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Abstract

The melanocortin peptides derived from pro-opiomelanocortin (POMC) were originally 

understood in terms of the biological actions of α-melanocyte-stimulating hormone 

(α-MsH) on pigmentation and adrenocorticotrophic hormone on adrenocortical 

glucocorticoid production. However, the discovery of POMC mrNa and melanocortin 

peptides in the CNs generated activities directed at understanding the direct biological 

actions of melanocortins in the brain. Ultimately, discovery of unique melanocortin 

receptors expressed in the CNs, the melanocortin-3 (MC3r) and melanocortin-4 (MC4r) 

receptors, led to the development of pharmacological tools and genetic models leading 

to the demonstration that the central melanocortin system plays a critical role in the 

regulation of energy homeostasis. Indeed, mutations in MC4r are now known to be 

the most common cause of early onset syndromic obesity, accounting for 2–5% of all 

cases. This review discusses the history of these discoveries, as well as the latest work 

attempting to understand the molecular and cellular basis of regulation of feeding and 

energy homeostasis by the predominant melanocortin peptide in the CNs, α-MsH.

Cloning of the melanocortin receptors

The cloning of the melanocortin receptors (MCR) in 
1992 significantly advanced our understanding of the 
physiological roles and sites of action of α-melanocyte-
stimulating hormone (α-MSH) (Mountjoy et al. 1992). The 
first two receptors reported corresponded to the previously 
characterized melanocyte-stimulating hormone 
receptor (MSHR or MC1R) and adrenocorticotrophic 
hormone receptor (ACTHR or MC2R). Ultimately, five 
MCR were cloned, and referred to as MC1R–MC5R.  
The latter three had no known physiological 
roles at the time, and therefore were referred to as  

melanocortin-3 (MC3R), melanocortin-4 (MC4R), and 
melanocortin-5 (MC5R), respectively.

MCRs are members of the rhodopsin-like, class A 
branch of the seven transmembrane-spanning domain 
G protein coupled receptor (GPCR) superfamily. They 
couple to, and cause dissociation of the heterotrimeric 
G protein complex. The Gα subunit types activated by 
ligand-bound MCRs are Gαs, Gαq, and Gα11. MC3R–MC5R 
have relatively short N- and C-termini, and intracellular 
and extracellular loops, placing them among the 
shortest GPCRs.
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All MCRs except for MC2R, bind melanocortin 
peptides containing the conserved heptapeptide core 
‘MEHFRWG’, found in α-MSH, while the ACTHR further 
requires a peptide motif C-terminal to the 13 amino acids 
found in α-MSH (Gantz et al. 1993a). Each MCR mediates 
diverse physiological responses to α-MSH, or ACTH, in the 
case of MC2R. The MC1R is expressed in skin melanocytes 
and hair follicles and regulate pigmentation. α-MSH binds 
to this receptor stimulating the synthesis of eumelanin 
(brown-black pigments). Agouti (agouti signaling 
protein) binds to the receptor, competitively inhibiting 
the binding of α-MSH, to stimulate the synthesis of 
pheomelanin (yellow-red pigments). MC2R binds α-MSH 
with lower affinity than other members of the family, 
but instead, is activated specifically by ACTH and it is 
exclusively expressed in the adrenal cortex. Activation of 
this receptor regulates cell proliferation and production of 
glucocorticoids in the adrenal cortex.

The MC3R is expressed mainly in the brain, including 
high expression in the arcuate nucleus (ARC), ventromedial 
nucleus of the hypothalamus (VMH), ventral tegmental 
area (VTA), central linear nucleus of raphe, with moderate 
expression in anteroventral preoptic nucleus, lateral 
hypothalamic area, posterior hypothalamic area, medial 
habenular nucleus, and paraventricular nucleus of the 
hypothalamus (PVH) (Roselli-Rehfuss et al. 1993, Gantz et al. 
1993a). Disruption of this gene in knockout mouse models 
generate a nonhyperphagic increase in adiposity that is 
associated with reduced lean body mass and increased feed 
efficiency (Butler et al. 2000, Chen et al. 2000). The MC4R 
is widely expressed throughout the CNS (Mountjoy et  al. 
1994) as well as peripheral nervous system (Gautron et al. 
2010), and in intestinal L cells (Panaro et al. 2014). MC4R 
functions to regulate food intake and energy expenditure, 
and this role for the receptor has been shown to be 
evolutionarily conserved in vertebrates from fish to human. 
MC4R knockout mice as well as human mutants present 
early onset severe obesity associated with increased fat and 
lean mass (Huszar et al. 1997, Yeo et al. 1998). Additionally, 
MC4R regulates insulin secretion, lipid metabolism, bone 
mineral density, and body length. MC5R appears to be 
expressed primarily in exocrine glands. MC5R knockout 
mice are defective in secretion of multiple exocrine gland 
products and lack pheromone-induced aggression behaviors 
(Chen et al. 1997, Morgan & Cone 2006).

As the effects of α-MSH on food intake are the focus of 
this review, we will center our discussion on the physiology, 
pharmacology, and neuroanatomy of pro-opiomelanocortin 
(POMC) and agouti-related peptide (AgRP), and their 
cognate receptors in the CNS, MC4R, and MC3R.

Cloning the MC4R

Historically, the earliest physiological evidence of effects 
of melanocortin peptides originates before cloning of 
MC4R, with reports that intracerebroventricular (ICV) 
injection of ACTH and α-MSH inhibited the feeding drive 
induced by i.p. injection of a κ-opiate receptor agonist in 
rats (Poggioli et al. 1986, Vergoni et al. 1986). Stimulation 
of food intake by α-MSH had also been reported (Shimizu 
et al. 1989), and thus the characterization of receptors for 
α-MSH in the brain was ultimately needed to clarify these 
conflicting findings.

Following the cloning of the MC1R and MC2R, 
three orphan MCRs were soon cloned as well. Two 
independent laboratories in 1993 cloned and mapped 
the human MC4R using homology-based cloning (Gantz 
et al. 1993b, Mountjoy et al. 1994). This gene, identified 
on chromosome 18 (q21.3) in humans, consisted of one 
large exon with an open reading frame of 1 kb encoding a 
protein of 332 amino acids. Based on sequence alignment 
analysis, the closest identified receptor was MC3R, with 
58% homology (Gantz et al. 1993a, Magenis et al. 1994). 
MC4R couples to Gαs protein to activate adenylyl cyclase, 
resulting in elevation of intracellular cAMP. There is 
also evidence that this receptor can raise intracellular 
calcium levels through recruitment of Gαq and inositol 
trisphosphate production in heterologous overexpression 
systems (Konda et  al. 1994, Mountjoy et  al. 2001,  
Kim et al. 2002).

Discovery of the role of α-MSH in feeding 
behavior and energy homeostasis

When expression of MC4R was mapped in the CNS by 
in situ hybridization, the distribution suggested a role in 
neuroendocrine and autonomic control (Mountjoy et  al. 
1994). However, the first breakthrough in understanding the 
MC4R physiological function came from discoveries made 
in MC1R physiology and pharmacology (Lu et al. 1994).

Agouti, a 132-amino acid protein that is produced 
in the hair follicle, was demonstrated to be a high-
affinity ligand of MC1R, competitively blocking α-MSH 
binding and inhibiting cAMP production (Lu et  al. 
1994). This finding correlated with observations in vivo 
that agouti blocked eumelanin production. Strikingly, 
agouti was also found to be a high-affinity competitive 
antagonist of α-MSH action at MC4R, but not other 
MCRs (Lu et al. 1994).

