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Abstract
The signaling pathways activated by the steroid hormone oestrogen include a variety of

cytoplasmic second messengers linked to a multitude of tissue-specific effects. In the last

decade, sphingolipids and their membrane receptors were added to the list of oestrogen-

activated mediators. Oestrogen triggers the sphingolipid signalling cascade in various tissues

including breast cancer. Extensive research has shown that sphingolipids are the key

regulatory molecules in growth factor networks. Sphingolipids can control the rate of cell

proliferation and the differentiation outcome during malignant transformation. In this

study, we summarise novel experimental evidences linking sphingolipids to oestrogen-

activated effects, highlight the role of sphingolipids in cancer cells and discuss new avenues

for future research at the intersection between oestrogen and sphingolipid signalling.
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Introduction
Sphingolipids contain a complex family of naturally

occurring molecules that are enriched in cellular mem-

branes and serve as a reservoir for the production of

bioactive metabolites, including sphingosine, ceramide,

sphingosine-1-phosphate (S1P) and ceramide-1-phosphate.

The clinical importance of sphingolipid research became

evident a decade ago when the analysis of patients’ samples

demonstrated significantly elevated levels of sphingosine

kinase 1 (SPHK1) mRNA expression in a variety of solid

tumours (French et al. 2003). However, several years before

these important clinical findings, the involvement of

sphingolipids in the regulation of cancer cell proliferation,

survival and migration was discovered in vitro (Spiegel

et al. 1994).

Since then, the role of sphingolipids as carcinogenesis-

related signalling molecules has been extensively

investigated in various cancer models (Vadas et al. 2008,

Meacham et al. 2009, Furuya et al. 2011, Aoyagi et al.
2012). Sphingolipids, specifically S1P, have been shown to

mediate numerous pro-oncogenic processes including

evasion of apoptosis (Cuvillier et al. 1996, Goetzl et al.

1999a,b, Xia et al. 1999, Edsall et al. 2001, Limaye

et al. 2005), cell transformation (Xia et al. 2000, Pitson

et al. 2005, Hsu et al. 2012), uncontrolled proliferation

(Shu et al. 2002, Sarkar et al. 2005), desensitisation of anti-

growth agents (Sukocheva et al. 2009, Watson et al. 2010,

Antoon et al. 2011a,b, Antoon et al. 2012), angiogenesis

(Hobson et al. 2001, Nagahashi et al. 2012) and metastasis

(Furuya et al. 2011, Aoyagi et al. 2012, Bao et al. 2012).

A new cutting-edge discovery demonstrated that in

addition to their second messenger functions, sphingo-

lipids can act as cofactors, regulating the function of

transmembrane proteins (Contreras et al. 2012). The

finding of an unprecedented specificity of interaction of

a transmembrane domain with an individual sphingolipid

species adds to our understanding of why biological
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membranes are assembled from such a wide variety of

different lipids (Contreras et al. 2012).

Changes in cellular metabolism, associated with

active growth and division, are tightly linked to the

synthesis of membrane phospholipids and sphingolipids,

supplying cells with material to build plasma membrane

and various membrane-structured intracellular organelles

in growing and dividing cells (Holthuis et al. 2001).

Notably, sphingolipid metabolism is activated during

normal cell growth and division not only to provide a

basic supply of structural and functional metabolites but

also to serve as second messengers (Lebman & Spiegel

2008, Aoyagi et al. 2012). In this review, we analysed

recent knowledge gained at the crossroads of sphingolipid

and oestrogen signalling pathways in breast cancer

cells (BCC).
Sphingolipid signalling in a spotlight of
anti-cancer research

Apoptosis (programmed cell death) is the rational decision

of cells to self-eliminate when one and/or more of the

essential cell functions are compromised. The capacity for

timely apoptosis initiation can serve as a marker of the cell

being ‘normal’. Conversely, all cancer cells demonstrate

inherent abnormalities in apoptosis activation. That is

why all anti-cancer drugs aim to reactivate the impaired

parts of the apoptotic machinery. A central hypothesis of

the role of sphingolipids in the regulation of apoptosis, the

rheostat model, was suggested by Spiegel et al. less than
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Figure 1

