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Abstract
Glucagon-like peptide 1 (GLP1) is an intestinal incretin that regulates glucose homeostasis

through stimulation of insulin secretion from pancreatic b-cells and inhibits appetite by

acting on the brain. Thus, it is a promising therapeutic agent for the treatment of type 2

diabetes mellitus and obesity. Studies using synteny and reconstructed ancestral

chromosomes suggest that families for GLP1 and its receptor (GLP1R) have emerged through

two rounds (2R) of whole genome duplication and local gene duplications before and after

2R. Exon duplications have also contributed to the expansion of the peptide family

members. Specific changes in the amino acid sequence following exon/gene/genome

duplications have established distinct yet related peptide and receptor families. These

specific changes also confer selective interactions between GLP1 and GLP1R. In this review,

we present a possible macro (genome level)- and micro (gene/exon level)-evolution

mechanisms of GLP1 and GLP1R, which allows them to acquire selective interactions

between this ligand–receptor pair. This information may provide critical insight for the

development of potent therapeutic agents targeting GLP1R.
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Introduction
Glucagon-like peptide 1 (GLP1) is a gastrointestinal

peptide hormone that stimulates insulin secretion from

pancreatic b-cells and promotes insulin synthesis

(Schmidt et al. 1985, Fehmann & Habener 1992, Moon

et al. 2011). GLP1, encoded by the glucagon (GCG) gene, is

produced by tissue-specific posttranslational proteolytic

processing of a large precursor containing three indepen-

dent peptides GCG, GLP1, and GLP2 (Mojsov et al. 1986,

Kieffer & Habener 1999). Intestinal L-cells produce mature

GLP1 and GLP2 but not GCG, while pancreatic a-cells

producemature GCG but not GLP1 and GLP2. Biologically

active GLP1s consist of 30 or 31 amino acids, both of

which have similar bioactivities and overall metabolism,

although most GLP1 secreted from the gut is C-terminally

amidated and 30 amino acids in length (Mojsov et al.
1990). GLP1, secreted from L-cells in response to food

intake, regulates blood glucose level by inducing insulin

secretion in a glucose concentration-dependent manner,

while it suppresses GCG release from pancreatic a-cells

(Fehmann et al. 1995, Hansotia & Drucker 2005). The

glucose-dependent action of GLP1 has potential for the

treatment of diabetes mellitus because it does not cause

hypoglycemia under normal plasma glucose concen-

tration conditions (Baggio & Drucker 2002, Nauck et al.

2002). In addition to its incretin activity, GLP1 stimulates

proliferation and differentiation of pancreatic b-cells

(Xu et al. 1999, Drucker 2003, Li et al. 2003). GLP1 is also

produced in neurons of the brainstem and is transported

through axonal networks to diverse brain regions such

as the cerebral cortex, hypothalamus, and thalamus
t of a thematic review section on the
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(Vrang et al. 2007, Hisadome et al. 2010). In the brain,

GLP1 is known to promote satiety by regulating appetite

and food intake, resulting in body weight loss (Zander

et al. 2002). GLP1 is also involved in neurite outgrowth

and spatial learning ability in the central nervous system

(During et al. 2003, Perry et al. 2007).

The physiological activities of GLP1 occur by

interaction with the GLP1 receptor (GLP1R), which is

expressed in pancreatic islets, brain, heart, kidney, and the

gastrointestinal tract (Graziano et al. 1993, Wei & Mojsov

1995, Alvarez et al. 2005). Ligand-stimulated receptors

increase intracellular cAMP by coupling to adenylate

cyclase through the Gs protein (Drucker et al. 1987,

Fehmann et al. 1995) and by elevating cytosolic calcium

through activation of the Gq-mediated PLCb pathway

(Wheeler et al. 1993). However, one study reports that

calcium responses may be secondary effects related to

increased intracellular cAMP (Kang et al. 2001).

GLP1R is amember of the secretin receptor (SCTR)-like

(class B1) family of G protein-coupled receptors (GPCRs)

that comprise 15 human receptors for 20 corresponding

peptide ligands (Harmar 2001, Hwang et al. 2013). As the

SCTR-like receptors and their peptide ligands share similar

structural features, they are likely to have emerged

through gene/genome duplications from common ances-

tors. Duplicated receptors and peptides have undergone

sequence changes during evolution, leading to diversifica-

tion of their physiological functions (Acharjee et al. 2004,

Kim et al. 2012). Specific diversification of peptides, i.e.