As agouti gene mutations were found to result from 
gene rearrangements that produced ectopic expression 

http://dx.doi.org/10.1530/JME-16-0014


Jo
u

rn
al

 o
f 

M
o

le
cu

la
r 

En
d

o
cr

in
o

lo
g

y

DOI: 10.1530/JME-16-0014
http://jme.endocrinology-journals.org © 2016 Society for Endocrinology

Printed in Great Britain
Published by Bioscientifica Ltd.

T159Thematic Review e j p anderson and others α-MSH and feeding 56 3:

of agouti (Yen et  al. 1994), it was inferred that the 
inhibition of MCRs in the brain by agouti underlie the 
obesity and metabolic syndrome observed in the yellow 
(Ay) mouse (Lu et al. 1994). The development of the first 
MC4R antagonist (Li et al. 1996), and the creation of two 
different genetic mouse models would ultimately confirm 
this hypothesis (Fan et al. 1997).

In 1997, several studies were published providing 
direct evidence supporting this hypothesis and establishing 
a central role of MC4R signaling in regulation of energy 
homeostasis. ICV injection of melanotan II (MTII), a 
cyclic analog of α-MSH, was shown to suppress food 
intake in four different mouse models: fasted C57BL/6J, 
ob/ob, Ay, and mice injected with neuropeptide Y (NPY). 
Conversely, this inhibition was blocked by coinjection 
of SHU9119, a cyclic peptide antagonist of MC3R and 
MC4R. Furthermore, ICV injection of SHU9119 alone 
increased food intake in mice (Hruby et  al. 1995, Fan 
et al. 1997). These findings supported the hypothesis that 
hypothalamic POMC expressing neurons releasing α-
MSH tonically to inhibit feeding via activation of MC4R 
target neurons, and chronic blockade of this signaling 
pathway by agouti is ultimately responsible for the obesity 
phenotype observed in Ay yellow mice (Fan et al. 1997).

Animal models manipulating the melanocortin 
system have been pivotal to further advancing our 
understanding of the role of α-MSH in regulation of 
feeding and energy homeostasis (Table 1). In 1997, the 
first animal model testing the role of α-MSH signaling 
in the brain was created. By targeting the Mc4r gene in 
embryonic stem cells, MC4R knockout mice were made 
and used to test the hypothesis that deletion of this 
receptor would recapitulate the agouti obesity syndrome 
(Huszar et  al. 1997). Mice lacking both alleles displayed 
early onset obesity, hyperphagia, increased linear growth, 
hyperinsulinemia, and hyperglycemia. Loss of a single 
allele resulted in intermediate phenotypes compared 
with wildtype and homozygous siblings, indicating 
involvement of a gene–dosage effect (Huszar et al. 1997). 
These findings support a model in which the primary 
mechanism by which agouti induces obesity is by chronic 
antagonism of MC4R, establishing this receptor as central 
regulator of energy balance.

Subsequently, two research groups conducted two 
independent cohort screenings of the MC4R gene in 
individuals with childhood obesity and nonobese 
controls. They identified frameshift mutations in the 
MC4R gene in children with early onset obesity (Vaisse 
et  al. 1998, Yeo et  al. 1998). The majority of MC4R-
induced obese individuals were heterozygous comprising 

about 6% of obese children. As observed in knockout 
mice, human MC4R-induced phenotypes exhibited a 
gene–dosage effect, unusual for other GPCRs. This finding 
demonstrated the evolutionarily conserved role of MC4R 
in energy balance in humans, and generated great interest 
in α-MSH signaling in the CNS in general, and the  
MC4R as a target for the development of new  
antiobesity therapeutics.

Another important event in 1997 was the discovery, 
characterization, and expression mapping of AgRP, an 
analog of agouti (Fong et al. 1997, Graham et al. 1997, 
Ollmann et al. 1997). AgRP mRNA is mainly expressed 
in the ARC of the hypothalamus and its levels are 
increased during fasting and in ob/ob mice, resulting in 
an increased drive to feed. AgRP binds with high affinity 
to MC3R and MC4R (Chai et  al. 2003). Like agouti, 
it acts as competitive antagonist of α-MSH at these 
receptors, with low affinity for MC1R (Ollmann et  al. 
1997). A single ICV injection of AgRP increases food 
intake for up to a week, and coinjection of α-MSH does 
blunt the orexigenic effects of the former. Thus, AgRP 
functions as an inverse agonist of MC4R by decreasing 
cAMP levels produced by the constitutive activity of 
wildtype or mutant receptors (Haskell-Luevano et  al. 
2001, Nijenhuis et  al. 2001, Chai et  al. 2003). This 
finding substantiated the commonly held Yin–Yang 
view of feeding regulation, with POMC neurons and 
α-MSH inhibiting food intake and energy storage, and 
NPY/AgRP neurons stimulating it in part, through AgRP 
antagonism of MC4R signaling (Fig. 1).

In agreement, transgenic mice ubiquitously 
overexpressing human AgRP exhibit obesity but not 
yellow fur, suggesting that AgRP, unlike agouti protein,  
is MC3R/MC4R specific, and unable to promote 
pheomelanin in hair follicle melanocytes (Graham et al. 
1997, Ollmann et  al. 1997). As MC4R knockout mice 
exhibit significant obesity, some expected that AgRP 
knockout mice might exhibit leanness. However, at first 
glance, these mice exhibit normal food intake, body 
composition, growth rates, and responses to starvation 
(Qian et  al. 2002). Subsequent work demonstrated that 
homozygous AgRP knockout mice do exhibit a very 
modest reduction in body weight at 6 months of age and 
adiposity with increased metabolic rate, body temperature, 
and locomotor activity (Wortley et al. 2005). These mice 
also exhibit a blunted fast-induced refeeding response. It 
is now known that AgRP neurons are GABAergic, and of 
course express NPY as well, and all three agents regulate 
downstream MC4R neurons (Wu & Palmiter 2011). These 
findings underscore the importance of the AgRP neuronal 
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system, as well as AgRP action on MC4R in the regulation 
of energy homeostasis.

Neuroanatomy of the central  
melanocortin system

POMC and AgRP neurons

To truly understand α-MSH action in the CNS, it is critical 
to recognize the neuroanatomical substrate underlying the 

central melanocortin system (Fig. 2). Neurons expressing 
MCR, and POMC and AgRP neurons collectively constitute 
the primary neural components of this system.

Within the CNS, AgRP neurons are restricted to the 
ARC of the hypothalamus (ARC). Most AgRP neurons 
(~90%) express another potently orexigenic peptide 
hormone, NPY. Unlike AgRP, NPY is one of the most 
abundant and widely expressed neuropeptides in the 
mammalian brain. Similarly, POMC neurons express 
another gene coding for an anorectic peptide called  

Table 1 Mouse models used to study α-MsH signaling in obesity.

yellow lethal (Ay) 
and related alleles 
(Aiy, Asy, Avy, Aiapy)

spontaneous mutation resulting in agouti (asip) ectopic expression, 
homozygous lethal; unrelated to agouti ectopic expression, moderate 
hyperphagia, hyperinsulinemia (2–5 × normal), late-onset hyperglycemia,  
lean body mass, ↓ energy expenditure, ↑ sensitivity to stressors, milder 
obesity syndrome than ob/ob or db/db, yellow fur color

Dickie (1962, 1969), frigeri et al. 
(1983), Bultman et al. (1992), 
Michaud et al. (1993, 1994a,b), 
Miller et al. (1993), Klebig et al. 
(1995)

agrP transgene Expression of the agrP under the control of α-actin promoter, same 
metabolic phenotype as Avy, same fur color as wildtype littermates

Graham et al. (1997)