Sphingolipid rheostat model: balancing between survival and death

depends on the ratio of specific sphngolipids. Proapoptotic ceramide can

be deacylated by ceramidase to form sphingosine, which in turn can be

phosphorylated by SphK to produce the pro-survival molecule S1P. These

reactions are reversible and the only exit point from the cycle is the

irreversible degradation of S1P to hexadecenal and ethanolamin-1-
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two decades ago (Cuvillier et al. 1996). The hypothesis was

later confirmed as a key mechanism adopted by various

receptor-mediated signalling cascades (Hannun & Obeid

2008, Meacham et al. 2009, Furuya et al. 2011; Fig. 1). Two

principle members of the sphingolipid rheostat, ceramide

and sphingosine, have been described as proapoptotic

molecules and mediators of apoptosis-related changes as

observed, for instance, during cell cycle dysfunction in

cancer cells (Hannun & Obeid 2008). Stress stimuli, such

as Fas ligands, oxidative stress, growth factor withdrawal,

anti-cancer drugs, ionising radiation, heat shock or

ultraviolet light, induce elevated endogenous cellular

levels of sphingosine and ceramides to initiate cell cycle

arrest and death in various normal and malignant cells

(Hannun & Obeid 2008). However, when phosphorylated

by SphK, sphingosine transforms into S1P, another

bioactive lipid with anti-apoptotic properties that

propogates signals leading to cell growth and prolifer-

ation, and counteracts apoptosis (Hannun & Obeid 2008,

Vadas et al. 2008; Fig. 1). Details of sphingolipid

metabolism have been recently reviewed (Furuya et al.

2011, Aoyagi et al. 2012).

In the human body, S1P is constitutively produced by

the action of SphK1 and SphK2 in erythrocytes and

endothelial cells, resulting in high (z0.5 mM), steady-

state plasma S1P content and a steep S1P concentration

gradient within plasma, lymph and tissue interstitial fluid

(Hänel et al. 2007). S1P is also produced and released

locally by activated platelets and tumour cells and/or by

the tumour microenvironment (Takuwa et al. 2011).
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According to the pro-inflammatory model of cancer,

immune cells, vascular endothelium, fibroblasts and

soluble factors comprise the microenvironment of

cancer cells. S1P produced by the vast majority of

these cancer-associated cells influences features of

malignant transformation and cancer progression. For

instance, S1P is strongly chemotactic for endothelial

cells (English et al. 1999, Lee et al. 1999) as well as for

immune cells (Kveberg et al. 2003, Matloubian et al. 2004)

and consequently has been linked to the promotion of

angiogenesis and metastasis (Rolin & Maghazachi 2011,

Pyne et al. 2012).

A variety of cells can sense the level of S1P in blood

and lymph using plasma membrane S1Pn (where nZ1–5)

receptors. S1P receptors are differentially coupled to

heterotrimeric G-proteins, which can initiate a multitude

of downstream signalling cascades (Alvarez et al. 2007).

S1P1, S1P2 and S1P3 are widely expressed and considered

to be crucial regulators of cancer cell growth and survival

due to their ability to switch on important intracellular

enzymes such as Ras/extracellular signal-regulated

kinase (Erk) and PI3K/Akt and their pathways (Rosen &

Goetzl 2005).

The role of S1P and S1P receptors has been extensively

researched in cancer cells. It was shown that production of

S1P is stimulated by several growth factors during

activation of proliferation (Lebman & Spiegel 2008,

Vadas et al. 2008). Clinical data confirmed the importance

of sphingolipid signalling in human breast carcinomas

(Ruckhäberle et al. 2008, Watson et al. 2010, Pyne et al.

2012). Accordingly, monitoring the expression levels of

SphK1 and S1P receptors has been suggested as a clinical

tool for improving diagnosis and prognosis of breast

cancer (Ruckhäberle et al. 2008, Watson et al. 2010, Pyne

et al. 2012).
S1P is a messenger to enhance proliferation
and survival

S1P is produced by two isoforms of a highly conserved

cytoplasmic enzyme SphK (SphK1 and SphK2) that

catalyse the phosphorylation of sphingosine (Cuvillier

et al. 1996; Fig. 1). Generated from two distinct genes,

human Sphk1 and SphK2 vary considerably in size,

because SphK2 is almost twice longer than SphK1

(Neubauer & Pitson 2013). Although both SphK1 and

SphK2 can be found in cytoplasm where the enzymes

catalyse sphingosine to produce intracellular S1P,

these two isoforms differ in substrate binding pockets

(Gao et al. 2012, Neubauer & Pitson 2013), can translocate
http://joe.endocrinology-journals.org
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to different intracellular compartments and appear to

possess distinct biological functions (Spiegel & Milstien

2007, Aoyagi et al. 2012). For instance, SphK1 is a

potent anti-apoptotic and growth-promoting signalling

enzyme, whereas SphK2 has been shown to initiate

proapoptotic cascades (Liu et al. 2003, Neubauer & Pitson

2013). The specific signalling roles of SphK1 and SphK2

are probably related to their subcellular localisation after

activation (Pitson et al. 2005). In particular, the phos-

phorylation-dependent translocation of SphK1 from the

cytoplasm to the plasma membrane is required for its

oncogenic activity (Pitson et al. 2005). SphK1, but not

SphK2, was found to be responsible for increased export of

S1P from BCC (Takabe et al. 2010). Erk1/2 phosphorylates

both SphK1 and SphK2 (Pitson et al. 2003, Hait et al. 2009).

