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Abstract

Pro-opiomelanocortin (POMC), is a polyprotein expressed in the pituitary and the 

brain where it is proteolytically processed into peptide hormones and neuropeptides 

with distinct biological activities. It is the prototype of multipotent prohormones. 

The prohormone theory was first suggested in 1967 when Chrétien and Li discovered 

γ-lipotropin and observed that (i) it was part of β-lipotropin (β-LPH), a larger polypeptide 

characterized 2 years earlier and (ii) its C-terminus was β-melanocyte-stimulating 

hormone (β-MSH). This discovery led them to propose that the lipotropins might be 

related biosynthetically to the biologically active β-MSH in a precursor to end product 

relationship. The theory was widely confirmed in subsequent years. As we celebrate the 

50th anniversary of the sequencing of β-LPH, we reflect over the lessons learned from the 

sequencing of those proteins; we explain their extension to the larger POMC precursor; 

we examine how the theory of precursor endoproteolysis they inspired became relevant 

for vast fields in biology; and how it led, after a long and arduous search, to the novel 

proteolytic enzymes called proprotein convertases. This family of nine enzymes plays 

multifaceted functions in growth, development, metabolism, endocrine, and brain 

functions. Their genetics has provided many insights into health and disease. Their 

therapeutic targeting is foreseeable in the near future. Thus, what started five decades 

ago as a theory based on POMC fragments, has opened up novel and productive avenues 

of biological and medical research, including, for our own current interest, a highly 

intriguing hypocholesterolemic Gln152His PCSK9 mutation in French-Canadian families.

'Sequences, sequences, sequences' (F Sanger, 1988)

Introduction

The prohormone theory was based on the observation 
that β-lipotropin (β-LPH) and γ-lipotropin (γ-LPH) 
(Chrétien & Li 1967) contained the entire sequence of 
β-melanocyte-stimulating hormone (β-MSH), a pituitary 

octadecapeptide discovered 10  years earlier (Geschwind 
et al. 1956, Harris & Roos 1956).

In this review, we describe how the LPH model unfolded 
into the pro-opiomelanocortin (POMC) story and how the 
prohormone theory that was derived from it extended to 
many other proteins and became a new tenet of biology. 
The ‘fil d’Ariane’ that made it possible was simply the 
knowledge of the primary structure of a few key pituitary 
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peptides. We owed the capacity to draw such conclusions 
to the double revolution of protein (Sanger 1959) and DNA 
sequencing (Maxam & Gilbert 1977, Sanger et al. 1977).

Retroactively, the prohormone theory could have been 
formulated one decade earlier when Li and co-workers, 
adopting the Sanger’s fluorodinitrobenzene (FDNB) method 
(Sanger 1945) and the Edman’s phenyl thiohydantoins 
(PTH) procedure (Edman 1950), sequenced several pituitary 
peptides including adrenocorticotrophic hormone (ACTH) 
(Li et  al. 1955), MSHs (Geschwind et  al. 1956, Harris & 
Lerner 1957), β-LPH (Li et  al. 1965), and γ-LPH (Chrétien 
& Li 1967). In the early 1970s, different groups provided 
evidence hinting that all these molecules were linked to one 
another. The final proof showing that they were really pieces 
of a single molecule, namely POMC, was provided when 
Nakanishi et al. (1979) cloned and sequenced its cDNA.

This article is divided in seven sections: the first 
reviews the chronological discoveries of POMC peptides; 
the second describes how the prohormone theory was 
born and how the POMC denomination evolved; the third 
deals with the expansion of the theory to neuropeptides 
and other important biological molecules; the fourth 
summarizes the long and diligent efforts to identify 
and characterize the proprotein convertases (PCs); the 
fifth illustrates the experimental evidence that PC1/3 
and PC2 are the primary POMC convertases, it expands 
to the importance of endoproteolysis with examples on 
how a single amino acid substitution at the cleavage 
site of known precursors profoundly alters its functions; 
the sixth briefly summarizes the proteolytic cascade of 
PC activation and presents the novel nonenzymatic 
role of PCSK9 as an escort protein, which is invalidated 
in humans by a Gln152His (Q152H) mutation; and the 
seventh provides a short overview about the importance 
of the PCs in human biology.

The pieces of the POMC puzzle

This puzzle is made of peptides discovered and sequenced 
over a period of 24 years, from 1955 to 1979 (Fig. 1).

The first peptide is ACTH. It was characterized by 
Li et  al. (1955). To this day, the sequencing of this 39 
amino acid long peptide is remembered as an outstanding 
achievement: it required 300 mg of pure ACTH and took 
years to complete. As seen in Fig. 2, a series of enzymatic 
digestions (pepsin, trypsin, and chymotrypsin) and 
partial acid hydrolysis were necessary in order to obtain a 
sufficient number of fragments and, using a combination 
of Sanger’s and Edman’s methods, to decipher the 
sequence, one residue every 2–3 days.