conservation within orthologs but variation among

paralogs, could confer selective interaction of a peptide

with the cognate receptor, allowing discrimination by

paralogous receptors (Wang et al. 2004, Li et al. 2005, Cho

et al. 2007, Lee et al. 2009). This review describes the

influence of genome/gene/exon duplications on the

emergence of GLP1 and GLP1R, and the specific changes

allowing selective interaction between this ligand–

receptor pair.
Evolution of SCTR-like GPCRs and their
peptide ligands

Since the first identification of SCTR that exhibits amino

acid sequence distinct from that of other known GPCRs

(Ishihara et al. 1991), the SCTR-like receptors including

GLP1R have been identified in a variety of invertebrate

and vertebrate species (Harmar 2001). SCTR-like GPCRs

can be categorized into the following: i) corticotropin-

releasing hormone receptor (CRHR) subfamily, ii) calcito-

nin receptor (CALCR) subfamily, iii) parathyroid hormone
http://jme.endocrinology-journals.org
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receptor (PTHR) subfamily, iv) GCG receptor (GCGR)

subfamily including GCGR, GLP1R, GLP2R, and glucose-

dependent insulinotropic polypeptide receptor (GIPR),

and v) growth hormone-releasing hormone receptor

(GHRHR) subfamily including GHRHR, SCTR, vasoactive

intestinal peptide receptor 1 (VIPR1), VIPR2, and pituitary

adenylate cyclase-activating polypeptide receptor

(ADCYAP1R1) (Harmar 2001, Fredriksson et al. 2003,

Oh et al. 2006, Hwang et al. 2013).

Although GLP1 and GLP1R are found only in

vertebrates (Sherwood et al. 2000, Irwin & Prentice

2011), the genome history of SCTR-like GPCRs and their

peptide ligand genes date back to early bilaterian ancestors

(Harmar 2001, Cardoso et al. 2006). Recent advances in

bioinformatic tools and public genome databases for a

wide range of animal kingdoms have allowed identifi-

cation of additional members and exploration of

evolutionary history of the SCTR-like family (Cardoso

et al. 2006, Nordstrom et al. 2008, Irwin & Prentice 2011,

Hwang et al. 2013, Park et al. 2013). CRHR and CALCR

subfamilies are likely the earliest members of this family as

they are present in most deuterostomes as well as in the

protostomes Caenorhabditis elegans and Caenorhabditis

briggsae (nematode) and Drosophila melanogaster and

Anopheles gambiae (arthropod) (Harmar 2001, Cardoso

et al. 2006). In addition, D. melanogaster contains genes

that are phylogenetically closest to CRH and CALC out of

all the peptide family members (Hewes & Taghert 2001,

Hwang et al. 2013). Short-range linkage analysis between

protostome and deuterostome homologous regions that

contain SCTR-like receptor genes demonstrated the

existence of common neighbor families for SCTR-like

receptor genes (Cardoso et al. 2006). Recently, the

presence of protostomian PTHR-like has been demon-

strated (Mirabeau & Joly 2013). Thus, it is plausible that

the ancestors for the CRHR (CRHR1), CALCR, and PTHR

subfamilies have emerged during early metazoan

evolution before the divergence of deuterostomes and

protostomes. In the deuterostome lineage, besides the

CRHR, CALCR, and PTHR gene subfamilies, the GCGR and

GHRHR subfamily genes occurred during chordate and

vertebrate evolution. The amphioxus (Branchiostoma

floridae, a representative of the cephalochordates) genome

contains the CRHR, CALCR, and PTHR subfamily

genes, but lacks the GCGR and GHRHR subfamily genes

(Nordstrom et al. 2008, Hwang et al. 2013). Blast search

of the tunicate (Ciona intestinalis, a representative of

the urochordates) genome shows the emergence of

the GCGR subfamily genes together with the CRHR,

CALCR, and PTHR subfamily genes (Cardoso et al. 2006,
Published by Bioscientifica Ltd
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Hwang et al. 2013). However, no GHRHR subfamily genes

have been identified in tunicates. In lampreys (Petromyzon

marinus, a basal vertebrate agnathan), a VIPR-like gene,

a member of the GHRHR subfamily genes was identified

(Ng et al. 2012, Hwang et al. 2013). Thus, lamprey has

SCTR-like receptors belonging to all five subfamilies.

Unlike the receptor genes, the SCT-like peptide family

genes were not retrieved from nonvertebrates (protostome

and early deuterostome), likely due to the considerable

variation in short peptide sequences of these species

(Cardoso et al. 2010, Hwang et al. 2013). In basal vertebrate

lamprey, however, several peptide genes such as adreno-

medullin, GHRH, VIP, ADCYAP1, and GCG were observed

(Cardoso et al. 2010, Hwang et al. 2013). Despite the

presence of three CRHR-like genes, the corresponding

CRH-like peptide genes were not found in lamprey. As in

other vertebrates, the lamprey VIP, ADCYAP1, and GCG

genes may encode two or more mature peptides (Ng et al.

2012, Hwang et al. 2013). As the mature peptides have

similarities in their amino acid sequences on consecutive

exons, these peptides are proposed to have emerged

through exon duplication events during early vertebrate

evolution (Irwin et al. 1997, Sherwood et al. 2000, Irwin &

Prentice 2011).
Gene/genome duplications contribute to the
emergence of GLP1 and GLP1R

Gene families with large numbers of paralogs are

established through evolutionary processes, such as

gene/genome duplications followed by gene alterations

or losses (Abi-Rached et al. 2002, Larhammar et al. 2002,

Holland 2003, Santini et al. 2003, Vienne et al. 2003, Kim

et al. 2011, Hwang et al. 2013). In particular, two rounds

(2R) of whole genome duplication during early vertebrate

evolution are considered to mainly contribute to expan-

sion of the family members. In addition, local gene

duplications on a chromosome before or after 2R further

diversify the family members (Hwang et al. 2013). Rapid

and vast accumulation of genome sequence information

of many representative taxa allows synteny-based genome

comparisons and facilitates the analyses of origins and

relationships of family members (Lee et al. 2009, Kim et al.

