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Kazuyoshi Tsutsui2

1Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-

Hiroshima 739-8521, Japan 2Laboratory of Integrative Brain Sciences, Department of Biology, Center for Medical

Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
3INSERM U982, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-

Aignan, France
†T Osugi is now at Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka 618-8503, Japan
http://jme.endocrinology-journals.org
DOI: 10.1530/JME-13-0207

� 2014 Society for Endocrinology
Printed in Great Britain

Published by Bioscientifica Ltd.
This paper is one of eight papers that form
Molecular Evolution of GPCRs. The Guest Ed
European Institute for Peptides Research, U
involved in the handling of this paper, on w
Correspondence

should be addressed

to K Tsutsui

Email

k-tsutsui@waseda.jp
Abstract
Neuropeptides possessing the Arg-Phe-NH2 (RFamide) motif at their C-termini (designated

as RFamide peptides) have been characterized in a variety of animals. Among these,

neuropeptide 26RFa (also termed QRFP) is the latest member of the RFamide peptide family

to be discovered in the hypothalamus of vertebrates. The neuropeptide 26RFa/QRFP is a

26-amino acid residue peptide that was originally identified in the frog brain. It has been

shown to exert orexigenic activity in mammals and to be a ligand for the previously

identified orphan G protein-coupled receptor, GPR103 (QRFPR). The cDNAs encoding

26RFa/QRFP and QRFPR have now been characterized in representative species of mammals,

birds, and fish. Functional studies have shown that, in mammals, the 26RFa/QRFP–QRFPR

system may regulate various functions, including food intake, energy homeostasis, bone

formation, pituitary hormone secretion, steroidogenesis, nociceptive transmission, and

blood pressure. Several biological actions have also been reported in birds and fish.

This review summarizes the current state of identification, localization, and understanding

of the functions of 26RFaQRFP and its cognate receptor, QRFPR, in vertebrates.
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Introduction
Neuropeptides that possess the Arg-Phe-NH2 motif at their

C-termini (i.e., RFamide peptides) have been characterized

both in invertebrates and vertebrates. The first RFamide

peptide to be identified was the cardioexcitatory peptide

Phe-Met-Arg-Phe-NH2 (FMRFamide), which was isolated

from the ganglia of the Venus clam Macrocallista nimbosa

(Price & Greenberg 1977). Since then, a number of

RFamide peptides have been identified in invertebrates,

where these peptides seem to act as neurotransmitters and

neuromodulators (for review, see Walker et al. (2009)).
A number of immunohistochemical studies that

used antisera against FMRFamide suggested that the

nervous system of vertebrates also contained neuro-

peptides immunologically related to FMRFamide (Raffa

1988, Vallarino et al. 1991, 1994, 1995, Rastogi et al.

2001). In fact, several neuropeptides harboring the

RFamide sequence at their C-terminal end have been

characterized in the brain of various vertebrates. In the

past, the existence of five groups within the RFamide

peptide family has been recognized in vertebrates, namely
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the neuropeptide FF (NPFF) group, the prolactin-releasing

peptide (PrRP) group, the gonadotropin-inhibitory hor-

mone (GnIH) group, the kisspeptin group, and the

26RFa/QRFP group (for reviews, see Ukena & Tsutsui

(2005), Bruzzone et al. (2006), Osugi et al. (2006), Tsutsui &

Ukena (2006), Tsutsui (2009), Tsutsui et al. (2010a,b),

Chartrel et al. (2011), Leprince et al. (2013); Fig. 1). These

RFamide peptides have been shown to exert important

neuroendocrine, behavioral, sensory, and autonomic

functions (for reviews, see Chartrel et al. 2002, 2006a,

Ukena & Tsutsui 2005, Tsutsui & Ukena 2006). Among

these vertebrate RFamide peptides, NPFF is well documen-

ted as a morphine modulatory peptide (Panula et al. 1999).

In addition, GnIH and kisspeptin appear to play key roles

in the regulation of the reproductive axis (Tsutsui et al.