The second peptide is β-MSH (Geschwind et  al. 
1956, Harris & Roos 1956). The sequence of this 
octadecapeptide revealed that residues 7–13 were similar 
to amino acid 4–10 of ACTH, a structural homology that 
was eventually found to explain the MSH-like activity 
of ACTH.

The third peptide is α-MSH. Made of 13 amino acids, 
it was identical to the N-terminal tridecapeptide of ACTH 
(Harris & Lerner 1957). Although not realized at the time, 
this homology indicated for the first time that ACTH 
may give rise to a second bioactive molecule. It was later 
shown that, compared with β-MSH and ACTH, α-MSH 
is the most potent melanophore-stimulating hormone  
(Hofmann 1962).

The fourth peptide is β-LPH. It was discovered by 
Birk and Li (1964), who found it to be a novel substance 
exhibiting mild lipolytic activity; they named it 
lipotropin. They also observed that it had minimal MSH-
like activity. Being more than twice the size of ACTH, it 
was far more difficult to sequence (Li et  al. 1965). The 
presence of two methionine residues allowed partial 
chemical cleavage with cyanogen bromide, yielding five 
fragments. Each fragment was submitted to trypsin or 
chymotrypsin digestion, resulting in dozens of peptides 
that were sequenced by the Sanger’s FDNB and the 
Edman’s methods. The results were surprising: β-LPH was 
a novel peptide whose middle fragment contained the 
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Figure 1
Chronology of sequencing of POMC-related peptides. The prohormone 
theory (red box) was suggested in 1967.
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entire sequence of β-MSH sandwiched between pairs of 
basic amino acids (Fig. 3). The number of amino acids, 
initially determined to be 90, was corrected to 91 when 

it was found that sheep β-endorphin contained one more 
isoleucine residue, which had been missed by manual 
sequencing (Chrétien et al. 1976a).

Figure 2
Peptide fragmentation of ACTH for sequencing purposes. (Data from Li et al. 1955). Residues 25–32 (underlined) were later corrected by Riniker et al. 
(1972) to Asn.Gly.Ala.Glu.Asp.Glu.Ser.Ala.
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Figure 3
Sequence of β-LPH. Residues are indicated in color-coded circles. Those that were targeted for cleavage to generate smaller peptides for sequencing (Arg 
and Lys for trypsin digestion; Met for cyanogen bromide treatment) are presented in circles with wiggly borders. The pairs of basic residues flanking the 
sequences of β-MSH are boxed. (Data from Chrétien & Li 1967 and corrected by addition of Ile83).
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The fifth peptide is γ-LPH. While sequencing of  
β-LPH, Chrétien and Li (1967) discovered another peptide 
with similar biological properties; they named it γ-LPH. Its 
sequence corresponded to residues 1–58 of β-LPH, ending 
with the β-MSH sequence.

The sixth peptide is corticotrophin-like intermediate 
peptide (CLIP). It was isolated and characterized by Scott 
et  al. (1972). As its sequence turned out to be identical 
to the C-terminal moiety of ACTH, the authors rightfully 
proposed that ‘ACTH may be not only a hormone in its 
own right, but also the precursor of other biologically 
active peptides’ (Lowry et al. 1977).

The seventh peptide is β-endorphin. In mid-1970s, 
Hughes et al. (1975) serendipitously noted that the met-
enkephalin decapeptide was identical to residues 61–65 
of β-LPH. This led to the speculation that the β-LPH 
C-terminal fragment could also be an opioid peptide. In a 
matter of months, this hypothesis was confirmed by the 
isolation and sequencing of β-endorphin from different 
species (Guillemin 1978, a review), including human 
(Chrétien et al. 1976a).

The eighth peptide is the N-POMC fragment. Its 
existence was suspected in the early 1970s with the 
characterization of big ACTH (Yalow & Berson 1973, Mains 
& Eipper 1975). Its complete sequence became available 
with the cloning of POMC cDNA (Nakanishi 1979).

The prohormone theory

That a peptide hormone could be derived from the 
cleavage of a larger polypeptide (the prohormone theory)  
was deduced by Chrétien and Li (1967) after 
determining the sequence of γ-LPH and noticing that 
it was a truncated fragment of β-LPH containing β-MSH 

as its C-terminus. They also observed that β-MSH was 
the most active of the three molecules for their lipolytic 
and melanophore-stimulating activities (Fig. 4A), 
supporting a precursor–product relationship among 
them. This activity correlation between a precursor 
and its end product held true for proinsulin also: it was 
shown to possess minimal insulin potency (Kitabchi 
1970) (Fig. 4B). Chrétien and Li (1967) proposed 
that β-MSH could be generated following proteolytic 
processing. They highlighted the pairs of basic amino 
acid residues flanking this peptide in the β-LPH/γ-LPH 
molecules as potential cleavage sites (Fig. 3).