However, phosphorylation leads to different levels of

activation of these two isoenzymes (Pitson et al. 2003).

Alternative mechanisms of SphK isoenzyme activation

may occur in addition to phosphorylation (Leclercq et al.

2008). More recently, mitochondrial localisation of

SphK2 was shown to contribute to mitochondrial

membrane permeabilisation and apoptosis (Chipuk et al.

2012). Another recent study also demonstrated that

nuclear S1P produced primarily by SphK2 is most likely

to contribute to cell cycle arrest (Hait et al. 2009),

indicating a potential role of SphK2 in epigenetic

regulation (Neubauer & Pitson 2013).

To date, only SphK1 has been shown to mediate signal

transduction from growth and survival-related agents in

cancer cells (Pyne et al. 2012). Activation of growth and

proliferation results in SphK1 phosphorylation, which,

in turn, might enhance Ras-dependent transformation

of cancer cells (Xia et al. 2000). Interestingly, in spite of

such a close involvement of SphK1 in the regulation of

cancer cell growth, there is so far no evidence of mutations

occurring in the SPHK1 gene that are linked to cancer, and

therefore in strict terms SPHK1 cannot be defined as an

‘oncogene’. The term ‘non-oncogene addiction’ has been

used to describe the role of SphK1 in cancer progression

(Vadas et al. 2008).

The list of growth factors that rely on S1P as a

signalling mediator in a variety of tissues is growing and

to date includes platelet-derived growth factor (Hobson

et al. 2001), vascular endothelial growth factor (VEGF;

Shu et al. 2002), epidermal growth factor (EGF; Auge et al.

2002, Sukocheva et al. 2006) and insulin-like growth

factor (IGF; El-Shewy et al. 2006). There is strong

evidence demonstrating that SphK1 has an important

growth-regulatory role in BCC (Doll et al. 2007, Rosen &

Goetzl 2005, Sukocheva et al. 2006). Other authors
Published by Bioscientifica Ltd
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(Doll et al. 2007) and we (Sukocheva et al. 2003) have

demonstrated that in BCC the proliferation-stimulating

steroid hormone oestrogen activates the SphK1 (Fig. 2).

Oestrogen stimulates SphK1 activity in a twofold

manner, provoking firstly a rapid and transient effect

and then a delayed but prolonged activation. The rapid

activation of SphK1 induced by oestrogen is apparently

mediated by membrane-associated oestrogen receptors

(ERs) coupled to Gi proteins, whereas the delayed action

relies on transcriptional activation of nuclear ER. Oestro-

gen-induced SphK1 consequently activates downstream

non-genomic signalling cascades, including intracellular

calcium mobilisation and phosphorylation of ERK1/2.

Importantly, this cytoplasmic signal transduction
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Figure 2

Hypothetical place of SphK1/S1P receptors in oestrogen and EGFR

signalling pathways in breast cancer cell. Binding of oestrogen to ER

stimulates activation of signalling in cytoplams, dimerisation of ER and

downstream nuclear signalling. Oestrogen/ER-induced activation of SphK1

results in reduction of sphingosine cell content and production of S1P. S1P

activates further downstream signalling targets including cdc42, extra-

cellular transport systems of S1P, phosphorylation of S1P receptors,
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pathway is critically involved in the oestrogen-dependent

mitogenic and oncogenic action in the human BCCs,

because inhibition of this pathway resulted in cell growth

arrest (Nava et al. 2002, Sukocheva et al. 2003).

Prolonged activation of SphK1 by oestrogen is

associated with ER-regulated genomic signalling and

might indicate induction of the SPHK1 promoter via

engagement of the oestrogen response element (Doll et al.

2007). Several potential transcription factor binding sites

have been identified in the SPHK promoter region,

including Sp1, AP1, AP2, AP4 and STAT (Nakade et al.

2003, Sobue et al. 2005). However, which transcription

factors account for the SPHK gene regulation by ER

remains to be identified.
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transactivation of EGFR and its recycling. Cav-1, caveolin-1; ER, oestrogen

receptor; ERE, oestrogen response element; EGF, epidermal growth factor;

EGFR, EGF receptor; HB-EGF, heparin-bound EGF; Ga,b,g, G-protein

subunits; GPR30, G-protein-coupled receptor 30; MMPs, matrix metallo-

proteases; cdc42, cell division control protein 42; Src, non-receptor tyrosine

kinase; SphK1, human sphingosine kinase 1; S1P, sphingosine-1-phosphate.
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Elevated S1P levels generated by the ectopic

expression of SPHK1 not only enhanced the mitogenic

effects of oestrogen (Sukocheva et al. 2003) but also

blocked apoptosis induced by anti-cancer drugs, sphingo-

sine and tumour necrosis factor a (Nava et al. 2002). The

ER antagonist ICI 182 780 prevented the oestrogen-

induced SphK1 activation, suggesting that ERa is the

most likely candidate required for SphK1 activation

(Sukocheva et al. 2006). Oestrogen did not stimulate

SphK1 activation in ERa-negative cells and also in cells

with downregulated ERa (Sukocheva et al. 2006), support-

ing ERa-dependent link to SphK1 signalling.