AgRPDTR/DTR Cross of mice harboring a loxP flanked diphtheria toxin receptor with 
animals with Cre recombinase under control of agrP promoter 
ablation of agrP/NPy neurons of the arcuate nucleus of the 
hypothalamus, ↓↓ food intake, ↓ body weight, complete ablation results 
in starvation and death

Gropp et al. (2005), Luquet et al. 
(2005), Wu et al. (2008a,b) 

POMC−/− Hyperphagic, ↓ energy expenditure, adrenal insufficiency, develop 
obesity exacerbated with high-fat diet, lighter than littermates-colored 
dorsal and yellow ventral fur

yaswen et al. (1999), Challis 
et al. (2004)

POMC, AgRP−/− Hyperphagic, ↓ energy expenditure, α-MsH but not agrP administration 
rescues wildtype phenotype, lighter than littermates-colored dorsal 
and yellow ventral fur similar to POMC−/−

Corander et al. (2011)

MC4R−/− Hyperphagic, less obese than ob/ob or db/db, early onset obesity (5–7 
weeks), ↓ energy expenditure, dosage effect with, +/– animals have 
intermediate phenotype, increased linear growth, same fur color as 
wildtype littermates

Huszar et al. (1997)

Targeted deletion 
of MC4r at the 
PVH

Vglut2-ires-Cre;Mc4rlox/lox, targeted deletion of MC4r in glutamatergic 
neurons: same phenotype as MC4r null mice including ↑ hyperphagia, 
↑ body weight, and ↑ linear growth

sim1-Cre;Mc4rlox/lox: targeted deletion of MC4r in single-minded 1 
positive (sIM1+) neurons: intermediate phenotype between MC4r−/− 
and Mc4rlox/lox control mice

Balthasar et al. (2004),  
shah et al. (2014)

MC3R−/− Moderate obesity syndrome of late onset (26 weeks), ↑ body weight 
predominant in females, ↑ adiposity, ↑ energy efficiency, no change in 
lean mass, no change in linear growth, same fur color as wildtype 
littermates

Butler et al. (2000), Chen et al. 
(2000), sutton et al. (2006)

MC3R, MC4R−/− augmented obesity syndrome compared with MC4R−/− or MC3R−/−; 
including ↓ energy expenditure, no change in food ingestion after MTII 
administration, same fur color as wildtype littermates

Chen et al. (2000)

Mahogany (Atrnmg) 
and related alleles 
(Atrnmg-3j, Atrnmg-L)

autosomal recessive mutation reverting the phenotype of Ay including 
obesity albeit hyperphagia is present, atrn encodes for attractin, a 
melanocortin receptor coreceptor.atrnmg is a defective splice variant 
allele that results from a 5 kb retroviral insertion in introns 26 and 27

fur color reflects eumelanin predominance with diminished 
pheomelanin, darkened ears, and tail (umbrous coat). atmmg-3j; a null 
allele of atrn, has darker fur

Lane & Green (1960), Dinulescu 
et al. (1998), Gunn et al. (1999)

Mahogunin, ring 
finger 1 (Mgrn1md)

Mgrn1 encodes an E3 ubiquitin ligaseThe Mgrn1md allele displays a 
similar phenotype to atrnmg and related alleles

Dinulescu et al. (1998), Phan 
et al. (2002)

Mrap2−/− Melanocortin receptor accessory protein 2 (MraP2) knockoutLate-onset 
↑ hyperphagia, early onset ↑ body weight, ↑ white fat tissue depots ↓ 
lean mass, same fur color as wildtype littermates

asai et al. (2013)

http://dx.doi.org/10.1530/JME-16-0014
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cocaine- and amphetamine-regulated transcript. 
NPY/AgRP and POMC neurons are chemically and 
anatomically distinct; however, approximately 25% 
of the NPY neurons are derived from the same lineage 
as POMC neurons during development (Padilla et  al. 
2010). In the rodent ARC, AgRP neurons are expressed 
homogenously throughout the rostrocaudal axis, 
while most POMC neurons are located in the anterior 
and medial ARC. In rat ARC, POMC neurons are more 
laterally distributed compared with the mouse (Cowley 

et  al. 2001). Earlier studies quantifying POMC neurons 
by β-endorphin immunohistochemistry (Huo et  al. 
2006) or using mice expressing green fluorescent protein 
(GFP) under the POMC promoter (Cowley et  al. 2001) 
have reported around 3000–3500 POMC neurons in 
rodent ARC. However, a recent report quantifying 
POMC neurons using an antibody specific to the POMC 
precursor, estimated around 9000 immunoreactive cells 
(Lemus et  al. 2015). On the other hand, the number 
of NPY/AgRP neurons was estimated to be between 

Figure 1
yin–yang model of control of feeding behavior 
and energy homeostasis. NPy/agrP and POMC 
neurons within the arcuate nucleus form a 
coordinately regulated network due to dense NPy/
agrP fibers that project to POMC cell bodies. some 
of the receptors for a large number of hormones 
and neuropeptides known to regulate the network 
are indicated. These fibers project to many of the 
same nuclei, where dual release of α-MsH and 
agrP were proposed to compete for MC4r 
binding, to coordinately regulate food intake and 
energy homeostasis. agrP, agouti-related peptide; 
GaBa, γ-aminobutyric acid; GHs, growth-hormone 
secretagogue receptor; Lep, leptin; MC3r, 
melanocortin 3 receptor; NPy, neuropeptide y; 
μ-Or, μ-opiate receptor; r, receptor; GLP-1, 
glucagon-like peptide 1. Modified, with permission, 
from Cowley Ma, smart JL, rubinstein M, 
Cerdan MG, Diano s, Horvath TL, Cone rD & 
Low MJ (2001) Leptin activates anorexigenic POMC 
neurons through a neural network in the arcuate 
nucleus. Nature 411 480–484.

AgRP

Figure 2 
a highly simplified schematic of the central 
melanocortin system. receipt of long-term 
adipostatic signals and acute satiety signals by 
neurons in arcuate nucleus and brainstem, 
respectively. Light blue boxes indicate nuclei 
containing POMC neurons; yellow boxes indicate 
nuclei containing MC4r neurons that may serve to 
integrate adipostatic and satiety signals; and pink 
boxes show some circumventricular organs involved 
in energy homeostasis. red arrows designate 
projections of POMC neurons; blue arrows show 
projections of agouti-related protein (agrP 
neurons). aP, area postrema; arC, arcuate nucleus; 
BsT, bed nucleus of the stria terminalis; CCK, 
cholecystokinin; CEa, central nucleus of the 
amygdala; DMV, dorsal motor nucleus of the vagus; 
LH, lateral hypothalamic area; LPB, lateral 
parabrachial nucleus; ME, median eminence; NTs, 
nucleus tractus solitarius; PVH, paraventricular 
nucleus of the hypothalamus; rET, reticular 
formation. for simplicity, only a fraction of the 
>100 MC4r target sites are shown, and none of the 
MC3r target nuclei is indicated. adapted, with 
permission, from fan W, Boston Ba, Kesterson ra, 
Hruby VJ & Cone rD (1997) role of 
melanocortinergic neurons in feeding and the 
agouti obesity syndrome. Nature 385 165–168.

http://dx.doi.org/10.1530/JME-16-0014
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8000 and 10,000 (Betley et  al. 2013, Lemus et  al. 
2015), analyzed using mice expressing GFP in an AgRP 
promoter-dependent manner.