2010b). This review summarizes the current state of

knowledge on the molecular evolution and functions of

26RFa/QRFP, the latest member of the RFamide peptide

family to be discovered in vertebrates, and of its cognate

receptor, QRFPR. This review also indicates future direc-

tions in this research field.
Unity and diversity of the structure of
26RFa/QRFP in vertebrates

The 26-amino acid residue RFamide peptide, 26RFa/QRFP,

was identified for the first time in the brain of an

amphibian species (Chartrel et al. 2003). An antibody

against the RFamide motif was used to screen, by RIA,

peptide fractions purified from a brain extract of the

European green frog (Rana esculenta). After HPLC purifi-

cation, the sequence of the isolated substance was

analyzed by mass spectrometry MS/MS fragmentation; it

turned out to be a 26-amino acid peptide possessing the

RFamide motif at its C-terminus, namely VGTALG-

SLAEELNGYNRKKGGFSFRFamide. This neuropeptide had

not been reported in any animals previously and was

designated as 26RFa (Fig. 2A; Chartrel et al. 2003).

The amino acid sequence of frog 26RFa was employed

to identify the cDNA encoding the counterpart of 26RFa

in rat and humans (Chartrel et al. 2003). Concurrently,

two other research groups independently identified

26RFa/QRFP precursors using a bioinformatic approach

in the rat, mouse, bovine, and human genomes and paired

26RFa/QRFP with a previously identified orphan

G protein-coupled receptor (GPCR), GPR103, also known

as AQ27 or SP9155 (Fukusumi et al. 2003, Jiang et al. 2003;

Fig. 2B). GPR103 has thus been renamed QRFPR by the

HUGO Gene Nomenclature Committee (http://www.

genenames.org/). The mature 43-amino acid residue
http://jme.endocrinology-journals.org
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RFamide peptide was identified from the culture medium

of CHO cells that expressed the human peptide precursor

(Fukusumi et al. 2003). As the N-terminal amino acid was

pyroglutamic acid, this RFamide peptide was also named

pyroglutamylated RFamide peptide (QRFP; Fukusumi et al.

2003). Subsequently, the cDNAs encoding the

26RFa/QRFP precursors have been characterized in gold-

fish (Liu et al. 2009), quail (Ukena et al. 2010), chicken

(Ukena et al. 2010), and zebra finch (Tobari et al. 2011)

(Fig. 2B). Although the 26RFa/qrfp cDNA has not been

characterized in the European green frog, the correspond-

ing sequence in the African clawed frog (Xenopus tropicalis)

is present in the database (Fig. 2B). Furthermore, homo-

logous sequences have been listed in the genome database

of reptilian (lizard) and fish (stickleback, medaka, fugu,

and zebrafish) species (Liu et al. 2009). These data have

revealed the existence of the 26RFa/QRFP-encoding

gene in representative species of the whole vertebrate

phyla, including fish, amphibians, reptilians, birds, and

mammals (Chartrel et al. 2011, Ukena et al. 2011).

As there are several monobasic processing sites in the

26RFa/QRFP precursor protein, alternative cleavage may

yield various N-terminally elongated forms of 26RFa/QRFP

(Chartrel et al. 2006b, 2011). HPLC analysis combined

with RIAs indicated the existence of both 26- and

43-amino acid residue RFamide peptide-like immunoreac-

tivities in the hypothalamus and spinal cord of humans

(Bruzzone et al. 2006). Indeed, an N-terminally extended

peptide of 43 residues, called 43RFa or QRFP, has been

characterized in rat brain extracts, as well as in PC12 cells

and the culture medium of CHO cells that express the

human precursor, as described above (Fukusumi et al.

2003, Bruzzone et al. 2006, Takayasu et al. 2006; Fig. 2A).

The human and Xenopus 26RFa/QRFP precursors may also

generate a nine-amino acid peptide, termed 9RFa, located

upstream of 26RFa/QRFP (Fig. 2B). However, 9RFa has not

been detected in tissue extracts to date. Structure–activity

relationship studies have revealed that the synthetic

C-terminal heptapeptide (26RFa20–26; GGFSFRFamide) is

responsible for the biological activity of 26RFa/QRFP

(Le Marec et al. 2011, Neveu et al. 2012). A reverse phar-

macological study has demonstrated that 26RFa/QRFP

is a natural ligand for the previously identified orphan

receptor, GPR103 (QRFPR), as described below (Fukusumi

et al. 2003, Jiang et al. 2003, Takayasu et al. 2006).