2011, 2012). Furthermore, entire genome comparisons

between evolutionarily distinct taxa have led to recon-

struction of hypothetical ancestral chromosomes of early

vertebrates or chordates (Nakatani et al. 2007, Putnam

et al. 2008). Nakatani et al. (2007), constructed hypo-

thetical post-2R gnathostome ancestor chromosomes

(GACs A0–J1 linkage groups) that were derived from
http://jme.endocrinology-journals.org
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pre-2R 10–13 vertebrate ancestral chromosomes (VACs A–J).

Deducing locations of the gene family members to

reconstructed chromosomes also provides fast and rela-

tively accurate tools to trace gene origins (Yegorov &Good

2012, Hwang et al. 2013).
Emergence of GLP1R

When all SCTR-like genes were assigned on reconstructed

pre-2R VAC as proposed by Nakatani et al. (2007), most

genes, except for the GCGR subfamily, were found to be on

the VAC E linkage group consisting of four paralogons as

represented in human chromosomes 2 (GAC E0), 7 and 3

(GAC E1), 17 (GAC E2), and 12 (GAC E3) (Fig. 1). GCGR

subfamily members are on different GACs (Hwang et al.

2013), which is likely due to some ancestral linkage groups

being inaccurately reconstructed because of massive

chromosome rearrangements in these regions, or alter-

natively, the gene underwent a single gene translocation

that caused it to move from its authentic chromosomal

fragments before or after 2R. Synteny result suggests that

consecutive local duplications of the SCTR-like ancestor

on VAC E generated GCGR and GHRHR ancestral genes

(Fig. 1). Neighbor gene analyses of SCTR-like-containing

genome fragments of the amphioxus, tunicate, and

lamprey may further support this possibility. For example,

15 amphioxus SCTR-like genes are located on ten different

scaffolds. Many neighbor genes in these scaffolds well pair

with those on human chromosomes having the SCTR

family genes (Fig. 1). In tunicates, CRHR and CALCR are

closely located on chromosome 3 with neighbors that are

also found onVAC E. The PTHR-like on a small scaffold also

shares a common neighbor gene on VAC E. Two GCGR-like

genes reside closely on chromosome 3. Interestingly, their

adjacent neighbors are shown on both VAC E and GCGR

family gene-containing chromosomes (Fig. 1). In lamprey,

although the sizes of scaffolds containing SCTR-like genes

are small so as tohave very limitednumbers of neighbors or

no neighbors, most neighbors in these scaffolds are

mapped on VAC E (Fig. 1). Interestingly, one scaffold

harboring the GCGR gene subfamily has a neighbor that

localizes on VAC E, while another has a neighbor on GCGR

family gene-containing chromosomes. Together, these

results obtained from chordates and basal vertebrate

lamprey indicate a consecutive emergence of SCTR-like

GPCRs during deuterostome evolution.

The 2R and local duplications, followed by sequences

change and gene loss, have established osteichthyan

ancestral genes for SCTR-like GPCRs and their peptide

ligand (Hwang et al. 2013). Regarding GLP1R, these
Published by Bioscientifica Ltd
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Figure 1

Conserved synteny for genome fragments containing the SCTR-like family

genes. The genomic locations of the human SCTR-like family genes along

with their neighbor genes were comparedwith those of orthologous genes

in amphioxus (cephalochordate), tunicate (urochordate), and lamprey

(basal vertebrate agnathan). Orthologs and paralogs are aligned on the

same column with the same color. Chromosome numbers are indicated

above the gene, and gene locations (megabase) are indicated below the

gene in human and tunicate. In amphioxus and lamprey, scaffold numbers

are shown below the genes. The absence of the gene in humans is indicated

by white boxes with broken lines under which ‘X’ was labeled. Paralogous

genes generated by 2R exist on human chromosomes 2, 7 (or 3), 17, and 12,

which fall into reconstructed linkage groups GAC E0, E1, E2, and E3

respectively. The GCGR subfamily genes were aligned on different

chromosomes as they are on different linkage groups other than GAC Es.

Annotations for amphioxus, tunicate, and lamprey SCTR-like family genes

are shown in Hwang et al. (2013). In the case of lamprey, chromosome

duplication events for generation of paralogous genes cannot be excluded

although genes are on the same row.
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gene/genome duplications contributed to the occurrence

of GCGR, GLP1R, GLP2R, GIPR, and GCG-related peptide

receptor (GCRPR) genes. GCRPR is a new member found in

many vertebrate species but not in mammals (Irwin &

Prentice 2011, Wang et al. 2012, Hwang et al. 2013, Park

et al. 2013). The phylogenetic tree of the GCGR subfamily

reveals two independent branches for GLP2R and GLP1R,

and a branch comprising GCGR, GIPR, and GCRPR

subbranches (Fig. 2A). Synteny analysis for GCGR sub-

family gene-containing genome fragments of vertebrate

species shows that GCGR, GIPR, and GCRPR are on three

different paralogons that share common neighbor gene

families. Although GCRPR is not found in humans,

neighbor gene analysis of other vertebrate species suggests
http://jme.endocrinology-journals.org
DOI: 10.1530/JME-13-0137
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that GCRPR was likely lost in human chromosome 16

(Fig. 2B). GLP2R is on the same chromosome containing

GCGR. Although GLP1R is on different chromosome, it

shares neighbor gene family with the GIPR-containing

genome fragment. The phylogenetic tree of the GCGR

subfamily gene suggests that GLP2R is likely an earliest

form of the subfamily, followed by subsequent emer-

gences of GLP1R and an ancestor for GCGR/GIPR/GCRPR.