Expression of POMC follows a dynamic pattern 
throughout gestation, and POMC-positive brain regions 
in the adult mice reveal that POMC expression in many 
regions in the developing embryo are transient. In adult 
rodents, POMC mRNA was detected by northern blot in 
hypothalamus, amygdala, and the cerebral cortex, but was 
not detectable in midbrain or cerebellar RNA preparations 
(Civelli et al. 1982). A 5′ truncated version of POMC mRNA 
lacking the signal sequence was also detected in amygdala, 
midbrain, and cortex as well as in several peripheral tissues. 
However, the role of this truncated version is unclear as 
it cannot produce active POMC-derived peptides (Clark 
et  al. 1990). POMC was detected in the nucleus tractus 
solitarius (NTS) and lateral reticular formation of the rat 
brainstem initially by immunohistochemistry against 
ACTH (Joseph et al. 1983, Schwartzberg & Nakane 1983) 
and later by in situ hybridization (Bronstein et al. 1992). 
Most neurons identified as POMC positive by labeling 
strategies involving POMC-Cre-mediated recombination, 
which accounts for transient POMC expression that does 
not persist into adulthood, do not express POMC in the 
adult brain. In this context, mice expressing GFP under 
the POMC promoter yielded more satisfactory anatomical 
data as to ARC POMC neurons as there is almost 100% 
overlap of GFP and POMC expression in the ARC, but not 
in other brain regions (Pinto et al. 2004). More recent and 
comprehensive studies comparing POMC-Cre, POMC-GFP,  
and sensitive in situ hybridization techniques have 
concluded that POMC expression in the adult mouse 
brain is restricted to ARC and NTS (Padilla et al. 2012).

AgRP was identified by its homology to agouti and 
its expression is restricted to ARC and adrenal gland with 
very low expression in lung, kidney, testis, and ovaries 
(Ollmann et al. 1997, Shutter et al. 1997). AgRP and POMC 
neurons located in the ARC project to various intra- and 
extrahypothalamic brain regions, and many reciprocal 
connections are found. Within the hypothalamus, 
AgRP and POMC neurons send overlapping projections 
to many hypothalamic nuclei including PVH, lateral 
hypothalamus (LH), VMH, posterior hypothalamus, 
dorsomedial hypothalamus (DMH), and medial preoptic 
nucleus/area (Bagnol et al. 1999). AgRP neurons innervate 
extrahypothalamic sites such as the bed nucleus of the 
stria terminalis (BNST), and the lateral parabrachial 
nucleus (LPB), central nucleus of the amygdala (CEA), 
and periaqueductal gray (PAG) (Betley et al. 2013, Wang 

et  al. 2015) outside the hypothalamus. ARC POMC 
neurons innervate many extrahypothalamic regions 
including BNST, lateral septum, nucleus accumbens, LPB, 
the periaqueductal gray, and the dorsal motor nucleus of 
the vagus (DMX). NTS POMC neurons innervate other 
neurons mostly within the brain stem (Wang et al. 2015). 
Collectively, POMC neurons appear to innervate multiple 
regions not receiving AgRP innervation, such as the DMX.

AgRP and POMC neurons receive inputs from other 
hypothalamic nuclei, predominantly from PVH, DMH, 
VMH, and LH (Wang et  al. 2015). Extrahypothalamic 
brain regions innervating POMC and AgRP neurons 
include lateral septum and BNST. Neurons with cell 
bodies in the hippocampus, medial mammillary nucleus, 
and VTA appear to selectively innervate POMC neurons, 
but not AgRP neurons (Wang et  al. 2015). NTS POMC 
neurons receive the majority of inputs from other neurons 
in the brainstem; however, neurons originating from 
paraventricular hypothalamic nucleus and amygdala 
(Wang et al. 2015) also innervate NTS POMC neurons.

The large degree of overlap in the regions innervated 
by both AgRP and POMC neurons also supports the dual 
regulation of central melanocortin signaling by α-MSH 
and AgRP (Fig. 1). Besides neuronal inputs, AgRP and 
POMC neurons are under direct regulation of hormonal 
and nutrient-related signals. Both neurons express leptin 
receptors (LepR), while only AgRP neurons express ghrelin 
receptors. A recent report suggested that the AgRP neurons 
that project within the hypothalamus do not express 
LepRb, which was not the case for POMC neurons (Betley 
et  al. 2013). Around 30–40% of AgRP neurons respond 
to leptin with increased STAT3 phosphorylation (van de 
Wall et al. 2008). Virtually no POMC neurons in the NTS 
exhibit leptin-induced STAT3 phosphorylation or c-Fos 
expression induction (Huo et al. 2006). Nonetheless, about 
60% of POMC neurons in the ARC are leptin responsive. 
In addition, fasting decreases POMC expression in both 
ARC and NTS, but only ARC POMC expression can be 
rescued by leptin (Huo et  al. 2006, Perello et  al. 2007). 
Deletion of LepRb from POMC or AgRP neurons results in 
obesity and hyperleptinemia (Balthasar et al. 2004, van de 
Wall et al. 2008) in both genders of mice, and the effect 
of deletion of LepRb from both neuronal populations is 
additive (van de Wall et al. 2008). Although these results 
should be evaluated taking into account the difficulties 
inherent to the developmental problems associated with 
the Cre lines used, they suggest that POMC and AgRP 
neurons mediate only part of leptin’s effects on energy 
homeostasis (Padilla et al. 2012).
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Neuroanatomy of MC3R and MC4R neurons

Downstream of POMC and AgRP, MC3R/MC4R 
expressing target neurons serve as essential neural nodes 
for responding to integrated signals of energy status 
and relaying modulating signals throughout the CNS to 
maintain energy balance.

The MC3R was originally identified as the receptor 
more potently activated by the POMC-derived peptide  
γ-MSH (Roselli-Rehfuss et al. 1993), although the receptor 
also responds to α-MSH as well. In situ hybridization 
studies delineated the narrow distribution of MC3R within 
the adult CNS to approximately 30 mapped nuclei, where 
highest density is found in concentrated subregions of the 
hypothalamus including the VMH, ARC, anteroventral 
preoptic area, posterior hypothalamic area, and the 
medial preoptic area, the limbic system regions of nucleus 
accumbens (NuAcc) and VTA, and weak signals from a few 
brainstem nuclei (notably not the NTS) (Begriche et  al. 
2011, Mountjoy 2015). Double-labeled in situ hybridization 
validated before pharmacological studies by showing that 
a large component of ARC neurons expressing MC3R 
is also positive for AgRP or POMC mRNA (Bagnol et  al. 
1999). Deletion of the MC3R resulted in a mouse with 
increased adipose mass, decreased lean mass, and reduced 
bone density (Butler et al. 2000, Chen et al. 2000). Further 
physiological studies suggest MC3R regulates fast-induced 
refeeding (Renquist et  al. 2012) and entrainment of 
anticipatory behavior to nutrient intake (Begriche et  al. 
2011). Recently conducted studies provided evidence for 
the functional expression of MC3R in the VTA and its role 
therein as a sexually dimorphic node for regulating the 
mesolimbic dopaminergic system and reward (Lippert 
et  al. 2014). MC3R peripheral expression is detectable 
in the stomach, duodenum, kidneys, placenta, heart, 
monocytes, and macrophages; however, the function of 
the gene at these sites of action has not been well explored 
(Caruso et al. 2014). Nonetheless, it is apparent that one of 
the central MSH peptides likely mediates some effects on 
feeding and energy homeostasis via the MC3R.