This proinsulin model was simultaneously proposed 
by Donald Steiner when he discovered that a human 
insulinoma produced insulin from a larger molecule 
(Steiner et al. 1967). In 1968, Ronald Chance sequenced 
proinsulin and confirmed that the cleavages producing 
the two insulin chains occurred at pairs of basic amino 
acid residues as in the β-LPH model (Chance et al. 1968). 
In subsequent years, many more hormones and neural 
peptides, including β-endorphin, were shown to be 
produced through the same mechanism (Chrétien et  al. 
1984), giving an almost universal support to the theory.

The β-LPH biosynthetic cascade

In the early 1970s, many groups joined the field using 
various methodological approaches. The rules governing 
these approaches were best spelled out by Tager et  al. 
(1975): (i) immunoprecipitation experiments with  
well-characterized antibodies raised against the 
hormone must specifically precipitate the higher as well 
as the lower molecular weight forms of the hormones; 
(ii) peptide mapping of the precursor must demonstrate 

Figure 4
(A) Comparison of the melanophore-stimulating and lipolytic activities of lipotropins and β-MSH. The data are presented as percentage of β-MSH activity 
(Data from Chrétien & Li 1967). (B) Comparison of insulin-like potency of proinsulins and insulin (Data from Kitabchi 1970).

http://dx.doi.org/10.1530/JME-15-0261


Jo
u

rn
al

 o
f 

M
o

le
cu

la
r 

En
d

o
cr

in
o

lo
g

y

DOI: 10.1530/JME-15-0261
http://jme.endocrinology-journals.org © 2016 Society for Endocrinology

Printed in Great Britain
Published by Bioscientifica Ltd.

T53Thematic Review m chrétien and m mbikay From Prohormones to POMC  
and PCSK1-9

56 4:

the existence within the larger molecular form of 
peptides characteristic of the active hormone together 
with additional fragments; (iii) pulse-labeling and 
pulse-chase experiments must be carefully conducted 
to establish the precursor-product relationship between 
high and low molecular weight forms of the proteins; 
(iv) sequence analysis of the putative precursor must 
reveal the existence of additional peptide(s) covalently 
linked to the hormone.

The first two criteria constituted suggestive 
evidence for the existence of a precursor molecule. The 
pulse-chase experiments were more indicative of this 
fact. More conclusive evidence was the demonstration 
that the end products were chemically similar to their 
natural equivalents by, whenever possible, radioactive 
microsequencing of end products after biosynthetic 
labeling of the precursor with key amino acid residues. 
However, the ultimate proof was the sequencing of the 
precursor itself, showing (an) additional fragment(s) 
covalently linked to the correct sequence of the 
biologically active peptide.

Chrétien and collaborators showed that β-LPH 
and γ-LPH biosynthesized in vitro were chemically 
indistinguishable from their natural counterparts in  
bovine pituitary glands (Bertagna et  al. 1974, Chrétien 
et al. 1976b). Soon after, they isolated sheep and human 
β-endorphin (Chrétien et  al. 1976a) and they studied 
its biosynthesis in vitro (Crine et al. 1977). Not only did 
they found the radioactive biosynthetic β-endorphin 
to have similar chemical characteristics with unlabeled 
β-endorphin, but they confirmed by microsequencing the 
methionine residue at its fifth position as expected. Soon 
after, using double labeling with [35S]methionine and [3H]
lysine, they showed that after a 3 h pulse, β-endorphin, 
γ-LPH, and α-MSH were the major secretory products. 
They also observed a fourth large molecular weight 
protein (Crine et al. 1978), which was later identified as 
the prosegment of POMC.

Extension of the β-LPH models to POMC

The POMC model resulted from numerous parallel studies 
involving many groups. There was: (i) the observation that 
the pituitary cells containing the LPH/β-MSH/endorphin 
and ACTH/α-MSH were the same; (ii) the presence of 
‘big’ ACTH in pituitary extracts and in plasma; (iii) the 
biosynthetic studies of ACTH and related peptides in  
AtT-20 tumor cells, and (iv) in the mid-1970s, the 
progressive recognition of POMC as the common 
precursor to β-LPH and ACTH.