Combined with synteny data, this result raises a possibility

that GLP2R, GLP1R, and an ancestor for GCGR/GIPR/

GCRPR arose through local duplication before 2R while

GCGR, GIPR, and GCRPR have emerged through 2R

(Fig. 2C). Interestingly, this receptor duplication scheme

is well correlated with that of corresponding peptide
Published by Bioscientifica Ltd
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Figure 2

Phylogeny and synteny for the GCGR subfamily genes. (A) Maximum

likelihood phylogenetic tree for the GCGR subfamily of human (hu), mouse

(mo), chicken (ch), anole lizard (an), Xenopus (xe), zebrafish (zf), medaka

(md), fugu (fu), stickleback (sb), tetraodon (to), and lamprey (lam) along

with human SCTR, GHRHR, VIPRs, and ADCYAP1R1. The receptor sequences

were aligned by usingMUSCLE and a tree was constructed withMEGA 5.05.

Bootstrap number indicates 100 replicates. (B) Synteny for human genome

fragments having the GCGR subfamily genes. Chromosome numbers are

indicated above the gene, and gene locations (megabase) are indicated

below the gene. Paralogous genes are aligned on the same columnwith the

same color. (C) Proposed evolutionary history of the GCGR subfamily genes

in vertebrates. GLP2R, GLP1R, and GCGR have emerged by local duplication

before 2R while GIPR and GCRPR arose by 2R in an osteichthyan ancestor.

After divergence of teleosts and tetrapods, GLP1R disappeared and GCGR

were doubled through teleost-specific 3R in teleosts. The absence of the

gene in each species is indicated by white boxes with broken lines.
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genes. In the peptide genes, GCG-, GLP1-, and GLP2-

coding exons are duplicated in a single gene GCG. GCG,

GIP, and GCRP arose through 2R (Irwin & Prentice 2011,

Wang et al. 2012, Park et al. 2013). After divergence of

teleosts and tetrapods, in teleosts GLP1R was lost and

GCGR was doubled due to the teleost-specific third round

(3R). There are also species-specific losses of genes. For

instance, GCRPR in zebrafish and mammals and GIPR in

medaka disappeared (Fig. 2C).
Emergence of GLP1

The majority of genes for SCT-like peptide ligands are

located on VAC D. The GHRH and CRH/UCN ancestors are
http://jme.endocrinology-journals.org
DOI: 10.1530/JME-13-0137
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aligned on VAC B where GLP1R is located, while the GCG

ancestor is on VAC E where most SCTR-like GPCRs are

found. Because the ancestors of this family, the UNC2/3,

CALC, and PTH, are on VAC D, it is postulated that all

these peptide members have emerged on VAC D through

local duplications. Subsequently, some members may

have been translocated to VAC B or E (Hwang et al.

2013). The time of GCG ancestor emergence remains

unclear. Although tunicates have two GCGR-like genes,

conventional Blast search tools failed to identify any

peptide ligand genes for SCTR-like receptors in chordates

(Cardoso et al. 2010). This is likely due to considerable

amino acid variation within a short sequence of the

mature peptide (Cardoso et al. 2010, Hwang et al. 2013).
Published by Bioscientifica Ltd
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Because the lamprey has two GCG-like genes, the GCG

ancestor is likely to have emerged before the divergence of

agnathans and gnathostomes (Hwang et al. 2013).

With regard to the GLP1 family peptides, GCG (GCG–

GLP1–GLP2), GIP, and a novel GCRP have emerged

through 2R (Irwin & Prentice 2011, Hwang et al. 2013,

Park et al. 2013). GCRP was classified as a member of the

exendin-4 family in a previous study (Irwin & Prentice

2011). However, a recent study using phylogenetic

analysis and biochemical ligand–receptor activity assays

has revealed that GCRP was distinct from exendin-4 as

well as other GLP1-related peptides (Park et al. 2013).

Synteny analysis of GCG-, GIP-, and GCGR-containing

genome fragments reveals similar neighbor genes,

flanking these peptide family genes (Irwin & Prentice

2011). In accordance with this observation, the GCG, GIP,

and GCGR genes are located on GAC E0, E2, and E3

respectively (Hwang et al. 2013, Park et al. 2013),

suggesting that these three genes are ohnologous to one

another. However, the fourth gene was lost before the

divergence of tetrapods and teleosts.