The MC4R is more broadly distributed than MC3R, 
exhibiting expression in cellular nodes in every CNS region 
with a striking presence in the hypothalamus, NuAcc, 
and DMX. Mapping via in situ hybridization localized 
MC4R to over 100 distinct nuclei. Hypothalamic nodes 
of highest concentration include the suprachiasmatic 
preoptic nucleus, anteroventral periventricular nucleus, 
supraoptic nucleus, PVH, VMH, DMH, tuberomammillary 
nucleus, and the lateral hypothalamic area. Extensive 
brainstem labeling is found in the superior colliculus, 

DMX, substantia nigra, raphe, and reticular formation. 
Following these high expression zones, several regions of 
the amygdala and isocortex have moderate expression. 
MC4R may play a role in olfactory response due to its 
location in discrete cortical nodes. MC4R has also been 
identified in CA1 and CA2 regions of the hippocampus, 
throughout the BNST and striatum, and weakly in the 
thalamus (Mountjoy et al. 1992, 1994, Kishi et al. 2003, 
Cone 2005, Tao 2010, Cui et al. 2012, Siljee et al. 2013, 
Mountjoy 2015). Localization and distribution of MC4R 
were further confirmed by studies using a mouse model 
expressing GFP under control the MC4R promoter (Liu 
et  al. 2003). Additional genetic and pharmacological 
modeling systems inducing or repressing MC4R gene 
function in specific neuronal populations have mapped 
some neuroanatomical functions of these cells bodies 
and begun to reveal how the MC4R serves to regulate 
energy homeostasis. For example, MC4R in the PVH is 
essential for regulating appetite, while MC4Rs expressed 
in cholinergic preganglionic parasympathetic neurons 
are necessary for regulating energy expenditure (Balthasar 
et al. 2005, Rossi et al. 2011). Outside of central neurons, 
MC4R mRNA expression has been detected in astrocytes, 
spinal cord, heart, lung, kidney, and testis (Caruso et al. 
2014). One peripheral MC4R-mediated pathway was 
described after detection of high levels of MC4R expression 
in enteroendocrine L cells (Panaro et al. 2014). The data 
show the receptor mediates release of L cell products PYY 
and glucagon-like peptide 1 in either mouse or human, 
in response to exogenous administration of α-MSH, and 
of course these peptides have known secondary effects 
on feeding. The physiological role of MC4R at this site,  
and the origin of the ligand, likely an MSH peptide, 
remains unknown.

Pharmacological complexities of  
α-MSH signaling

The melanocortin signaling system regulates distinct 
physiological functions on a receptor-subtype specific 
basis, including energy homeostasis, coat color, 
hypothalamic–pituitary–adrenal axis, and exocrine 
gland function, as a result of the unique distributions 
of expression of each receptor (Vastermark & Schioth 
2011, Cortes et al. 2014). In addition, an extended set of 
coreceptors, signaling partners, and alternate endogenous 
ligands enrich the tapestry of responses that result from  
α-MSH stimulation at each receptor (Fig. 3). This functional 
diversity played an important role in the discovery of 
many of the components of this system (Cone 2006).
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An example of how variable signaling in the 

pigmentary system advanced research in the field of α-MSH  

signaling stemmed from studies on the determinants of fur 

coat coloration in mice and other mammals. As a natural 

outcome from the analysis of additional mouse coat color 

phenotypes (Silvers 1979, prepared a compilation of 

mouse fur color phenotypes also reviewed by Jackson et al.  

1994), additional modifiers of MCR function were 

rec ognized. For example, mutations within the mahogany 

locus (Lane & Green 1960) rescued the agouti Ay dominant 

yellow fur phenotype and ameliorated the accompanying 

obesity syndrome (Dinulescu et al. 1998, Miller et al. 1997, He 

et al. 2001). Later analysis showed that the products of these 

genes regulate receptor membrane expression (Overton & 

Leibel 2011) as discussed below. An additional coat color-

related allele was recognized in dogs (Kerns et  al. 2003, 

2004). Characterization of the product of this gene led to 

the identification of β-defensin 3, an additional endogenous 

ligand with agouti/AgRP-like activity on MC1R and MC4R 

(Candille et al. 2007). These and recently recognized coat 

color-unrelated partners for MCR that modulate agonist 

response or offer alternate signaling pathways are discussed 

in more detail in the following sections.

Mahogany, attractin-like protein, and mahoganoid

Attractin and mahogunin were originally identified as the 

suppressors of agouti action in mahogany and mahoganoid 

mice. Attractin is a type 1 transmembrane domain protein 

that is proposed to be necessary for the action of agouti 

at both the MC1R and MC4R. It is further suggested 

that attractin binds to the N-terminal domain of agouti 

and acts as coreceptor by assisting in the stability of the 

interaction between MC4R and the C-terminal domain of 

agouti (He et al. 2001). Attractin does not bind directly to 

MC4R or AgRP, and as such, it was thought to be unlikely 

that it was involved in the modulation of MC4R activity. 

However, loss-of-function mutations in attractin as well 

as mahoganoid (mahogunin ring finger-1) are able to 

rescue the obesity phenotype in Ay mice by blocking the 

agouti-dependent degradation of MC4R.

Mahoganoid is an E3 ubiquitin ligase that ubiquinates 

(Phan et al. 2002, He et al. 2003) tumor suppressor gene 

101 (Tsg101), which is necessary for the trafficking of the 

ubiquitinated MC4R from the cell surface to the lysosome 

for degradation (Kim et al. 2007, Jiao et al. 2009). Attractin-

like protein was found to be another binding partner of 

MC4R that is believed to play an important role in the 

receptor trafficking (Haqq et al. 2003). These modulators 

of MC4R activity impact the ability of α-MSH to regulate 

feeding and body weight.

Syndecans

An unrecognized fact of AgRP pharmacology is that most of 

the reported data are based on the use of the truncated 83–
132 (human sequence) C-terminal peptide (Quillan et al. 

1998, Nijenhuis et  al. 2001). Studies with the full-length 

Figure 3
The MC4r signaling complex. α-MsH and agrP 
signaling at the MC4r involves a multiprotein 
signaling complex that appears to be highly 
regulated. In addition to interactions with 
well-characterized members of the G protein 
signaling cascade (α-, β, and γ subunits and 
β-arrestin), the MC4r appears to interact directly 
with the transmembrane protein MraP2, which 
blocks constitutive activation of the receptor by 
the amino terminal domain, and enhances 
sensitivity to α-MsH action. The receptor also 
appears to interact with inward rectifier 
channels such as Kir7.1, with α-MsH and agrP 
modulating channel activity in a receptor-
dependent manner. attractin and mahogunin 
are involved in receptor internalization, and 
attractin may also be involved in agrP binding. 
for simplicity, syndecan and defensins are not 
indicated here.

http://dx.doi.org/10.1530/JME-16-0014


Jo
u

rn
al

 o
f 

M
o

le
cu

la
r 

En
d

o
cr

in
o

lo
g

y

DOI: 10.1530/JME-16-0014
http://jme.endocrinology-journals.org © 2016 Society for Endocrinology

Printed in Great Britain
Published by Bioscientifica Ltd.

T165Thematic Review e j p anderson and others α-MSH and feeding 56 3:

prohormone show lesser potency in quenching α-MSH-
elicited cAMP responses (Creemers et  al. 2006, Jackson 
et  al. 2006). It is clear then, that any mechanism that 
acts on relative concentrations of truncated to full-length 
AgRP will have a discernible effect on α-MSH response 
and act as coreceptor as seen for the agouti–attractin 
duo. A provocative model suggests that the charged but 
amphipathic N-terminal domain of AgRP serves as ‘anchor’ 
to engage perisynaptic heparan sulfate proteoglycans.

