3 cells (Del Viscovo

et al. 2012). In particular, T2 facilitates physiological Ca2
Published by Bioscientifica Ltd.
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Table 1 Involvement of TRs or alternative receptors in non-classical thyroid hormone action

Non-classical

thyroid hormone Affinity for/transactivation through TRa or TRb Affinity for other receptors

Triac High (Schueler et al. 1990) None yet identified
T1AM Absent (Chiellini et al. 1998) High (trace amine-associated receptor 1

(TAAR1); Zucchi et al. 2006)
rT3 Higha (TRDa1 (native TR isoform); Flamant & Samarut 2003) None yet identified
T2 Weak (human TRa; Cioffi et al. 2010) None yet identified

Weak (human TRb; Ball et al. 1997, Cioffi et al. 2010,
De Lange et al. 2011, Mendoza et al. 2013)

High (short TRb of tilapia fish; Mendoza et al. 2013,
Navarrete-Ramirez et al. 2014)

aNongenomic action.
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efflux from mitochondria through activation of mt-NCX

by interacting with different mitochondrial complexes

(Del Viscovo et al. 2012).

T2’s biological effects are not restricted to mammalian

species. Indeed, in the goldfish Carassius auratus, stimu-

lation of pyruvate-fueled liver and muscle mitochondrial

respiration was observed 5 min after 0.3 nM T2 incubation

(Leary et al. 1996). Garcı́a et al. (2004) examined the effects

of short-term T4, T3, and T2 exposure (0.1 mM; 12 or 24 h)

on D1 and D2 activities and mRNA in killifish (tilapia) liver

and showed that these hormones decreased D2 activity,

the effect of T2 being relatively more rapid. T2 also

regulates thermal acclimation in zebra fish (Danio rerio)

with an efficiency comparable to T3 (Little et al. 2013). The

conserved role for T2 on regulating metabolic efficiency in

many species validates the motion to learn more about

biological actions of this nonclassical TH.
Mechanism of action of T2

Questions surrounding the cellular-molecular mechanism

of action of T2 remain. Both TR- and non TR-mediated

actions may be elicited by T2. Ball et al. (1997) reported

that T2 exerted selective thyromimetic effects. In the same

report, T2 showed a 60 times weaker affinity for TRb than

T3. Mendoza et al. (2013) reported that in teleosts, effects

of T2 may be mediated by an isoform of one of the two

known TRbs, namely TRb1 that contains a 9-amino-acid

insert in its ligand-binding domain (long TRb1), whereas

T3 binds preferentially to a short TRb1 isoform lacking this

insert. Moreover, the authors confirmed that T2 has a weak

affinity for human TRb (about 40-fold less than T3) and a

similarly weak transactivation capacity compared with T3

(Ball et al. 1997, Cioffi et al. 2010, De Lange et al. 2011,

Mendoza et al. 2013). In tilapia, both T3 and T2 are
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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important in growth, a process, however, mediated by

different TRb1 isoforms (Navarrete-Ramirez et al. 2014). An

overview of TR or alternative receptor involvement in the

action of nonclassical THs is shown in Table 1.

Non TR-mediated effects of T2 are evident. It is known

that T2 specifically stimulates the activity of isolated

cytochrome c oxidase (COX) from bovine heart mito-

chondria. T3 barely stimulates COX. T2 binding to COX

induces conformational changes. Studies show specific

binding of labeled T2 to the subunit Va of COX from

bovine heart. T2, and to a small extent T3, but not

thyroxine and thyronine, abolished allosteric inhibition

of ascorbate respiration of reconstituted COX by ATP.

Inhibition is rescued by a monoclonal antibody to the

subunit Va. (Goglia et al. 1994, Arnold et al. 1998). T2

directly activates SIRT1 (De Lange et al. 2011), influencing

downstream pathways and inducing benefits. Shang et al.

(2013) showed that this interaction mitigates a DN by

using the Sirtuin inhibitor Sirtinol.
Conclusion and perspectives

It is clear that the so-called ‘nonclassical THs’ can induce

various biological actions. TH derivatives exert important

actions on metabolic parameters and on growth. At the

cellular–molecular level, several pathways are affected, the

most intriguing of which are related to lipid metabolism

and signaling pathways. Beneficial effects of these

molecules require more considerations due to their

potential to modulate human health.
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