Co-segregation of β-LPH, ACTH, α-MSH, and 
β-endorphin in pituitary cells
β-LPH-containing cells The pituitary is made of specialized 
endocrine cell types, each producing specific hormones. 
These types include somatotrophs, lactotrophs, 
gonadotrophs, thyrotrophs, and corticotrophs producing, 
respectively, growth hormone, prolactin, gonadotropins, 
thyroid-stimulating hormone (TSH), and ACTH. With 
the discoveries of LPHs, it became necessary to identify 
which pituitary cell type produced them. Using specific 
β-LPH polyclonal antibodies, Dessy et  al. (1973) were the 
first to show that β-LPH was present in the corticotroph/
melanotroph cells described earlier by Herlant and Pasteels 
(1967). A few years later, Pelletier and coworkers described 
at the light and electron microscopic levels that β-LPH is 
stored in the same granules as ACTH, and they rightfully 
suggested that both molecules could be released together 
during granule extrusion (Pelletier et al. 1977).

ACTH-containing cells In the early 1930s, Harvey Cushing 
observed that the disease named after him was associated 
with pituitary adenoma suspected to produce ACTH 
(Cushing 1932). The definite proof that those adenoma 
were really secreting ACTH came in 1958 when 
Don Nelson identified a patient who, after bilateral 
adrenalectomy for the treatment of Cushing’s syndrome, 
developed a large pituitary tumor, became pigmented, 
and had large amounts of ACTH and MSH bioactivities 
in his urine. Following the removal of the tumor, the 
pigmentation markedly decreased along with the urinary 
ACTH and MSH (Nelson et  al. 1958). It took another 
decade before Herlant and Pasteels (1967) described the 
ACTH-containing cells (corticotrophs). Phifer et al. (1970) 
unequivocally confirmed the presence ACTH in these 
cells. Soon after, using specific antibodies against ACTH, 
α-MSH, and β-MSH, they showed that the three hormones 
co-segregated in the same cells (Phifer et al. 1974).

Endorphin-producing cells When β-endorphin was discovered 
in 1976, it came as no surprise that it was found in the 
LPH/ACTH/MSH cells (Weber et al. 1978).

Molecular forms of ACTH and LPH Indications 
that ACTH is biosynthesized from a larger precursor 
came initially from radioimmunoassays of gel filtration 
fractions. Orth et  al. (1970) showed that a mouse 
pituitary adenocarcinoma cell line (AtT-20/D-l) had 
two immunologically indistinguishable forms of ACTH 
differing in molecular weights. Soon after, Yalow and 
Berson (1973) identified three forms of ACTH in human 
plasma and extracts of pituitary glands. Lowry et al. (1977) 
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also noted some heterogeneity in the ACTH molecular 
forms and observed that the larger forms also contained 
LPH immunoreactivity, which suggested a common 
precursor for the two molecules.

Biosynthesis of ACTH and related 
peptides Although the sequences of ACTH and of α-
MSH had been known for almost 15 years, their structural 
relationship during biosynthesis did not attract much 
attention until two additional facts were published: (i) 
the existence of high molecular forms of ACTH and (ii) 
the discovery of CLIP by Scott et  al. (1972, 1974). The 
most important in vitro results came in the mid-1970s 
from Ed Herbert’s laboratory in Portland, Oregon. In 
their first series of experiments, carried out by the Eipper 
and Mains in tandem (Eipper & Mains 1976), involved 
a double-immunoprecipitation technique to isolate 
labeled proteins from cells incubated in media containing 
radioactive amino acids. The second series of experiments, 
carried out by Roberts and Herbert (1977) and Roberts 
et  al. (1978), used a cell-free translation of mRNA from 
AtT-20 cells. Both studies confirmed the hypothesis 
that ACTH is biosynthesized as a large precursor form 
of 28,000–31,000  kDa, which is later transformed into 
13- and 4.5-kDa forms. Nakanishi et  al. (1976, 1977) 
made similar observations using mRNA from bovine 
pituitary glands. In pulse-chase experiments carried 
out in rat pars intermedia, Crine et  al. (1978) showed, 
with microsequencing characterization, the sequential 
biosynthesis of β-LPH and β-endorphin from a large 
precursor molecule.

The sequence of POMC cDNA Although flanking 
pairs of basic residues had been identified early on as 
cleavage motifs for the release of β-MSH and β-endorphin 
from β-LPH (Chrétien & Li 1967) and α-MSH and CLIP 
from ACTH (Scott et  al. 1974), the cleavage motif 
between ACTH and β-LPH could not be established for 
lack of sufficient amounts of the POMC molecule. The 
difficulty was circumvented when DNA sequencing came 
about. Roberts et al. (1979) and Nakanishi et al. (1979) 
cloned the cDNA of mouse and bovine ACTH/β­LPH 
precursor, respectively. The first group reported a partial 
sequence of the cDNA; the second group a complete one. 
Quite evidently, pairs of basic residues identified in the 
sequence were proteolytic signal motifs for the release of 
ACTH, β-LPH, β­-MSH, and β-endorphin. The rat gene was 
cloned and sequenced by Drouin and Goodman (1980), 
confirming the cDNA results. Later, Herbert’s group was 
able to define the length of the signal peptide (Policastro 