As reported above, the mature forms of 26RFa/QRFP

have been identified in the brains of amphibians and

mammals (Chartrel et al. 2003, Bruzzone et al. 2006,

Takayasu et al. 2006), but, until recently, the existence

of 26RFa/QRFP has not been investigated in birds.
Published by Bioscientifica Ltd
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Figure 1

Phylogenetic tree of the RFamide peptide family in vertebrates. Studies

over the past decade have demonstrated that the brain of vertebrates

produces a variety of RFamide peptides. To date, five groups have been

identified within this family: the neuropeptide FF (NPFF) group, the

prolactin-releasing peptide (PrRP) group, the gonadotropin-inhibitory

hormone (GnIH) group, the kisspeptin group, and the 26RFa/QRFP group.
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Among the RFamide peptide family, only the GnIH group

had been found in avian at the time we started this study

(for reviews, see Ukena & Tsutsui 2005, Tsutsui & Ukena

2006, Tsutsui 2009, Tsutsui et al. 2010a,b). We therefore

looked for 26RFa/QRFP in the avian brain and found the

presence of a gene encoding the 26RFa/QRFP precursor in

chicken after searching the genomic database.
http://jme.endocrinology-journals.org
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Subsequently, the cDNA of the 26RFa/QRFP precursor

was sequenced in the quail hypothalamus (Ukena et al.

2010). The quail precursor protein demonstrates 88%

overall similarity with the chicken sequence, 47% with the

corresponding human sequence, and 40% with the rat

sequence (Ukena et al. 2011). A Lys-Arg dibasic cleavage

site is present in the C-terminal region of the quail and
Published by Bioscientifica Ltd
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A

B

Signal peptide

Putative peptide (9RFa) Mature peptide (26RFa/QRFP)

Figure 2

Alignments of the amino acid sequences of identified 26RFa/QRFP peptides

(A) and their precursor proteins (B) deduced from mammalian (human,

bovine, rat, and mouse), avian (chicken, quail, and zebra finch), amphibian

(Xenopus), and fish (goldfish) cDNAs. The predicted signal peptide

sequences are underlined with a dashed line. !E represents pyroglutamic

acid. The positions of identified mature peptides in the precursor proteins

are underlined with solid lines. The human and Xenopus 26RFa/QRFP

precursors may also generate a nine-amino acid peptide, termed 9RFa

(boxed). Fully conserved amino acids are highlighted with red boxes and

highly conserved amino acids with gray boxes respectively. The Lys (K)-Arg

(R) dibasic processing sites in birds and Xenopus, the single Arg (R) putative

processing sites in mammals and fish, and the Gly (G) C-terminal amidation

signals are shown in bold. Gaps marked by hyphens were inserted to

optimize homology. The GenBank accession numbers of these sequences

are as follows: human 26RFa/QRFP, NP_937823; bovine 26RFa/QRFP,

NP_937865; rat 26RFa/QRFP, NP_937843; mouse 26RFa/QRFP, NP_906269;

chicken 26RFa/QRFP, XP_001235089; quail 26RFa/QRFP, BAI81890; zebra

finch 26RFa/QRFP, BAK32798; Xenopus tropicalis 26RFa/QRFP,

XP_002936227; and goldfish 26RFa/Qrfp, ACI46681.
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chicken precursor sequences, but not in that of mamma-

lian sequences (Fig. 2B). This indicates that the mature

peptide consists of 27 amino acid residues in quail and

chicken, unlike the 26 residues in the amphibian

26RFa/QRFP sequence (Chartrel et al. 2003). In fact, MS

analysis combined with immunoaffinity purification has

revealed that the 27-amino acid sequence corresponds to

the mature form of the peptide in the quail hypothalamus,
http://jme.endocrinology-journals.org
DOI: 10.1530/JME-13-0207
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indicating that the peptide is actually produced from the

precursor in the hypothalamus (Ukena et al. 2010; Fig. 2A).

More recently, a 26RFa/QRFP ortholog, consisting of 25

amino acids, and the related cDNA have been characterized

in the brain of zebra finch (Tobari et al. 2011; Fig. 2).