Cytoplasmic signalling cascades activated by oestro-

gen are tissue specific and depend on expression of several

forms of membrane-associated ERs including G-protein-

coupled receptor 30 (GPR30; Driggers & Segars 2002,

Filardo & Thomas 2012). The role of GPR30 in the

oestrogen-induced activation of SphK1 has been detected.

Downregulation of GPR30 expression by its antisense

oligonucleotides significantly inhibited b-oestradiol (E2)-

induced SphK1 activity in MCF-7 human BCC (Sukocheva

et al. 2006). Interestingly, in these cells a phytoestrogen

genistein, which can also activate signalling through

GPR30 (Thomas & Dong 2006), has been shown to

regulate sphingolipid metabolism by a different

mechanism. Genistein stimulated transcription of acid

ceramidase (ASAH1) in MCF-7 cells (Lucki & Sewer 2011).

Acid ceramidase degrades ceramide and, thus, provides a

supply of sphingosine which, in turn, can be phosphory-

lated by SphK1 and transformed into S1P (Fig. 1),

maintaining growth and survival signals. The mechanism

of this phytoestrogen-induced activation of ASAH1

appears complex. Genistein induces ASAH1 transcription

through a GPR30-dependent, pertussis toxin-sensitive

pathway that requires the activation of c-Src and ERK1/2.

Activation of this pathway promotes histone acetylation

and recruitment of phospho-ERa and specificity protein-1

to the ASAH1 promoter, ultimately culminating in

increased ceramidase activity (Lucki & Sewer 2011). The

mechanism of prolonged activation of SphK1 by E2 is less

clear. Hypothetically, it might work within a similar

scheme shown for phytoestrogen signalling in MCF-7

cells. Supporting this both, GPR30 and ERa were involved

in oestrogen-dependent activation of SphK1 (Sukocheva

et al. 2003, 2006, Doll et al. 2007). The exact mechanisms

underlying rapid (15–30 min) SphK1 activation by E2 also

remain elusive, leaving the possibility of direct or adaptor-

mediated interactions between ERa, GPR30 and SphK1

still unexplored.
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Interestingly, although both oestrogen and EGF were

able to activate SphK1 and increase intracellular levels of

S1P, only oestrogen can stimulate rapid release of S1P and

dihydro-S1P from BCCs (Takabe et al. 2010). Oestrogen-

induced S1P export required the presence of functional

ERa, but not GPR30, and was suppressed either by

pharmacological inhibitors or gene silencing of multidrug

resistant protein 1 (ABCC1) or breast cancer resistance

protein (ABCG2). Thus, activation of ABCC1 and/or

ABCG2 might participate in oestrogen-dependent acti-

vation of S1P receptors and contribute to oestrogen

signalling (Takabe et al. 2010), which is important for

breast cancer pathophysiology. However, the role of other

potential S1P transmembrane transporting mechanisms

should be further explored in ER-positive cancer cells.

For instance, in the vasculature S1P signalling activity was

modulated by several different transporters including

cystic fibrosis transmembrane regulator, cAMP-responsive

chloride channel (Meissner et al. 2012), and by S1P

transporter spinster homolog 2 (Spns2) protein (Fukuhara

et al. 2012).

It has been demonstrated that the oestrogen signalling

pathway overwhelms the growth factor network in BCCs,

thereby facilitating cancer cell proliferation and survival.

For instance, IGF receptor type 1 (IGFR1) and EGF

receptors (EGFR) are transactivated by oestrogens in

various cancer cells (Driggers & Segars 2002). S1P

stimulates BCC growth through activation of the serum

response element and indirectly by enhancing IGF2

synthesis and function (Goetzl et al. 1999a,b). Neutralising

antibodies against IGFR1 strongly suppressed cell prolifer-

ation induced by S1P (Goetzl et al. 1999a,b). It was also

demonstrated in human embryonic kidney 293 cells that

IGF2 binding to the IGF2/mannose-6-phosphate (M6P)

receptor activates the ERK1/2 cascade by triggering SphK1-

dependent transactivation of G-protein-coupled S1P

receptors (El-Shewy et al. 2006). Activation of both

phospholipase C and protein kinase C isoform b2 by the

IGF2/M6P receptor was required for the activation

of SphK1 during this process (El-Shewy et al. 2011).

By contrast, Nava and colleagues did not find any

significant impact of IGFR1 on SphK1 signalling in BCCs

(Nava et al. 2002).