One such heparan sulfate proteoglycan is the 
membrane-bound, predominantly brain-expressed 
syndecan-3 (Sarrazin et  al. 2011). Syndecans are single-
membrane spanning glycoproteins that associate three to 
five heparan sulfate polysaccharide chains (Bernfield et al. 
1992). Also notable is that at the interface of the heparan 
sulfate-linked ecto- and the transmembrane domains, a 
juxtamembrane region that harbors protease cleavage 
sites is present. This region can potentially be targeted 
by metaloproteases and the ‘shedding’ of syndecan 
ectodomains by proteolytic cleavage adds an additional 
regulatory layer as a mechanism of clearance of bound 
ligands or paracrine ligand diffusion, as shed ligand-
bound heparan sulfates retain activity in vivo (Elenius 
et al. 1992, Kim et al. 1994).

A link between the melanocortin system and 
heparan sulfate proteoglycans was first established by 
studying transgenic mice overexpressing syndecan-1, a 
predominantly peripherally expressed homolog, under 
the control of the CMV promoter (Reizes et  al. 2001). 
These animals show late-onset obesity, which is additive 
to the phenotype of the yellow-lethal Ay mouse (Reizes 
et  al. 2001). As the predominant form expressed in 
hypothalamus is syndecan-3, the latter is probably the 
form implicated in AgRP extracellular concentration 
regulation (Reizes et  al. 2001). Further enforcing this 
hypothesis, fasting animals showed elevated membrane-
bound syndecan-3, while refeeding induced proteolytic 
cleavage and syndecan-3 shedding (Reizes et al. 2001). 
Further evidence was obtained from the analysis of a 
syndecan-3 knockout mice, which was resistant to diet-
induced obesity (Reizes et al. 2003, Strader et al. 2004, 
Zheng et al. 2010). Taken together, these results support 
a second-tier regulatory layer for AgRP signaling on 
MCR, where syndecan shedding might have a role.

Mechanistically, the model of syndecan–melanocortin 
interaction is contingent on the interaction of the AgRP 
N-terminus domain with the heparan sulfate moieties on 
syndecans (Reizes et al. 2003). For this to be possible, the 
full-length hormone, and not the truncated C-terminal 
domain forms, has to be the predominant species 

secreted. Creemers et al. (2006) raised the possibility that 
AgRP is intracellularly cleaved by proprotein convertases 
eliminating the anchoring N-terminal domain. If in fact, 
this is the case, the physiological relevance of syndecans 
in AgRP signaling would be diminished. Further work 
in this area will be necessary to establish the in vivo  
site of posttranslational cleavage of AgRP in or to settle 
this controversy.

Defensins

In opposition to mice where the AY allele that confers 
a yellow-fur phenotype is dominant, a third allele 
(AS) determining black coats was thought to be the 
dominant form in dogs (Kerns et  al. 2003). Initially 
thought to be an agouti allele as opposed to an 
extension (i.e. MC1R-linked) allele, analysis of genome 
sequences in animals with red or black fur phenotypes 
showed that dominant black coats were conferred by 
a mutated allele of an unrelated gene that encodes 
for β-defensin (Kerns et al. 2004, 2007, Candille et al. 
2007). Strikingly, transgenic expression of β-defensin 
3 in the yellow-lethal background produced mice with 
black coats and lean phenotype (Candille et al. 2007). 
Moreover, β-defensin 3 blocked NDP-MSH binding to 
MC1R and with lesser affinity to MC4R (Candille et al. 
2007). A later study showed that the human ortholog 
of β-defensin 3 is a weak partial agonist of MC1R 
transfected in HEK-293 cells (Beaumont et al. 2012) for 
cAMP accumulation and ERK1/2 phosphorylation, but 
a different group concluded that defensins might in 
fact have no intrinsic agonist action on its own (Swope 
et al. 2012).

Defensins are part of the innate immune system in 
mammals (Ganz 2003). The prospect of defensins serving 
as links between the immune and energy homeostasis 
systems is tantalizing. Cachexia is invariably linked to 
immunosuppression. As strongly charged molecules, 
defensins might interact with MCR solely through 
electrostatic interactions explaining their neutral 
antagonist effect (Nix et  al. 2013, 2015). There is little 
doubt that these interactions play a role in determining 
melanocortin response on MC1R, as defensins seem to 
block agouti in live animals (Candille et al. 2007, Kerns 
et al. 2007). However, data are not as consistent for MC4R, 
and MC3R is yet to be tested as a potential defensin target. 
Electrostatic-based binding modalities open the possibility 
for additional undefined peptidic ligands to emerge as 
possible ‘modulators’ of AgRP and α-MSH signaling in 
energy balance (Nix et al. 2015).
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MRAP1 and MRAP2

Melanocortin 2 receptor accessory proteins (MRAPs) are 
single-transmembrane proteins that form antiparallel 
homo- and heterodimers in the cell membrane. MRAP1 is 
essential for the trafficking, ligand binding, and signaling 
of MC2R in response to ACTH (Sebag & Hinkle 2007, 
Metherell et al. 2005). Null mutations in MRAP are linked 
to familial glucocorticoid deficiency type 2 (Metherell 
et al. 2005). MRAP2, a homolog to the former, is expressed 
in brain and adrenal tissue (Chan et  al. 2009), interacts 
with all MCR subtypes, and alters the sensitivity of the 
MC4R to α-MSH (Sebag et al. 2013).

MRAP2 interacts with the MC4R in mammals as well 
as zebrafish and modulates the pharmacological response 
to α-MSH by suppressing the constitutive activity of 
the receptor and increasing sensitivity to α-MSH. In the 
zebrafish, MRAP2 exists in two isoforms, a and b. mrap2a 
stimulated growth in the larval zebrafish by suppressing 
the binding of α-MSH to MC4R, while mrap2b appears to 
control MC4R activity in the adult by increasing α-MSH 
sensitivity and suppressing receptor constitutive activity 
(Sebag et  al. 2013). MRAP2 is the mammalian homolog 
of mrap2b, which is not expressed until hatching in the 
zebrafish. Upon binding, it causes an increase in MC4R 
expression as well as an increase in α-MSH binding and 
cAMP generation (Sebag et  al. 2013). In the zebrafish, 
neither mrap2a nor mrap2b alters MC3R signaling (Sebag 
et  al. 2013) suggesting that the role of MRAP2 in the 
regulation of feeding and body weight may be specific 
to its modulation of MC4R. However, other studies 
have shown that MRAP2 does alter mammalian MC3R 
signaling (Chan et al. 2009, Kay et al. 2013). The actual 
role of MRAP in the modulation of MC3R-regulated food 
intake and body weight, however, is still up for debate. 
Recently, MRAP2 has also been demonstrated to play a 
role in the function of the prokineticin-1 and -2 receptors, 
suggesting this protein may be a modulator of multiple 
GPCRs (Chaly et  al. 2016), and exert effects on feeding 
and body weight through multifactorial effects.

To further validate the role of MRAP2 in the 
development of obesity, researchers created mice with 
whole-body and brain-specific deletion of MRAP2. It was 
found that at a young age, these MRAP2-deficient mice 
had a higher cumulative body weight than their wildtype 
littermates leading to the development of severe obesity 
(Asai et al. 2013). Similarly, in a study of genomes from 500 
severely obese humans, one patient was found to have a 
deletion of one of the MRAP2 alleles and four were MRAP2 
deficient, suggesting that, although rare, mutations in 

MRAP2 are potentially pathogenic contributors to the 
regulation of body weight in humans.

Kir7.1 and other ion channels

Based on the finding that AgRP couples MC4R to the 
pertussis toxin-sensitive Gi/o inhibitory protein in the 
hypothalamic GT1–7 cell line (Buch et  al. 2009), it was 
suggested that MC4R might be coupling to G protein 
inwardly rectifying potassium channels (GIRKs). This result 
highlights the ability of MC4R to signal through different 
G proteins with opposing actions. One is the canonical (for 
MC4R) Gsα adenylyl cyclase stimulatory action activated 
by α-MSH vs Gi/o inhibitory protein-dependent pathways 
promoted by AgRP. The ability to signal through Gi/o led 
to the hypothesis that MC4R could potentially couple to 
GIRKs, known to be activated by Gβγ binding following 
release from Gi heterotrimers (Lei et al. 2000).