Synteny analysis of the 26RFa/QRFP gene revealed

that the chromosomal region encompassing the 26RFa/

QRFP gene is highly conserved from amphibians to
Published by Bioscientifica Ltd
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human. Indeed, all these regions contain paralogs of

several other genes and thus clearly constitute a paralogon

(Fig. 3). However, this paralogon has not been preserved in

fish (Fig. 3), possibly because of the specific genome

duplication and rearrangements that have occurred

during the evolution in the fish lineage. To date, the

existence of 26RFa/qrfp gene in coelacanth and lamprey is

still unclear (Fig. 3).
Comparative aspects of biological actions of
26RFa/QRFP in vertebrates

Mammals

The mRNAs encoding 26RFa/QRFP and its cognate

receptor QRFPR are highly expressed in the dorsolateral

and mediobasal hypothalamic areas of rodents (Chartrel

et al. 2003, Takayasu et al. 2006, Bruzzone et al. 2007).
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Figure 3

Synteny analysis around 26RFa/QRFP gene loci. Orthologous or paralogous

genes are linked by horizontal lines. The 26RFa/QRFP genes are shown

white in black boxes. The nucleotide position of each gene on the

chromosome is shown under each gene. The GenBank accession numbers
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These two areas are known to be involved in the regulation

of energy homeostasis. In a similar way, in human,

26RFa/QRFP-producing cells are localized in the para-

ventricular and ventromedial nuclei of the hypothalamus

(Bruzzone et al. 2006), which are also known to regulate

food intake. Indeed, i.c.v. injection of 26RFa/QRFP has

been demonstrated to stimulate food intake in rodents

(Chartrel et al. 2003, Do Régo et al. 2006, Moriya et al.

2006, Takayasu et al. 2006, Primeaux et al. 2008, 2013,

Lectez et al. 2009, Primeaux 2011).

In addition to its orexigenic effects, 26RFa/QRFP has

been reported to exert a wide range of biological actions

(Fig. 4). In an earlier report, i.v. administration of

26RFa/QRFP was found to increase plasma aldosterone

levels in a dose-dependent manner in rats (Fukusumi et al.

2003). Recently, it has been reported that 26RFa/QRFP

and QRFPR are present in the human and rat adrenal gland

and that 26RFa/QRFP stimulates corticosteroid secretion
Zebrafish
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of 26RFa/QRFP genes are as follows: human 26RFa/QRFP, AB109625.1;

mouse 26RFa/Qrfp, AB109628.1; chicken 26RFa/QRFP, XM_001235088.2;

Xenopus tropicalis 26RFa/qrfp, XM_004916673.1; zebrafish 26RFa/qrfp,

XP_00133883; medaka 26RFa/qrfp, XP_004073955.1.
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Figure 4

Demonstrated biological actions of 26RFa/QRFP–QRFPR system in

vertebrates. Both 26RFa/QRFP and QRFPR have been found to exert a wide

array of biological activities.
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by human adrenocortical cells (Ramanjaneya et al. 2013).

In the rat pancreas, glucose-evoked insulin secretion is

reduced by perfusion of 26RFa/QRFP (Egido et al. 2007). In

the adipocyte cell line 3T3-L1, 26RFa/QRFP inhibits

isoproterenol-induced lipolysis (Malumba et al. 2010). As

3T3-L1 cells express the QRFPR-encoding gene, it appears

that 26RFa/QRFP may act in an autocrine/paracrine

manner to regulate adipogenesis (Malumba et al. 2010).

According to Alonzeau et al. (2013), 26RFa/QRFP is also

expressed in human prostate cancer and stimulates the

neuroendocrine differentiation and migration of cancer

cells. Administration of 26RFa/QRFP in the brain increases

plasma luteinizing hormone (LH) levels in both sexes in

rat (Navarro et al. 2006, Patel et al. 2008) and stimulates

prolactin and growth hormone secretion in male rhesus

monkeys (Qaiser et al. 2012, Wahab et al. 2012).

Intrathecally administered 26RFa/QRFP induces analgesic

effects in rat under formalin and carrageenan tests

(Yamamoto et al. 2008). Central injection of 26RFa/QRFP

in mice causes a rise in blood pressure and heart rate

(Takayasu et al. 2006). Mice deficient in the receptor for

26RFa/QRFP (Qrfpr) suffer from osteopenia (Baribault et al.