Another growth factor, EGF, increases the expression

of SphK1 in MCF-7 BCC (Doll et al. 2005). Notably, SphK1

is required for EGF-induced BCC migration, proliferation

and cell survival (Sarkar et al. 2005, Sukocheva et al. 2006).

We have found that the oestrogen-induced transactiva-

tion of EGFR is mediated through the SphK1/S1P pathway.

Both ERa and GPR30 were important for initiation of this
Published by Bioscientifica Ltd

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-13-0388


Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Review O SUKOCHEVA and C WADHAM Sphingolipids and breast cancer 220 :3 R30
signaling. S1P, generated by the oestrogen-induced SphK1,

acts through the S1P3 receptor to activate the EGFR via a

pathway mediated by Src and matrix metalloproteases

(Sukocheva et al. 2006; Fig. 2). Thus, SphK1 served as a key

factor in coupling the signals between three membrane

spanning events induced by oestrogen, S1P and EGF

resulting in mitogenic stimulation of BCCs.

Significant differences have been recently demon-

strated between the signalling mechanisms of ligand-

dependent and ligand-independent activation of EGFR

(Sukocheva et al. 2013). E2 and S1P stimulation induces

elevated EGFR in MCF-7 endosomes, although the plasma

membrane-associated, transactivated EGFRs are quickly

internalised. Both E2 and S1P induce prolonged activation

of cell division cycle protein 42, a member of the Rho

family of small GTPases involved in the regulation of

protein turnover, thereby inhibiting EGFR degradation

and maintaining elevated levels of EGFR (Sukocheva et al.

2013; Fig. 2), which may account, at least partially, for the

enhanced mitogenic signalling in BCCs. SphK/S1P signal-

ling system is often upregulated in many types of cancer

including breast cancer (Watson et al. 2010). Therefore, we

reasoned that S1P receptor-mediated regulation of EGFR

internalisation and activation was probably hijacked and

adapted by cancer cells to secure survival and neoplastic

growth (Sukocheva et al. 2013).

Overexpression of EGF receptor 2 (HER2) stimulates

expression of SphK1 in ERa-positive BCCs. SphK1, in turn,

limits HER2 expression in a negative-feedback manner

(Long et al. 2010). The mechanism associated with this

mutual interaction between the sphingolipid pathway and

growth factor receptor-initiated cascades was termed

‘oncogene tolerance’ (Long et al. 2010). These findings

correlated with improved prognosis in patients who have a

low HER1–3/SPHK1 expression ratio in their ERa-positive

breast cancer tumours (Long et al. 2010). The therapeutic

importance of targeting the SphK pathway was further

supported by microarray analysis of 750 patients with ERa-

positive breast tumours. Poor disease outcome correlated

with high SPHK1 expression, while 75.8C1.9% of the

patients with tumours low in SphK1 were free of metastasis

at 5 years (Ruckhäberle et al. 2008).
Contribution of sphingolipid signalling in
development of drug resistance

Acquired chemoresistance is an unfortunate impediment

accounting for major failure of cancer therapy. In the

search for novel cancer treatment targets, several recent

studies have addressed the involvement of sphingolipid
http://joe.endocrinology-journals.org
DOI: 10.1530/JOE-13-0388
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signalling in the development of cancer drug resistance

(Sukocheva et al. 2009, Antoon et al. 2010, 2012, Watson

et al. 2010).

A correlation between tamoxifen responsiveness,

the levels of SPHK1 expression and its activity has

been detected in MCF-7 BCC (Sukocheva et al.

2009). Overexpression of SPHK1 markedly reduced

tamoxifen-induced cell growth arrest and apoptosis in

the anti-oestrogen-sensitive MCF-7 BCC. Accordingly,

tamoxifen-resistant cells selected by prolonged exposure

to tamoxifen exhibited elevated SPHK1 expression and

activity (Sukocheva et al. 2009). Furthermore, inhibiting

SphK1 activity by either chemical inhibitors or the

dominant-negative mutant SphK1G82D significantly

enhanced the anti-proliferative and proapoptotic effects

of tamoxifen (Sukocheva et al. 2009). And finally, down-

regulation of SPHK1 expression restored tamoxifen sensi-

tivity (Sukocheva et al. 2009). These findings revealed a

pivotal role of SphK1 in the regulation of cell sensitivity to

the widely used breast cancer chemotherapy agent

tamoxifen, suggesting that the anti-oestrogen responses

can be reprogrammed by manipulating the SphK1

pathway (Sukocheva et al. 2009, Watson et al. 2010).

Notably, inhibition of either the S1P3 receptor or

EGFR restored tamoxifen responsiveness to the same

extent seen in tamoxifen-resistant MCF-7 BCC treated

with the SphK inhibitors (Sukocheva et al. 2009),

substantiating a critical role for S1P3/EGFR transactivation

in tamoxifen resistance. An enhanced S1P3/EGFR signal-

ling axis may also contribute to the tumourigenesis in

different tissues, where oncogenic role of growth factor

signalling has been confirmed (Duffy 2013). For instance,

S1P3 signalling increases EGFR expression via the Rho

kinase pathway in lung adenocarcinoma cells (Hsu et al.