et al. 1981). The common precursors were variably called 
‘big ACTH’, ‘31K-precursor’, ‘precursor to ACTH and 
β-endorphin’, ‘pro­opiocortin’, ‘pro-lipocortin’, and ‘pro-
ACTH/endorphin’ (Eipper & Mains 1980). Taking into 
account the biological activities of its three main end 
products, the name POMC was proposed (Chrétien et al. 
1979, Herbert 1981) and was widely accepted.

The expansion of the prohormone theory

The early 1970s saw the identification of numerous 
hypothalamic factors and other important neuropeptides 
(Guillemin 1978, Watson et  al. 1982, Douglass et  al. 
1984). The question rapidly arose whether all those 
neurohormones followed similar biosynthetic pathways 
as β-endorphin (Lazarus et  al. 1976, Crine et  al. 1977, 
1978). When the corresponding full-length cDNAs of 
known neurohormones were cloned and sequenced, the 
amino acid sequences deduced from their open reading 
frames revealed that their active peptide was contained 
within larger polypeptides and flanked by basic residues 
(Douglass et  al. 1984). Thus, the prohormone theory, 
which initially applied to peptide hormones, held true 
for neuropeptides and neurotrophins as well. It implied 
that the brain could produce many active substances 
from a limited number of genes. For example, combining 
partial and total cleavages, POMC, with its 10 pairs of 
basic residues, could produce up to 65 fragments, while 
pro-enkephalin, with 12 such pairs, could give rise to 90 
different peptides (Chrétien et al. 1989).

The following formula was proposed:

i n
i

n
+ = + + + + + + + +( ) ( ) ( ) ( )

=
å 1 1 1 2 1 3 1 1
1



in which i varies from 1 by integers to n and n represents 
the number of potential cleavage sites.

Through cDNA cloning and sequencing, other  
proteins were identified as products of larger polypeptides 
and their number has increased exponentially. 
According to the CutDB database, there are to this date 
6435 documented proteolytic events in the human 
proteome (http://cutdb.burnham.org/). For hundreds of 
precursor proteins in the proteome, these events involve 
endoproteolysis at basic motifs.

The discovery of PCs

The prohormone theory entailed the existence of 
specific proteases that could mediate the proteolytic 

http://dx.doi.org/10.1530/JME-15-0261


Jo
u

rn
al

 o
f 

M
o

le
cu

la
r 

En
d

o
cr

in
o

lo
g

y

DOI: 10.1530/JME-15-0261
http://jme.endocrinology-journals.org © 2016 Society for Endocrinology

Printed in Great Britain
Published by Bioscientifica Ltd.

T55Thematic Review m chrétien and m mbikay From Prohormones to POMC  
and PCSK1-9

56 4:

processing of the precursor, the so-called PCs. Lazure 
et  al. (1983) reviewed the minimal criteria that had  
to be met for any enzyme to qualify as PC. Their  
search by classical biochemical methods of purification 
from tissues combined with enzyme assays proved to  
be a long road, paved with many false leads and dead 
ends, including our own (Chrétien 2012, a review). 
Although the search for PC was ongoing, the cDNA  
of 7B2, a pituitary peptide that we characterized in  
the early 1980s, was cloned in human and mouse;  
it later turned out to be a specific chaperone and 
inhibitor of one of the PCs, namely PC2 (Mbikay et al. 
2001, a review).

The first experimental evidence by these methods 
of the existence of an authentic mammalian PC came 
in 1987, when Davidson and coworkers identified a 
calcium-dependent endoproteinase from extracts of 
rat insulinoma (Davidson et  al. 1987). In 1980s, it 
came to be known that Saccharomyces cerevisiae carried 
a PC, the KEX2 gene product or Kexin, with cleavage 
specificity for pairs of basic residues (Mizuno & Matsuo 
1984), the same metal dependence (Fuller et al. 1989a), 
and the ability of correctly processing a mammalian 
prohormone, namely POMC, when expressed into 
mammalian cells (Thomas et  al. 1988b). The turning 
point in the search of the mammalian homologs was an 
insightful observation by Fuller et al. (1989b) of a cDNA 
in the GenBank whose deduced sequence, like Kexin, 
carried the telltale signatures of the catalytic domain 
of serine proteases of the subtilase family. The cDNA, a 
product of the fur gene (upstream region of the fes/fps 
gene), encoded a type 1 transmembrane protein named 