2006). This observation indicates that 26RFa/QRFP plays a

major role in bone formation, via QRFPR that is expressed

in bone (Baribault et al. 2006).
Non-mammalian vertebrates

In goldfish, quantitative RT-PCR analysis demonstrated

high expression of 26RFa/qrfpmRNA in the hypothalamus,

optic tectum–thalamus, and testis. The expression of
http://jme.endocrinology-journals.org
DOI: 10.1530/JME-13-0207
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26RFa/qrfp mRNA in the hypothalamus is augmented

at 4 days after food deprivation (Liu et al. 2009). In

addition, serum LH levels are significantly increased at

1 h, but not at 3 and 6 h after i.p. injection of 26RFa/QRFP

(Liu et al. 2009). As 26RFa/Qrfp has no effect on LH release

from pituitary cells in primary culture, it is thought that, in

fish, the peptide may stimulate the gonadotropic axis by

acting exclusively at the hypothalamic level. These results

suggest that 26RFa/Qrfp regulates energy homeostasis and

the hypothalamic–pituitary–gonadal axis in fish, as also

observed in mammals.

In birds, the expression of 26RFa/QRFP mRNA in the

quail brain has been investigated in different brain

regions, i.e., the cerebrum, diencephalon, mesencepha-

lon, and cerebellum, by quantitative PCR analysis. A high

level of expression of 26RFa/QRFP mRNA is present in the

diencephalon, including the hypothalamus, while

26RFa/QRFP mRNA is almost undetectable in other brain

regions (Ukena et al. 2010). In colchicine-treated birds

(quail and chicken), 26RFa/QRFP-immunoreactive cell

bodies were found only in the anterior hypothalamic

nucleus in the diencephalon (Ukena et al. 2010). Further-

more, in situ hybridization has shown specific expression

of 26RFa/QRFP mRNA in the anterior hypothalamic

nucleus in the chick brain, and the distribution of

26RFa/QRFP mRNA-containing perikarya clearly matches

with that of 26RFa/QRFP-immunoreactive neurons

(Ukena et al. 2010). In the zebra finch, in situ hybridization

analysis has revealed that expression of 26RFa/QRFP

mRNA is localized to the anterior–medial hypothalamic

area, the ventromedial nucleus of the hypothalamus, and

the lateral hypothalamic area (Tobari et al. 2011). These

neuroanatomical data suggest that, in birds, 26RFa/QRFP

produced in the hypothalamus participates in the control

of feeding behavior, as shown previously in rodents

(Chartrel et al. 2006b, Do Régo et al. 2006, Moriya et al.

2006, Primeaux et al. 2008).

To assess the above speculation, the effect of central

injection of 26RFa/QRFP has been surveyed in both broiler

and layer chick lines. I.c.v. injection of 26RFa/QRFP

stimulates feeding behavior in broiler chicks, but not in

layer chicks (Ukena et al. 2010). It is likely that the

different effects in these two chick lines can be explained

by the following reports. It has been demonstrated that

the effect of 26RFa/QRFP on feeding behavior in rodents

differs according to the energy status and/or the species

(Primeaux et al. 2013). Although 26RFa/QRFP hardly

affects food intake in normally fed rats (Fukusumi et al.

2003, Kampe et al. 2006, Patel et al. 2008), at least under a

low-fat diet (Primeaux et al. 2008), 26RFa/QRFP induces a
Published by Bioscientifica Ltd
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marked orexigenic effect in mice and food-restricted rats