2012). The role of other S1P receptors should also be

addressed considering the recent evidence that S1P1

receptor signalling plays a significant role in, for instance,

progression of hepatocellular carcinoma (Bao et al. 2012).

As a single cancer cell can express several types of S1P

receptor, it is unclear whether the ratio of various S1P

receptors serves as a regulator of growth signals within one

particular cell and in cell-to-cell communication. S1P

receptors stimulate diverse signalling pathways that might

be mutually exclusive in the regulation of cell prolifer-

ation and migration signals. A complex type of interplay

among S1P receptors was demonstrated in malignant cells

(Young & Van Brocklyn 2007). However, there has been

specific interest in S1P2 signalling (Takuwa et al. 2011).

In sharp contrast to the growth and migration-promoting

characteristics of S1P3, S1P2 mediates Rac inhibition
Published by Bioscientifica Ltd
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downstream of G(12/13)-mediated Rho activation, thus

identifying it as the first GPR negatively regulating Rac and

cell migration. S1P2 may also inhibit Akt and cell

proliferation/survival signalling via the Rho/ROCK/PTEN

pathway (Sanchez et al. 2005, Takuwa et al. 2011).

Moreover, S1P2 expressed in host endothelial cells and

tumour-infiltrating myeloid cells mediates potent inhi-

bition of tumour angiogenesis and tumour growth in vivo

by inhibiting VEGF expression and MMP9 activity (Du

et al. 2010, Takuwa et al. 2012). However, the role of S1P2

has never been addressed as a potential target in drug

resistant BCCs.

Associations between SphK/S1P receptor expression

and clinical outcomes were further explored in a few

recent clinical studies. In a cohort of 304 breast cancer

patients, the higher expression levels of S1P1, S1P3 and

ERK1/2 were associated with the shorter recurrence times

in ER-positive breast cancer patients (Watson et al. 2010).

High cytoplasmic S1P1 and S1P3 expression levels were

also associated with shorter disease-specific survival times.

Those patients with tumours expressing high levels of

both cytoplasmic SphK1 and ERK1/2 had significantly

shorter recurrence times than those expressing low levels

of cytoplasmic SphK1 and ERK1/2, with a difference in

recurrence time of 10.5 years. Similarly, high cytoplasmic

S1P1 and ERK1/2 expression levels and high cytoplasmic

S1P3 and ERK1/2 expression levels were associated with

shorter recurrence times. These results support a model in

which the interaction between SphK1, S1P1, and/or S1P3

and ERK1/2 might drive breast cancer progression

(Watson et al. 2010). Moreover, the higher level of S1P3

may potentially be associated with metastatic progression.

S1P3 induces a migratory phenotype via a SphK1-

dependent mechanism in ER-positive BCCs (Long et al.

2010), transmits stimulatory signals for breast cell

proliferation (Sukocheva et al. 2006, Martin et al. 2009)

and activates anti-apoptotic mechanisms (Nava et al. 2002,

Doll et al. 2005).

The role of the S1P4 receptor was highlighted in

ER-negative breast cancer patients (Ohotski et al. 2012).

High S1P4 expression was associated with shorter disease-

free and disease-specific survival in a cohort of 140

patients with ER-negative BCCs. In addition, patients

with tumours containing high SphK1 and low S1P4 had a

significantly shorter disease-free survival and disease-

specific survival compared with patients whose tumours

contain low levels of both S1P4 and SphK1. High tumour

expression of SphK1 was also significantly associated with

HER2-positivity (Ohotski et al. 2012), indicating on the

possible intrinsic link between systems of growth factor
http://joe.endocrinology-journals.org
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signalling and sphingolipid metabolism that has to be

further explored.
Studies with SphK inhibitors and
S1P receptor agonists

SphK1’s regulation of BCCs tamoxifen sensitivity is also

associated with the potent anti-apoptotic properties of

S1P signalling (Hait et al. 2006). Although the precise

mechanisms remain to be identified, S1P’s anti-apoptotic

effects have been connected to impaired activation of

protein kinase JNK (Edsall et al. 2001), caspases (Cuvillier

et al. 1998, Xia et al. 1999, Nava et al. 2002), alterations in

the ratio between pro- and anti-apoptotic members of the

Bcl2 family (Goetzl et al. 1999a,b, Limaye et al. 2005) and

reduced cytochrome c and Smac/DIABLO release from

mitochondria (Cuvillier et al. 2001). The house-keeping

removal of sphingosine by SphK1 could be also respon-

sible, at least in part, for the observed anti-apoptotic effect

(Cuvillier et al. 2001).