furin believed to be a receptor (Roebroek et  al. 1986). 
Unbeknownst to the investigators, the protein was a 
PC. The observation by Fuller et  al. (1989b) launched 
an intense search for the homologs of this cDNA from 
endocrine tissue mRNA. The strategy involved the use 
of PCR with degenerate oligonucleotides designed to 
overlap the codons corresponding to residues of the 
active triad found in catalytic pocket of kexin and furin. 
PC2 cDNA was characterized from a human insulinoma 
(Smeekens & Steiner 1990) and PC1 and PC2 cDNA from 
mouse pituitary (Seidah et al. 1990). Soon after, a second 
cDNA corresponding to PC1, but named PC3, was cloned 
from the human insulinoma (Smeekens et al. 1991). It is 
an amazing historical coincidence that the cloning of the 
cDNAs for these initial PCs was simultaneously obtained 
by the same two groups which had formulated the 
prohormone theory 23 years earlier (Seidah & Chrétien 
1992, Chrétien 2012).

In the following decade, six other cDNAs encoding 
enzymes structurally related to furin, PC1/3, and  
PC2 were identified in various mammalian tissues.  
They are PC4, PACE4, PC5/6, PC7, S1P/SKI-1, and  
PCSK9. Overall, these enzymes are biosynthesized as 
zymogens made of an N-terminal prodomain, a catalytic 
domain, a P domain, and C-terminal domain (Fig.  5A). 
Except for PCSK9, which cleaves only itself, these 
enzymes catalyze the hydrolysis of many precursor 
proteins (proproteins). Except for S1P/SKI-1 and  
PCSK9, they all cleave themselves and their substrates 
after basic motifs with differing stringency. Collectively, 
they have been named PCs (Seidah & Chrétien 1992, 
1999, Seidah 2011, Chrétien 2012).

ER Primary  
N-terminal cleavage 

TGN 
Secondary  
N-terminal cleavage 

SG Ter�ary  
C-terminal trunca�on 

96 kDa ProPC1/3 
INACTIVE 

84 kDa PC1/3-Pro  
Complex  
INACTIVE 

84 kDa PC1/3 
ACTIVE 

66 kDa PC1/3 
HYPERACTIVE 

A 
B 

Figure 5
(A) Biosynthesis of PC1/3. The cascade of proteolytic maturation and activation of the zymogen starts in the ER, and continues in the trans-Golgi network 
(TGN) and in secretory granules (SG). (B) PC1/3 and PC2 preferred cleavage sites in POMC polypeptide. The sites and the major processing are indicated 
by color-coded (red for PC1/3 and blue for PC2) arrowheads and lines, respectively.
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PC1/3 and PC2 are POMC convertases

Arguments of topology, enzymology, and genetics have 
concurred to establish that PC1/3 and PC2 are the bona 
fide POMC converting enzymes.

Both enzymes and the prohormone are localized in the 
same cells

Early after their discovery, in situ hybridization on 
rodent brain sections revealed that while PC1/3 and PC2 
mRNA as found in both lobes of the pituitary, PC1/3 
was most abundant in the anterior lobe and PC2 more 
abundant in the neurointermediate lobe (Day et  al. 
1992). Ex vivo studies using mouse AtT-20 corticotrophs 
showed that PC1/3 was released upon exocytotic 
stimulation, indicating that, like POMC-derived 
peptides, it was stored into regulated secretory vesicles 
(Vindrola & Lindberg 1992), a conclusion that was 
later confirmed by the detection of its immunoreactive 
forms at the tips of these cells, where the vesicles 
containing the peptides accumulate (Hornby et  al. 
1993). Immunocytochemistry at electron microscopic 
level corroborated the co-localization of POMC-derived 
peptides with these enzymes in dense secretory vesicles 
of the pituitary gland (Takumi et al. 1998).

The enzymes cleave the prohormone into peptides 
normally found in tissues

Using vaccinia virus vectors, metabolic radioactive 
labeling, and microsequencing of radiolabeled peptides, 
Benjannet et  al. (1991) showed that POMC was 
predominantly converted to ACTH when co-expressed 
with PC1/3 and to MSHs and β-endorphin when 
co-expressed with PC2, reproducing the pattern of 
POMC-derived peptides processing previously observed 
in the anterior and neurointermediary lobes of the 
pituitary (Fig. 5B).

Spontaneous or induced deficiency of the enzymes 
causes tissue accumulation of the prohormone or its 
intermediates processing products

Bloomquist et  al. (1991) was the first to demonstrate 
that antisense RNA inhibition of PC1 mRNA translation 
in AtT-20 cells resulted in impaired processing of 
POMC. In humans, Jackson et  al. (1997) described 
the first genetic case of PC1/3 deficiency in which the 
subject carried POMC in circulation as a consequence 

of impaired processing. The mutation caused an obesity 
syndrome. Several other cases were later reported by 
Philippe et al. (2015).