Physiologically relevant data on the mechanism of 
α-MSH and AgRP signaling through native MC4R derives 
from the use of electrophysiological slice preparations 
from mice in which PVH MC4R neurons have been 
transgenically labeled with GFP (Ghamari-Langroudi 
et al. 2010, 2011). In this preparation, α-MSH depolarizes 
and AgRP hyperpolarizes MC4R neurons when added to 
the bath. Notably, by using this experimental setup in 
the presence of G protein inhibitors such as GDPβS and 
gallein, the role of GIRKs in α-MSH induced depolarization 
in MC4R-positive PVH neurons was ruled out. Moreover, 
Gsα and cAMP signaling were also ruled out, when 
examined as a potential signaling pathway mediating 
α-MSH-induced depolarization (Ghamari-Langroudi et al. 
2015). Current-voltage analyses demonstrated that the 
conductance involved in α-MSH-induced depolarization 
was a potassium inward rectifier channel (Kir), and a 
specific subunit, Kir7.1, was identified using a panel of 
specific Kir channel blockers.

Also of interest is that AgRP, the endogenous inverse 
agonist for cAMP responses from MC4R, hyperpolarizes 
PVH neurons (Ghamari-Langroudi et  al. 2015). AgRP 
augmented membrane conductance, suggesting increased 
potassium channel opening and surface density, leading 
to hyperpolarization. Cell transfection studies reinforced 
the finding that AgRP couples the MC4R to Kir7.1 and 
regulate its opening. The molecular mechanism by which 
AgRP mediates this effect currently remains unknown 
and will require further studies to be definitively 
clarified. Other inward rectifiers such as Kir2.3 and 
Kir4.1 channels did not couple to MC4R in independent 
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experiments using cultured cells. As Kir channels form 
homo- and heterotetramers, it remains to be determined 
whether MC4R modulates homotetramers of Kir7.1 or 
heterotetramers with other Kir channel subunits.

Kir7.1 modulation by MC4R also presented new 
pharmacological paradigms for the receptor, where some 
ligands have been found to favor the Gsα vs the Kir7.1 
pathway. Ghamari-Langroudi et  al. (2015) reported 
changes in potency for well-characterized tool compounds 
of MC4R, where the MSH analog MC4-NN2-0453, with an 
EC50 of 4.9 × 10−9 M for intracellular cAMP accumulation 
assays, was found to have an increased potency of 
4.9 × 10−9 M in a thallium flux-based assay used to measure 

Kir7.1 coupling. Taken together, these findings reveal a 
novel MC4R signaling pathway, and the potential for the 
creation of biased ligands that favor the ion channel direct 
interaction/activation paradigm over classical G protein 
signaling, making this receptor one of only a handful of 
GPCRs that were shown to couple directly to ion channels 
(Zhang et al. 2014).

The microcircuitry of α-MSH and  
AgRP action

The discovery of G protein independent coupling of MC4R 
to Kir7.1 has suggested that AgRP is both a competitive 

Figure 4 
a new model of MC4r microcircuitry. The yin–yang model of α-MsH and agrP action (fig. 1) suggested competitive binding of these peptides to 
individual MC4r sites (orange box), and anatomical data suggest in regions where these peptides undergo volume release, that competition for binding 
to the MC4r may occur. New subcellular anatomical data suggest that in the PVH, agrP synaptic contacts predominate at cell bodies, while POMC 
synaptic contacts predominate at distal dendrites. along with the fact that agrP immunoreactive fibers are only observed in a subset of MC4r 
expressing nuclei containing POMC-immunoreactive fibers, α-MsH may this often act independently of agrP (right circle). at these sites, α-MsH may be 
expected to signal through both caMP, and Kir7.1. The ability of agrP to act independently of α-MsH as a potent hyperpolarizing agonist, via regulation 
of Kir7.1, suggests the likely existence of independent agrP sites of action (left circle). another MC4r signaling pathway, involving caMP/PKa-
dependent activation of KaTP channels and α-MsH-induced hyperpolarization, has been demonstrated in MC4r neurons in the dorsal motor nucleus of 
the vagus in the brainstem (bottom right). Thus, α-MsH and agrP utilize a diversity of signaling modalities to regulate feeding and energy homeostasis 
through the MC4r. Modified, with permission, from Ghamari-Langroudi M, Digby GJ, sebag Ja, Millhauser GL, Palomino r, Matthews r, Gillyard T, 
Panaro BL, Tough Ir, Cox HM, et al. (2015) G-protein-independent coupling of MC4r to Kir7.1 in hypothalamic neurons. Nature 520 94–98.
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antagonist of α-MSH action at the MC4R as well as a 
biased agonist that can act through MC4R to open Kir7.1 
and hyperpolarize neurons (Fig. 4). New neuroanatomical 
data support both the original Yin–Yang model of  
α-MSH and AgRP competing for MC4R binding in areas 
of volume release from POMC and NPY/AgRP neurons 
(Fig. 1), as well as independent α-MSH and AgRP actions 
in different brain regions and on different subcellular 
domains of the target MC4R neurons. Confocal (Bouyer 
& Simerly 2013) and electron microscopy (Atasoy et  al. 
2008) of PVH neurons suggests that while there are areas 
of likely volume release of both peptide, PVH cell bodies 
receive mostly AgRP synaptic contacts, while small distal 
dendrites receive mostly POMC synaptic contacts. Thus, 
the microcircuitry is far more complex than originally 
suggested, in turn having profound impact on models of 
α-MSH and AgRP action in vivo (compare Figs 1 and 4).

Analysis of α-MSH action in the CNS using 
optogenetics and chemogenetics

Introduction to optogenetics and chemogenetics

The first circuit level genetic manipulation of the POMC 
and AgRP neurons involved the targeted expression 
of diphtheria toxin receptor (DTR) in each neuronal 
subpopulation, followed by administration of DT to ablate 
the entire neuronal population (Luquet et al. 2005). These 
studies demonstrated that AgRP neurons are essential 
for food intake, and that loss of POMC neurons in the 
ARC, but not NTS, results in hyperphagia, decreased 
energy expenditure, and obesity (Zhan et al. 2013). These 
findings undoubtedly stimulated interest in application 
of optogenetic and chemogenetic methods to the study 
of POMC and AgRP neurons. The development of 
optogenetics and designer receptors exclusively activated 
by designer drugs (DREADDs) has enabled circuit level 
manipulation of genetically defined neuronal populations 
involved in hunger and satiety. Optogenetics (Deisseroth 
2011) employs microbial opsins to control neuronal firing 
properties. The principal opsin used in function studies 
of feeding circuits is humanized channel rhodopsin, 
a nonspecific cation channel that can depolarize cells 
when activated by 470 nm light (Boyden et al. 2005). By 
packaging hCh2R into a Cre-inducible adeno-associated 
viral vector, this construct can be selectively expressed in 
target populations via stereotactic injections (Atasoy et al. 
2008, Sohal et al. 2009, Tsai et al. 2009). The connectivity 
and behavioral relevance of these neurons can then be 
investigated with ex vivo channel rhodopsin assisted 

circuit mapping (CRACM) and in vivo photostimulation 
(Adamantidis et  al. 2007, Aravanis et  al. 2007, Zhang 
et  al. 2010). DREADDs (Sternson & Roth 2014) are a 
related strategy that enables remote control of neuronal 
activity without the need for specialized hardware 
(Armbruster et al. 2007, Alexander et al. 2009). The first-
generation DREADDs are molecularly evolved human 
muscarinic receptors that have minimal endogenous 
activity and can be activated only by clozapine-N-oxide 
(CNO), an otherwise inert ligand (Armbruster et al. 2007). 
Importantly, DREADDs can be used to induce either Gq 
(hM3Gq) or Gi (hM4Gi) signaling pathways to depolarize 
or silence neurons (Sternson & Roth 2014), respectively. 
Together, these tools have been used to further understand 
how AgRP, POMC, and MC4R neurons regulate acute and 
chronic food intake.