In the teleost lineage, the 3R of genome duplication

further contributed to emergence of the second form of
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Figure 3

Phylogeny and exon structures of GCG and related peptide genes. (A) Exon

structures of the GCG and related genes from various vertebrates and

lamprey. In this diagram, as only the open reading frame-encoding exons

are counted, the first exon contains the signal peptide (SP) sequence. The

exons that do not encode the mature peptide sequence are also shown as

simple lines. GCG, GLP1, and GLP2 are encoded by three different exons of

the human GCG gene. The Xenopus GCG gene encodes three independent

GLP1 peptides as well as GCG and GLP2. The second forms of medaka and

zebrafish GCG genes lack GLP2. Location of the mature peptides on the

exons of other peptide genes such as GIP, GCRP, ADCYAP1, VIP, SCT,

and GHRH is also shown. Nonmammalian ADCYAP1 and VIP encode
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GCG and GCGR. However, GLP1R disappeared in this

lineage. The pattern of gene loss in teleosts differs by

species. For example, zebrafish have lost GCRP and GCRPR,

while the medaka lacks GIP and GIPR (Hwang et al. 2013,

Park et al. 2013). In the tetrapod lineage, mammals have

lost GCRP and GCRPR (Fig. 2C). The absence of GLP1R in

teleost fish, in spite of the presence of the GLP1 peptide,

remains enigmatic. With regard to the concept of

coevolution of the peptide and the receptor, the possi-

bility remains that existing receptors recognize paralogous

peptides in place of the missing orthologous partners.

For example, fish GLP1 binds fish GCGRs with high

affinity (Irwin & Wong 2005). Thus, it is possible that

GLP1 has gained a GCG-like function in teleost fish

(Nguyen et al. 1994).
Exon duplication events for GLP1 and
related peptides

Because most vertebrate GCG genes encode GCG, GLP1,

and GLP2 on consecutive exons, these three peptides are

likely to have emerged through exon duplication events

(Fig. 3A). However, the time of exon duplication for GLP1
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PACAP-related peptide (PRP) and VIP-related peptide (VRP), respectively,

while those sequences in human genes are dysfunctional. The vestiges that

remained in the human genes are indicated by spaces covered with gray

dashed lines. (B) Maximum likelihood phylogenetic tree for GLP1-related

peptides of human (hu), mouse (mo), chicken (ch), anole lizard (an),

Xenopus (xe), zebrafish (zf), medaka (md), fugu (fu), stickleback (sb),

tetraodon (to), and lamprey (lam) along with human SCT, GHRH, VIP, and

PACAP are shown. The mature peptide sequences were aligned using

MUSCLE, and a bootstrap consensus tree was constructed usingMEGA 5.05.

Bootstrap numbers represent 100 replicates.
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is unclear (Sherwood et al. 2000). The basal vertebrate

lamprey has two GCG-like genes (Irwin et al. 1999). One

(lam1GCG) encodes GCG and two GLP2-like peptides

(GLP1/2 and GLP2), and the other (lam2GCG) encodes

GCG and GLP2. The phylogenetic position of lamGLP1/2

is currently unclear. A previous study using Clustal X-2.1

alignment followed by the neighbor-joining phylogenetic

tree indicated that lam1GLP1/2 is more similar to GLP1

than to other related peptides (Hwang et al. 2013),

while this study using multiple sequence alignment with

high accuracy (MUSCLE) alignment with a maximum

likelihood phylogenetic tree shows a close relationship of

lam1GLP1/2 with mammalian GLP2 (Fig. 3B). Despite the

confusion, this observation suggests that exon duplication

events date back to early vertebrate evolution before the

divergence of agnathans and gnathostomes. Owing to the

short nucleotide sequences of scaffolds (GL481103 and

GL477955)harboring the lampreyGCGs, it is still uncertain

whether the two lamprey GCGs were generated by genome

duplication or local gene duplication. However, as very

close relationships between peptides encoded by lam1GCG

and lam2GCG are evident from the phylogenetic tree

(Fig. 3B), these two genes may have emerged recently,

probably through local duplication. Interestingly, the

ADCYAP1 andVIP genes in vertebrates and basal vertebrate

lamprey, which are believed to have emerged next to the

GCG gene, also encode two mature peptides, and one

(PACAP-related peptide (PRP) or VIP-related peptide (VRP))

of these two peptides is similar to GHRH in amino acid

sequence (Laburthe et al. 1996, Sherwood et al. 2000, Ng

et al. 2012, Hwang et al. 2013). Although the physiological

roles of PRP and VRP remain incompletely understood,

their interactions with specific receptors have been

described in zebrafish and chicken (Wang et al. 2010). In

addition, some vertebrateGHRH genes also encode PACAP-

or VIP-like peptide sequences, although these peptides are

likely nonfunctional. It is important to note that the

PACAP, VIP, GHRH, and SCT peptide sequences are

relatively more closely related to the GLP2 peptide when

compared with other related peptides (Fig. 3B). This

observation raises a possibility that the ancestor for

ADCYAP1, VIP, GHRH, and SCT emerged through local

gene duplication of the GLP2-containing ancestral gene

before 2R, and that exon duplication events in this

ancestor may influence the presence of the two peptides

in the ADCYAP1, VIP, and GHRH genes (Fig. 3B). The exon

duplication event before 2R was followed by additional

exon duplication in Xenopus of the tetrapod lineage, or

exon degeneration after 3R in the teleost lineage. The GCG

gene of Xenopus, a representative amphibian, contains two
http://jme.endocrinology-journals.org
DOI: 10.1530/JME-13-0137
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more exons encoding GLP1s. A copy of teleost-specific

duplicated GCGs has lost the GLP2 sequence. In zebrafish,

both GCGs lack the GLP2 sequence (Fig. 3A).
Specific amino acid sequence changes
determine selective ligand–receptor
interactions