However, it was the production of a PC2 knockout 
mouse in 1997 (Furuta et al. 1997) followed by that of 
PC1/3 (Zhu et al. 2002) 5   years later, which provided 
the opportunity to evaluate in fine details the molecular 
consequence of the deficiency of these enzymes on 
POMC processing. PC1/3-deficient mice exhibited severe 
impairment of ACTH production and compensatory 
accumulation of POMC mRNA in the pituitary (Zhu 
et  al. 2002). Using refined immunological techniques 
with specific antibodies (Miller et al. 2003) showed that 
the pituitary and hypothalamus of PC2-deficient mice 
lacked α-MSH, accumulating ACTH, ACTH-containing 
intermediates, and POMC as well as β-endorphin(1-31). 
The impaired processing was largely confirmed by mass 
spectrometry-based peptidomics (Wardman & Fricker 
2011). The studies also revealed that processing of 
POMC by one enzyme or the other showed cleavage site 
exclusivity, preference, and permissiveness, indicating 
both specificity and redundancy in their enzymatic 
functions. Thus, the production of ACTH is dependent 
on PC1/3, that of MSHs on PC2. Interestingly, the 
physiopathology of POMC-producing pituitary and 
nonpituitary tumors and the associated paraneoplastic 
syndromes can be partially explained by the relative 
levels of expression of these two convertases, with 
PC1/3 being more expressed in corticotroph adenoma 
and PC2 in ectopic tumors (Tateno et al. 2007,  
Tani et al. 2011).

From proenzyme to active enzyme or escort 
protein

Maturation and activation of pro-PCs

PCs are themselves products of secretory precursor proteins. 
Following the basic model defined for furin (Molloy 
et al. 1994), they are biosynthesized in the endoplasmic 
reticulum (ER) as inactive zymogens; they get matured by 
a primary autocatalytic cleavage between the prodomain 
and the catalytic domains. The propeptide and the mature 
enzyme navigate as inactive complexes toward more 
acidic downstream compartments (trans-Golgi network, 
secretory vesicles), where the propeptide undergoes a 
secondary cleavage and dissociate from the mature enzyme, 
which becomes fully active (see Fig. 5A for PC1/3). The  
primary autocatalytic cleavage site generally corresponds 
to the cleavage specificity in heterologous substrates. 
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As shown for furin (Creemers et  al. 1995), engineered 
mutations of this site invariably prevent activation of the 
proenzyme and causes retention in the ER.

From proenzymes (PCSK1-8) to PCSK9  
as an escort protein

Unlike all the other PCs, the PCSK9 zymogen, which 
is primarily produced by the liver, normally undergoes  
a primary cleavage after Gln152 (F-A-Q152↓S-I-P), but  
not a secondary one. It becomes an enzymatically 
inactive complex made of the propeptide tightly  
bound to the mature PCSK9. The complex becomes an 
escort protein directing LDL receptor into lysosomes 
for degradation, thus reducing hepatic clearance 
of LDL-cholesterol (LDL-C) (Mbikay et  al. 2013, a 
review). Therefore, preventing the PCSK9 autocleavage  
may constitute a strategy of invalidating its  
escort activity.

We have discovered, in human subjects, a PCSK9 
variant that fails to undergo the primary cleavage due 
to a Gln152His (Q152H) mutation at the P1 residue. 
First identified in four members of a French-Canadian 
Quebec family (Mayne et  al. 2011), this mutation has 
been found in two other Quebec families. The families 
include 51 heterozygous and 3 homozygous carriers. 
Their mean plasma (LDL-C) is significantly lower than 
that of noncarriers (Fig. 6). Homozygous carriers have 
no circulating PCSK9. The Q152H PCSK9 mutation is 
believed to be strongly cardioprotective. Intriguingly, 
it has so far been found only in the three previously 
mentioned French-Canadian families.

The hypocholesterolemic effect of anti-PCSK9 drugs 
in humans has been widely demonstrated in clinical 
trials (Page & Watts 2015). Despite the success, there 
are uncertainties about the metabolic consequences 
of long-term drastic reduction of plasma cholesterol.  
In this context, we have shown that a strain of 
mice globally deficient for PCSK9 exhibited glucose 
intolerance and prediabetes with age (Mbikay et al. 2010).  
More recently, we have noted white adipose tissue 
anomalies in a PCSK9Q152H female subject (Wassef 
et  al. 2015). It has been recommended that patients 
treated with anti-PCSK9 drugs be monitored for adverse 
neurocognitive effects (Swiger & Martin 2015). For  
our part, we plan to verify whether the remarkable 
lifelong hypocholesterolemia observed in our 
PCSK9Q152H carriers might protect them from cognitive 
impairment of cerebrovascular origin and/or of 
Alzheimer’s degeneration.