Optogenetic and chemogenetic analysis of AgRP and 
POMC neurons

Initial studies found that 1 h hCh2R stimulation of 
ARC AgRP neurons induced 0.85 g of food intake in 
satiated mice (Aponte et  al. 2011, Atasoy et  al. 2012). 
The frequency of stimulation was proportional to the 
magnitude of food ingested indicating that this effect was 
presumably due to increased action potential frequency 
(Aponte et  al. 2011). Interestingly, the acute phase of 
ARC AgRP-stimulated food intake was maintained on 
the Ay background and therefore independent of MC4R 
inhibition (Aponte et  al. 2011). Similar experiments 
using DREADDs also found that hM3Gq activation of 
ARC AgRP neurons resulted in increased food intake 
and reduced oxygen consumption. hM4Gi-mediated 
inhibition reduced food intake indicating that ARC 
AgRP-regulated feeding is bidirectional (Krashes et  al. 
2011). Furthermore, chronic hM3Gq activation of ARC 
AgRP neurons was found to cause an obesity phenotype 
that could be reversed following cessation of CNO 
administration (Krashes et  al. 2011). By combining 
ARC AgRP targeted DREADDs with existing KO mouse 
models, follow-up studies revealed that NPY or GABA 
was necessary for the acute effects on ARC AgRP neuron 
activation, while AgRP was sufficient for long-term 
effects (Krashes et  al. 2013). More recent experiments 
have used hCh2R and DREADDs to further define how 
ARC AgRP neurons encode a negative balance signal 
for energy depletion (Betley et al. 2015) and how they 
evoke typified energy seeking behaviors even in the 
absence of food (Dietrich et  al. 2015). Together, these 
studies establish a critical role of AgRP neurons in the 
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regulation of feeding behavior and serve as a model 
by which to study the role of other genetically defined 
populations.

Optogenetics and DREADDs have also been used 
to study the role of POMC neurons in feeding behavior. 
Chronic but not acute optogenetic stimulation of ARC 
POMC neurons was found to reduce food intake and 
cause weight loss (Aponte et  al. 2011, Zhan et  al. 2013). 
Importantly, unlike ARC AgRP-dependent feeding, the 
satiating effect of ARC POMC stimulation was lost on the Ay 
background and therefore dependent on MC4R signaling 
(Aponte et al. 2011). This finding has been repeated with 
hM3Dq activation of ARC POMC neurons, whereby animals 
displayed a 50% reduction of food intake and a 6% drop 
in their total body mass (Zhan et al. 2013). Furthermore, 
chronic but not acute hM4Di-mediated inhibition of 
ARC POMC neurons was found to cause hyperphagia, 
but only after 24 h. Although this finding points toward 
a role for α-MSH signaling in regulating long-term energy 
balance, these studies are at odds with pharmacological 
data that have shown robust acute anorexic effects of 
MC4R agonists (Fan et  al. 1997). Although it is possible 
that supraphysiological MSH dosing paradigms used 
during pharmacological studies might be responsible for 
some of this effect, NTS POMC neurons have also been 
implicated in acute feeding behavior. Indeed, acute hM3Dq 
stimulation of NTS POMC neurons has been found to cause 
acute anorexia while chronic activation of this population 
does not seem to affect food intake (Zhan et  al. 2013). 
The mechanism that underlies the discordance between 
anatomical subsets of POMC neurons remains unknown; 
however, it is likely a result of their distinct projection 
fields (Wang et al. 2015). Alternatively, acute stimulation of 
ARC POMC has been shown to promote endocannabinoid 
evoked feeding, which may be responsible for the delayed 
response of ARC POMC neurons, but not NTS POMC 
neurons (Koch et al. 2015).

AgRP target sites that mediate acute feeding behavior

Optogenetics and DREADDs also enable the determination 
of the target sites that are necessary and sufficient and 
for evoked feeding behaviors. Despite evidence of a 
functional inhibitory ARC AgRP to ARC POMC projection, 
coactivation of these two populations did not blunt light 
evoked ARC AgRP feeding (Atasoy et  al. 2012, Betley 
et  al. 2013). However, site-specific photostimulation of 
GABAergic ARC AgRP efferents within the PVH was found 
to be sufficient for acute feeding behavior (Atasoy et al. 
2012, Garfield et  al. 2015). This effect was replicated 

with hM4Gi-mediated silencing of PVH SIM1 neurons 
indicating that inhibition of this population is sufficient 
for feeding behavior. Furthermore, coactivation of PVH 
SIM1 cell bodies and ARC AgRP efferents did not cause 
food intake. Initially, PVH OXT neurons (a subpopulation 
of PVH SIM1 neurons) were thought to be the mediators 
of ARC AgRP to PVH-induced food intake (Atasoy et  al. 
2012). However, both ex vivo and in vivo experiments have 
challenged this finding (Wu et al. 2012, Sutton et al. 2014, 
Garfield et  al. 2015). Using CRACM, ARC AgRP fibers 
were found to evoke time locked inhibitory postsynaptic 
currents within 83% of PVH MC4R cells and 0% of PVH 
OXT expressing cells (Garfield et  al. 2015). Importantly, 
MC4R neurons were found to be distinct from OXT 
neurons as evidenced by immunohistochemistry. 
Furthermore, costimulation of inhibitory ARC AgRP fibers 
and PVH MC4R were found to block evoked feeding 
behavior, while PVH OXT did not. Additionally, PVH 
MC4R neurons project to and activate the LPB, which 
evokes a satiety response (Garfield et al. 2015). In addition 
to the PVH, ARC AgRP are known to project to numerous 
other brain regions. Using a similar efferent projection 
stimulation strategy, ARC AgRP fiber activation in the 
BNST, LH, and PVT was sufficient for evoked feeding 
behavior (Betley et al. 2013). This contrasts with ARC AgRP 
fibers that project to ARC POMC neurons, PBN, CEA, and 
PAG, which do not evoke feeding. Interestingly, while 
the BNST and the LH both express MC4R, inhibition of 
MC4R neurons within these sites does not appear to be 
responsible for the increased food intake seen with ARC 
AgRP afferent stimulation (Garfield et al. 2015).

Summary

It has been a long road from the discovery 60 years ago 
of the POMC peptides, to the cloning of the POMC gene  
in 1978, identification of receptors for α-MSH in the brain  
in 1993, and demonstration of a role of central 
melanocortin signaling in the control of energy 
homeostasis in 1997. This year provides another 
landmark: in January 2016, the US Food and Drug 
Administration has just awarded orphan drug status to 
the first α-MSH-based therapeutic for obesity. The α-MSH 
analog RM-493 (Kievit et  al. 2013, Chen et  al. 2015), 
also known as setmelanotide, was awarded orphan drug 
status for POMC deficiency and Prader–Willi syndrome. 
This new innovation will surely generate additional 
interest in the field, both in terms of basic science aimed 
at understanding the molecular basis of regulation of 
energy homeostasis by α-MSH, as well as the development 
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of therapeutics for obesity and cachexia modeled after 
the effects of α-MSH and AgRP at MCR in the CNS.
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