GLP1R and its paralogous receptors exhibit high degrees of

amino acid sequence identity with one another and share

a relatively long N-terminal extracellular domain (ECD)

beginning with an a-helix followed by four b-strands

forming two antiparallel sheets that are stabilized by

disulfide bonds and a salt bridge (Grace et al. 2004, Parthier

et al. 2007, Runge et al. 2008, Underwood et al. 2010).

Likewise, all peptide ligands for these receptors have typical

three-dimensional structures to facilitate receptor binding.

GLP1 and its family of peptides consist of 30–40 amino acids

which share similarities in amino acid sequence and

secondary structure. The structures of the peptides demon-

strated by nuclear magnetic resonance and crystallography

reveal that the N-terminal six or seven amino acid residues

of peptides form a random coil structure where they share

more than 70% amino acid sequence identity, and this is

followed by an a-helical structure with moderate sequence

similarity among the peptides (Thornton & Gorenstein

1994, Neidigh et al. 2001, Alana et al. 2007, Parthier et al.

2007, Underwood et al. 2010). Some residues with different

lengths are extended after the a-helix to form flexible

regions in the C-terminus, although this region is not

necessary for receptor recognition and activation (Hinke

et al. 2003, Moon et al. 2010). These peptides form a

common local structure, called a helix N-capping motif, to

stabilize the helical structure (Neumann et al. 2008). This

motif in GLP1 is formed between hydrophobic amino acids

Phe-6 and Val-10, and the polar amino acid Thr-7 through

hydrophobic interaction and hydrogen bonding. These

interactions are believed to facilitate receptor activation

upon ligand–receptor binding (Fig. 4A). While the

N-terminus and the first half of the central a-helical

structures are responsible for interaction with the receptor

core domain, the second half of the a-helical region binds

directly to the ECD of the receptor (Parthier et al. 2007,

Underwood et al. 2010, Moon et al. 2012a).
Interaction between peptide N-terminus and the receptor

core domain

Although the GLP1 peptide and receptor families exhibit

relatively high sequence similarities and conserved
Published by Bioscientifica Ltd
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Figure 4

General structure of GLP1 and sequence alignment of GLP1 and related

peptides. (A) General structure of GLP1 and functional residues. The

biologically active GLP1 consists of a random coiled N-terminus with six

residues followed by an a-helix starting from Thr-7 to Val-27. The residues,

His-1, Gly-4, Phe-6, Thr-7, and Asp-9 are known to be important for

receptor core domain binding and activation. Residues Phe-6, Thr-7, and

Val-10 form a helix N-capping structure. The residues, Ala-18, Ala-19,

Lys-20, Phe-22, Ile-23, and Leu-26 in the second half of the a-helix are

demonstrated to have direct interaction with the N-terminal ECD of the

receptor. Ala-2 is the target site of the dipeptidyl peptidase IV (DPPIV)

protease and Gly-16 is involved in kinking of the a-helix in the ECD-bound

structure. (B) Sequence logo of GLP1 and its related peptides. The amino

acid sequences of the orthologous peptides were analyzed using a

WebLogo program (http://weblogo.threeplusone.com/create.cgi).

Sequences were retrieved from human, mouse, chicken, anole lizard,

Xenopus, zebrafish, medaka, stickleback, tetraodon, and fugu.

Jo
u
rn
a
l
o
f
M
o
le
cu

la
r
E
n
d
o
cr
in
o
lo
g
y

Thematic Review J-L HWANG and others Evolution of GLP1 and GLP1
receptor

52 :3 T22
structures (Sherwood et al. 2000), each peptide ligand

selectively interacts with its own cognate receptor,

indicating that this diversification is particularly import-

ant for selective interaction of the ligand–receptor pair,

resulting in the specific physiological functions of each

peptide-receptor pair (Moon et al. 2012b, Park et al. 2013).

In the N-terminal part of GPL1, residues His-1, Gly-4,

Phe-6, Thr-7, and Asp-9 are crucial either for maintaining

secondary structure of the peptide or for interaction with

the receptor (Adelhorst et al. 1994, Gallwitz et al. 1994).