SphK inhibition by ABC294640 (3-(4-chlorophenyl)-

adamantane-1-carboxylic acid (pyridin-4-ylmethyl)

amide) has recently been shown to activate several targets

associated with the induction of cell death in BCCs. These

include inhibition of the NF-kB pathway, blockade of ER

signalling and activation of autophagy.

NF-kB is a pivotal molecule intersecting various

signalling pathways that translates a wide range of

cytoplasmic signals into specific gene activation (Hayden

& Ghosh 2012). According to Montagut et al. (2006),

chemoresistance correlated well with NF-kB activation in

tumour specimens from breast cancer patients. Interest-

ingly, pharmacological inhibition of SphK blocks NF-kB

transcriptional activation and induces the intrinsic

apoptosis pathway in multi-drug-resistant BCCs (Antoon

et al. 2012). The SphK inhibitor ABC294640 diminished

NF-kB survival signalling, through decreased phosphoryl-

ation of Ser536 on the p65 subunit. This inhibitor also

completely blocks tumour volume in xenograft models of

chemoresistant BCCs growing in immuno-compromised

mice in vivo, indicating therapeutic efficacy of this

inhibitor (Antoon et al. 2011b).

The details of another inhibitory mechanism acti-

vated by the SphK inhibitor ABC294640 have been

demonstrated by Beljanski et al. (2010). ABC294640-

induced non-apoptotic cell death preceded by cleavage

of the microtubule-associated protein light chain 3,

morphological changes in lysosomes, formation of

autophagosomes, and increases in the number of acidic

vesicles. These ABC294640-induced autophagic responses
Published by Bioscientifica Ltd
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in A-498 kidney, PC-3 prostate and MDA-MB-231

(ER-negative) breast adenocarcinoma cells suggest that

there is a universal signalling mechanism for this

compound within transformed cells. Simultaneous

exposure of tumour cells to ABC294640 and 3-methyla-

denine, an inhibitor of autophagy, switched the toxic

mechanism to apoptosis, but decreased the potency of

the SphK inhibitor, suggesting that autophagy might be

one of the mechanisms used for killing tumour cell by this

compound (Beljanski et al. 2010).

Notably, it appears that SphK inhibitors have the

ability to influence multiple targets. ABC294640 has been

also shown to bind to the ligand-binding domain of ERa,

acting as a partial antagonist, similar to tamoxifen (Antoon

et al. 2010). Thus, it is possible that SphK inhibitors have

the capacity to act as novel anti-oestrogens in breast

carcinomas (Antoon et al. 2010, 2011a). Supporting this,

similar intervention in the ER-signalling pathway has been

noted for different SphK inhibitors. The SphK1/2-selective

inhibitor (SKI-II) dose-dependently decreased oestrogen-

stimulated oestrogen-responsive element transcriptional

activity and diminished mRNA levels of the ER-regulated

genes, such as the progesterone receptor and steroid-

derived factor-1 (Antoon et al. 2010). Considering that ER

antagonists had been successfully used for the treatment of

ER-positive breast cancer patients (about 70% of all breast

cancer patients) for several decades and that BCCs from

these patients rely mainly on ER proliferative signals, the

effects of these SphK inhibitors appear promising.

The SphK inhibitors described above are not the only

group of pharmacological substances that can modulate

sphingolipid signalling and activate autophagy. A sphin-

gosine analogue and specific S1P receptor ligand, FTY720,

demonstrated anti-cancer potential inducing cellular

swelling, cytoplasmic vacuolisation with evident features

of necrotic cell death (Zhang et al. 2010). Phosphorylated

by SphK, FTY720 acts on the S1P receptor inducing the S1P

receptor internalisation in lymphocytes, silencing S1P

signalling and sequestering receptors in the lymph

nodes, while decreasing circulating T cells (Brinkmann &

Lynch 2002). In clinical trials so far, FTY720 has proved

somewhat disappointing due to serious adverse effects

such as cardiac arrest emphasising, however, the promi-

nent role of sphingolipids in the vasculature (Cyster &

Schwab 2012). Considering the systemic effects of FTY720,

further studies are needed to improve delivery and

specificity of pharmacological agonists/antagonists of

sphingolipid signalling.

The need to explore S1P receptor agonists in clinical

settings has been supported by data from in vivo murine
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breast cancer metastasis model. Pharmacological inhi-

bition of SphK1 and suppressed S1P levels thereby reduced

metastases to lymph nodes and lungs, and decreased

overall tumour burden. Notably, SK1-I decreased both

processes not only in the primary tumour but also in

lymph nodes, with peritumoural lymphatic vessel density

reduced in SK1-I-treated animals (Nagahashi et al. 2012).

A clinical research study conducted last year showed

that serum S1P levels are significantly elevated in stage

IIIA human breast cancer patients compared with age/

ethnicity-matched healthy volunteers (Nagahashi et al.