Our discovery of the PCSK9Q152H in the Quebec 
population is a close-to-home illustration of the 
numerous ramifications of the prohormone theory in 
various aspects of physiology. It illustrates how a single 
amino acid substitution in the sequence of a precursor  
protein can provide an exceptional opportunity to explore 
novel research avenues. The discovery of flanking pairs 
of basic amino acids in the β-LPH/γ-LPH/β-MSH model 
nearly 50  years ago (Chrétien & Li 1967) influenced 
many research groups into adopting endoproteolysis as 
research theme.

Importance of the PCs in human biology

In 2001, Gary Thomas summarized the biological 
importance of the prohormone theory and the PCs in 
these terms: ‘These studies were as revolutionary as 
those by Krebs and Fischer, which showed that protein 
phosphorylation is a universal modification in signal 
transduction’. He also noted the relationship between 
the PCs with different pathophysiological conditions 
(Thomas 2002). Previously, Chrétien et  al. (1995) had 
also predicted a wide range of clinical applications 
based on the great variety of substrates known to be 
activated by the PCs. Recent reviews have been written 
on the subject (Artenstein & Opal 2011, Chrétien 
2012, Seidah & Prat 2012). Figure 7 illustrates the 
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Figure 6
LDL-C concentration in carriers and noncarriers of Q152H PCSK9 mutation 
in three French-Canadian families. The mutation is associated with a 37% 
reduction of mean plasma LDL-C or ~1 mmol/L (P<0.001). Carriers 
included homozygotes (–/–) and heterozygotes (+/–) for the mutation. 
Their plasma LDL-C ranged from 0.5 to 3.2 mmol/L (95% CI 1.53–
2.08 mmol/L), whereas that of noncarriers (+/+) ranged from 1.2 to  
4.7 mmol/L (95% CI 2.39–3.32 mmol/L). Error bars represent mean±s.d., 
group difference determined by 2-tailed nonparametric t-test.
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biological ramifications of these enzymes in heath and  
disease. Multiple studies have demonstrated association 
between genetic variations of PCs and various human 
health conditions: PC1/3 and PC2 in obesity and  
diabetes (Zheng et  al. 2012, Nead et  al. 2015); furin 
in atherosclerosis (Turpeinen et  al. 2011); PC5/6 and 
mostly PCSK9 in cholesterol metabolism (Iatan et  al. 
2009, Wu & Li 2014, a review); PC7 in iron metabolism 
(Oexle et al. 2011). Ex vivo and in vitro as well as animal 
studies have implicated these enzymes in cancer  
(Mbikay et  al. 1997, Khatib et  al. 2002, a review), in 
vascular remodeling (Stawowy 2015, reviews), and 
viral diseases (Pasquato et  al. 2013, a review). PC- 
targeted therapies are foreseeable in the near future, 
most imminent among them being the treatment 
of hypercholesterolemia and cardiovascular with 
inhibitors of PCSK9 (Wu et  al. 2015). Anti-PCSK9 
therapies may also be applicable to infectious diseases 
as suggested by the resistance to bacterial septic shock 

of carriers of hypocholesterolemic mutations in its gene 
(Walley et al. 2014).

Conclusion

Fifty years ago, sequencing of the pituitary peptides related 
to β-LPH revealed homologies that led to the prohormone 
theory and, eventually to the POMC precursor model. 
Who would have predicted that the presence of two key 
amino acids at the cleavage site would mark the beginning 
of new chapter in enzymology involving PCSK1 to PCSK9? 
Five decades later, a mutation at one amino acid of one 
PC, the Q152H in human PCSK9, in three large families 
may open up novel avenues of investigation in medical 
epidemiology and genetics of aging. We owe most of these 
developments to Frederick Sanger’s lessons in ‘Sequences, 
sequences, sequences’ (Sanger 1988). What other surprising 
discoveries are to come of the prohormone theory and its 
offspring? Only the future will tell.

TISSUE HOMEOSTASIS

PROHORMONE
THEORY

GLUCOSE & LIPID HOMEOSTASIS

Obesity and diabetes 
Cardiovascular disease 

NEURO & ENDOCRINE REGULATION

Alzeihmer’s disease 
Congenital abnomalities

GROWTH & DEVELOPMENT

Cancer

REPRODUCTION 

PCs
Infectious diseases 

β/γ-LPH & β-MSH

Infertility

Figure 7
Ramifications of the relevance of proprotein convertases for the biology of health and disease. At the root of it all are the three POMC peptides and the 
theory that was deduced from their sequences.
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