Particularly, Gly-4, Phe-6, and Asp/Glu-9 are highly

conserved for all GLP1 and related peptides (Fig. 4B),

such that these residues in the related peptides are

commonly important for recognition of their cognate

receptors, particularly the core domain of the receptor

(Perret et al. 2002, Hinke et al. 2003, Runge et al. 2003a,

Yaqub et al. 2010). His-1 and Thr/Ser-7 are conserved in

the GLP1 family of peptides (GLP1, GLP2, GCG, and

GCRP) except for GIP that has Tyr-1 and Ile-7 in the

corresponding sites (Fig. 4B), raising a possibility that
http://jme.endocrinology-journals.org
DOI: 10.1530/JME-13-0137
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His-1 and Thr-7 of GLP1 are likely important for selective

interaction with GLP1R, but discriminate GIPR. Indeed,

introducing His-1 and Thr-7 into GIP allows this chimeric

peptide to bind and activate GLP1R with a relatively high

affinity and potency (Moon et al. 2010, 2012a). In contrast,

Tyr-1 and Ile-7 in GIPR are important for selective

interactions with its receptor. In addition to Tyr-1 and

Ile-7, alanine scanning or amino acid modification studies

reveal that highly conserved residues Glu-3, Gly-4, Asp-9,

and Asp-15 are found to be important for receptor

activation (Hinke et al. 2003, Yaqub et al. 2010). In GCG,

besides the highly common residues Gly-4, Phe-6, The-7,

and Asp/Glu-9 and GCG-specific residues Ser-2, Gln-3,

Tyr-10, and Lys-12 (Fig. 4B) are found to be important for

receptor binding and activation (Perret et al. 2002, Runge

et al. 2003a). Interestingly, introducing these individual

residues into the equivalent positions of GLP1 did not

significantly alter peptide affinity and potency towards

GLP1R. However, the replacement of these residues in

GCG with those of GLP1 greatly reduced GCGR affinity
Published by Bioscientifica Ltd
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(Runge et al. 2003a), indicating that positions 2, 3, 10, and

12 are only important for GCG. This result is consistent

with the observation that wild-type (WT) or chimeric

peptides having either the GCG or GLP1 N-terminus

interact with receptors having the GLP1R core domain

while WT or chimeric peptide containing the GLP1

N-terminus poorly binds or activates receptors containing

theGCGR core domain (Runge et al. 2003b). The structure–

activity relationships of GLP2 have not been extensively

analyzed. However, an alanine scanning analysis revealed

that residues at positions 2, 5, 6, and 17 were important

for receptor activation (DaCambra et al. 2000).

A recent observation, after comparing amino acid

sequences of the GLP1 peptide family including a novel

GCRP, indicates that residues at positions 16–18 exhibited

ortholog-specific amino acid changes, such that the Lys-

16–Met/Ile-17–Lys-18, Ser/Thr-16–Arg-17–Arg-18, and

Gly/Asp-16–Gln-17–Ala-18 motifs were conserved in

GCRP, GCG, and GLP1 respectively (Park et al. 2013).

Interestingly, placing the Gly/Asp-16–Gln-17–Ala-18

motif in GCRP increased peptide potency toward the WT

GLP1R and GCRPR chimeric receptor that has the GLP1R

core domain (Park et al. 2013). This observation raises the

possibility that the motif at positions 16–18 may contrib-

ute to selective interactions with their cognate receptors.

This motif resides at the border between residues that

interact with the ECD and residues that contact the core

domain. Particularly, Gly-16 of GLP1 contributes to the

formation of a kink in the peptide helix (Underwood et al.

2010). Thus, this motif can be proposed to be involved in

interaction between ECD and the core domain under

ligand-bound conditions. A recent study has proposed

that the ECD of GCGR is likely to negatively regulate

GCGR activity through interaction with extracellular

loop 3 (ECL3) of the core domain (Koth et al. 2012).

As ligand-bound crystal structures of the core domain

of the GLP1R family are not available, the residues in the

core domains responsible for ligand binding or receptor

activation are poorly understood, although many

approaches, such as alanine scanning, photoaffinity

labeling, and molecular docking modeling have been

attempted to identify these specific amino acid residues

(Xiao et al. 2000, Lopez de Maturana & Donnelly 2002,

Lopez de Maturana et al. 2004, Chen et al. 2009, 2010, Lin

& Wang 2009). Mutation mapping studies suggest that

charged amino acids (Lys-197, Asp-198, Lys-202, Asp-215,

Arg-227, and Lys-288) and conserved residues (Met-204,

Tyr-205, and Trp-306) are likely important for GLP1-

induced receptor activation (Xiao et al. 2000, Lopez de

Maturana & Donnelly 2002, Al-Sabah & Donnelly 2003,
http://jme.endocrinology-journals.org
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Lopez deMaturana et al. 2004, Koole et al. 2012). However,

these studies do not explain how individual residues of the

peptide interact with residues in the receptor. Our recent

study reveals that His-1 and Thr-7 were found to interact

with Asn-302 at ECL2 and Ile-196 at the upper half of

transmembrane helix 2 (TMH2) in GLP1R respectively

(Moon et al. 2012a). Interestingly, Asn-302 is conserved for

all vertebrate GLP1R, and at corresponding positions in

GCGR (Asn-300 for human), GLP2R (Asn-336 for human),

and GCRPR (Asn-301 for chicken), that are activated by

peptide ligands containing His-1. GIPR, however, has

hydrophobic Val-293 at this position (Moon et al. 2012b).

Likewise, all receptors interacting with Thr-7-containing

peptides have conserved hydrophobic Ile or Val at the

corresponding position of Ile-196 in GLP1R, while GIPR

has Ser-189 in this position. The study using photolabile

probes of GLP1 provided only partial information on

spatial approximation of interacting residues of the

peptide and receptor (Chen et al. 2010). Molecular docking

modeling with biochemical analyses has proposed the

ligand-binding pockets in the GLP1R core domain (Lin &

Wang 2009, Coopman et al. 2011, Kirkpatrick et al. 2012).