2012), emphasising the need to further explore the anti-

cancer role of various S1P receptor inhibitors.
Conclusions

Recent advances in the field of sphingolipid signalling in

breast cancers clearly indicate that sphingolipids play

critical, yet incompletely understood, roles in the

regulation of tumour growth and spread. There are still

significant gaps in our understanding of how oestrogen

and sphingolipid signalling networks interact. However,

there are multiple indications that sphingolipid-signalling

modulating agents have potent therapeutic efficacy

against cancer. For instance, tamoxifen sensitivity is

restored by inhibiting SphK1 signalling (Sukocheva et al.

2009), which has also been shown for other chemothera-

peutic drugs including doxorubicin (Antoon et al. 2012).

We are now only starting to understand how sphingoli-

pids coordinate the multiple mitogenic signals leading to

neoplastic cell growth and cancer development. Further

design and exploration of SphK and S1P receptor agonists

and antagonists are required to improve endocrine

therapeutic response and management of breast cancers.
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Noyan-Ashraf MH, Heximer S, Husain M, Lidington D et al. 2012

TNFa-mediated down-regulation of CFTR drives pathological S1P

signaling in a mouse model of heart failure. Circulation 125 2739–2750.

(doi:10.1161/CIRCULATIONAHA.111.047316)

Montagut C, Tusquets I, Ferrer B, Corominas JM, Bellosillo B, Campas C,

Suarez M, Fabregat X, Campo E, Gascon P et al. 2006 Activation of

NF-kB is linked to resistance to neoadjuvant chemotherapy in breast

cancer patients. Endocrine-Related Cancer 13 607–616. (doi:10.1677/

erc.1.01171)

Nagahashi M, Ramachandran S, Kim EY, Allegood JC, Rashid OM,

Yamada A, Zhao R, Milstien S, Zhou H, Spiegel S et al. 2012 Sphingosine-

1-phosphate produced by sphingosine kinase 1 promotes breast cancer

progression by stimulating angiogenesis and lymphangiogenesis.

Cancer Research 72 726–735. (doi:10.1158/0008-5472.CAN-11-2167)

Nakade Y, Bano Y, Koizume KT, Hagiwara K, Sobue S, Koda M, Suzuki M,

Kojima T, Takagi A, Asano H et al. 2003 Regulation of sphingosine

kinase 1 gene expression by protein kinase C in human leukaemia

cell line MEG-O1. Biochimica et Biophysica Acta 1635 104–116.

(doi:10.1016/j.bbalip.2003.11.001)

Nava VE, Hobson JP, Murthy S, Milstien S & Spiegel S 2002 Sphingosine

kinase type 1 promotes estrogen-dependent tumorigenesis of breast

cancer MCF-7 cells. Experimental Cell Research 281 115–127.

(doi:10.1006/excr.2002.5658)

Neubauer HA & Pitson SM 2013 Roles, regulation and inhibitors of

sphingosine kinase 2. FEBS Journal 280 5317–5336. (doi:10.1111/

febs.12314)

Ohotski J, Long JS, Orange C, Elsberger B, Mallon E, Doughty J, Pyne S,

Pyne NJ & Edwards J 2012 Expression of sphingosine 1-phosphate

receptor 4 and sphingosine kinase 1 is associated with outcome in

oestrogen receptor-negative breast cancer. British Journal of Cancer 106

1453–1459. (doi:10.1038/bjc.2012.98)

Pitson SM, Moretti PA, Zebol JR, Lynn HE, Xia P, Vadas MA &

Wattenberg BW 2003 Activation of sphingosine kinase 1 by

ERK1/2-mediated phosphorylation. EMBO Journal 22 5491–5500.

(doi:10.1093/emboj/cdg540)

Pitson SM, Xia P, Leclercq TM, Moretti PA, Zebol JR, Lynn HE,

Wattenberg BW & Vadas MA 2005 Phosphorylation-dependent

translocation of sphingosine kinase to the plasma membrane drives

its oncogenic signalling. Journal of Experimental Medicine 201 49–54.

(doi:10.1084/jem.20040559)

Pyne S, Edwards J, Ohotski J & Pyne NJ 2012 Sphingosine 1-phosphate

receptors and sphingosine kinase 1: novel biomarkers for clinical

prognosis in breast, prostate, and hematological cancers. Frontiers in

Oncology 2 168. (doi:10.3389/fonc.2012.00168)

Rolin J & Maghazachi AA 2011 Effects of lysophospholipids on tumor

microenvironment. Cancer Microenvironment 4 393–403. (doi:10.1007/

s12307-011-0088-1)

Rosen H & Goetzl EJ 2005 Sphingosine 1-phosphate and its receptors:

an autocrine and paracrine network. Nature Reviews. Immunology 5

560–570. (doi:10.1038/nri1650)
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