However, these modeling approaches failed to provide a

common consensus of the ligand-binding pocket such

that ligand contact residues in the binding pocket are all

different from one another. Thus, stricter biochemical

analyses with an appropriate strategy may be helpful to

construct a more reliable ligand-bound receptor model.
Interaction between the peptide C-terminus and the

receptor ECD

Interactions between the peptide C-terminus and the

receptor ECD are well defined for GLP1R and GIPR as

demonstrated by ligand-bound ECD crystal structures

(Parthier et al. 2007, Runge et al. 2008, Underwood et al.

2010). In addition, these crystal structures were useful in

understanding interactions between GCG and the GCGR

ECD and between GLP2 and the GLP2R ECD by applying

molecular docking models (Venneti & Hewage 2011, Koth

et al. 2012, Siu et al. 2013). The crystal structure of the

ligand-bound ECD of the receptors shows that only

residues in the second half of the a-helix (ranging

from Ala-18 to Val-29 for GLP1) interact with the ECD

(Underwood et al. 2010). The a-helices of all peptide

hormones are partly amphipathic allowing hydrophobic

and hydrophilic interactions with ECD of their receptor.

The hydrophobic face (Ala-18, Ala-19, Phe-22, Ile-23,

Trp-25, and Leu-26) of GLP1 is toward the hydrophobic

binding cavity of the ECD that is formed by residues
Published by Bioscientifica Ltd
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Leu-32, Thr-35, Val-36, and Trp-39 in the N-terminal

a-helix, residues Tyr-69 at the end of the b2 strand, and

residues Try-88, Leu-89, Trp-91, and Pro-90 in the loop

between the b3 and b4 strands (Runge et al. 2008,

Underwood et al. 2010). Many of the residues in the

binding pocket are highly conserved in the equivalent

positions of GIPR, GLP2R, and GCGR and they are found to

be important for peptide binding (Parthier et al. 2007,

Venneti &Hewage 2011, Koth et al. 2012). Considering that

residues Ala-19, Phe-22, Ile-23, and Leu-26 in the hydro-

phobic face of the peptides are also highly conserved, this

result suggests that these evolutionarily conserved residues

in the peptides and receptors are likely to contribute to

primary binding between the a-helical domain of the

peptides and the ECD of the receptors (Parthier et al. 2007,

Underwood et al. 2010, Venneti & Hewage 2011, Koth et al.

2012). This primary interaction may explain cross-

interactions of peptides with other receptors in the same

family. For example, theGLP1 chimeric peptides having the

a-helical region of GIP or GCG are able to activate GLP1R

with a relatively high potency (Runge et al. 2003a,b, Moon

et al. 2010). Thehydrophilic face ofGLP1comprises residues

Gln-17, Lys-20, Glu-21, and Lys-28. Of these residues, only

Lys-20 was found to make a direct interaction with the

ECD residue Glu-128 (Underwood et al. 2010). At positions

17–20, including the hydrophilic residues, GLP1 and its

related peptides exhibited marked variations in amino acid

sequence, raising a possibility that selective recognition of

the peptide toward the cognate ECD can be achieved

through interactions of these ortholog-specific residues of

the a-helix with specific residues in the ECD of the cognate

receptor (Parthier et al. 2007, Underwood et al. 2010).
Conclusions

GLP1 and GLP1R have emerged through 2R and local

duplications before and after 2R. The exon duplication

events also contributed to occurrence of the GLP1 peptide.

Because the GLP1 peptide and receptor families arose from

a common ancestor, they share similarities in their amino

acid sequences and basic structures. Their conserved

residues and structural similarities across the family

members suggest a common mechanism underlying

ligand–receptor binding followed by receptor activation.

The comparison of ligand–receptor interaction

mechanisms reveals that the conserved residues among

GLP1 and related peptides tend to interact with conserved

residues of GLP1R and its paralogous receptors (Moon et al.

2012b). Specific change after genome/gene/exon dupli-

cation may allow selective interaction of each ligand–
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receptor pair, and could provide for diversified functions.

Our recent studies have demonstrated that interactions

between residues evolved from ortholog-specific peptides

and receptors enhanced recognition of a peptide for the

cognate receptor, while maintaining discrimination by

other receptors (Moon et al. 2010, 2012a). During the

evolutionary process, GLP1, through its specific

interaction with GLP1R, acquired a particular function in

glucose homeostasis and appetite regulation. Although

GLP1 has gained great attention due to its beneficial effects

on type 2 diabetes and obesity, molecular interaction with

its receptor is not fully understood. Particularly, the

specific amino acid residues within the TMH and ECL of

receptors that may confer ligand binding and receptor

activation remain poorly investigated. Understanding the

evolutionary history of GLP1/GLP1R can provide clues to

explore molecular interaction properties between GLP1

and GLP1R. Elucidation of the structure of the ligand-

binding pocket in the core domain of GLP1Rmay facilitate

development of potent peptide agonists or smallmolecules

capable of activating GLP1R, which could greatly contrib-

ute to the treatment of diabetes and obesity.
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