(Chartrel et al. 2003, 2005, Do Régo et al. 2006, Moriya

et al. 2006, Takayasu et al. 2006, Lectez et al. 2009). In

addition, it has been demonstrated that 26RFa/QRFP

selectively increases the intake of a high-fat diet in rats

(Primeaux et al. 2008, 2013, Primeaux 2011). On the other

hand, to determine the biologically active core of

26RFa/QRFP, the effect of a synthetic C-terminal octa-

peptide (26RFa-8; KGGFAFRFamide) of 26RFa/QRFP has

been tested on feeding behavior of chicken. This

C-terminal sequence is highly conserved from fish to

mammals (Fig. 2). The synthetic C-terminal octapeptide,

26RFa-8, stimulates food intake in broiler chicks, but not

in layer chicks, in much the same manner as the full-

length peptide (Ukena et al. 2010). Consistent with this

observation, a synthetic C-terminal heptapeptide of

26RFa/QRFP (26RFa20–26; GGFSFRFamide) exerts an orexi-

genic effect in mice (Do Régo et al. 2006). In addition,

26RFa20–26 evokes a significant increase in serum LH levels

in female rats (Navarro et al. 2006). Taken together, it

appears that the C-terminal region of 26RFa/QRFP is

responsible for the biological activity of the peptide. In

addition to the chick data, it has been reported that central

injection of 26RFa/QRFP in free-feeding male zebra finches

stimulates food intake for 24 h, without a change in

body mass (Tobari et al. 2011). These results also indicate

that 26RFa/QRFP exerts an orexigenic activity in various

avian species.
Comparative aspects of QRFPR in vertebrates

Mammals

In humans, 26RFa/QRFP has been found to be an

endogenous ligand for the orphan receptor, GPR103

(QRFPR), which is a class A GPCR (Fukusumi et al. 2003,

Jiang et al. 2003). QRFPR shares relatively high sequence

similarity with other RFamide receptors, notably those for

NPFF, PrRP, kisspeptin, and GnIH, and to a lesser extent

with the other peptidergic receptors for neuropeptide Y

(NPY), galanin, orexin, and cholecystokinin (Lee et al.

2001, Jiang et al. 2003). Surprisingly, 26RFa/QRFP displays

a moderate affinity for NPFF2 (NPFFR2, the receptor for

NPFF) and a low affinity for NPFF1 (NPFFR1, the receptor

for GnIH) (Gouardères et al. 2007). In addition, QRFPR

possesses several characteristic features of class A GPCRs,

such as i) a disulfide bridge between the two Cys (C)

residues located in the first and second extracellular loops

(EL1 and EL2), ii) the existence of an Asp (D) residue

within the second transmembrane domain (TM2) that
http://jme.endocrinology-journals.org
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seems to play a pivotal role in G protein coupling, iii) a

conserved Glu (E)-Arg (R) doublet sequence at the

N-terminal end of the second intracellular loop (IL2),

and iv) three conserved residues, i.e., Phe (F), Pro (P) and

Asn (N), within TM6 and TM7, which are crucial for

receptor activation (Fig. 5). QRFPs with 26 and 43 amino

acid residues bind to QRFPR with high affinity (EC50Z3.2

and 0.52 nM respectively) (Fukusumi et al. 2003, Jiang

et al. 2003). It has also been demonstrated that 26- and

43-amino acid residue QRFPs inhibit cAMP formation with

similar efficacy in QRFPR-transfected CHO cells (Fukusumi

et al. 2003). Furthermore, 26RFa/QRFP markedly increases

intracellular Ca2C concentration ([Ca2C]i) in a pertussis

toxin-independent manner. These results suggest that

QRFPR is coupled to a Gi/0 and/or to a Gq protein

(Fukusumi et al. 2003). The affinity and potency of the

C-terminal heptapeptide 26RFa20–26 (GGFSFRFamide)

have been investigated and were found to be lower than

those of 26RFa/QRFP. These data indicate that this

heptapeptide is a relatively weak ligand for QRFPR

(Fukusumi et al. 2003, Le Marec et al. 2011). Furthermore,

it has been reported that 26RFa/QRFP enhances

corticosteroid secretion in human adrenocortical cells by

regulating key steroidogenic enzymes involving

MAPK/PKC and Ca2C signaling pathways via QRFPR

(Ramanjaneya et al. 2013).

In contrast to humans, who only have a single

QRFPR-encoding gene, two isoforms of the receptor for

26RFa/QRFP have been characterized in rodents. These

26RFa/QRFP receptor isoforms have been designated as

QRFPR1 and QRFPR2 in rat and mouse (Kampe et al.

2006, Takayasu et al. 2006); 26RFa/QRFP stimulates

inositol trisphosphate in rat QRFPR1 and QRFPR2 with

similar efficacy (Kampe et al. 2006) and binds to mouse

QRFPR1 and QRFPR2 with similar affinity (Takayasu

et al. 2006).

The distribution of QRFPR mRNA and its peptide

binding sites have been studied by in situ hybridization

and autoradiography respectively. In rat, Qrfpr mRNA-

containing cells are notably expressed in the midbrain, the

pons, and the medulla oblongata, while 26RFa/QRFP-

binding sites are widely distributed throughout the brain

and spinal cord (Bruzzone et al. 2007). These results

suggest that 26RFa/QRFP can bind to a receptor(s) other

than QRFPR. Indeed, it has been found by competition

experiments that 26RFa/QRFP interacts with NPFF2, the

cognate receptor for NPFF (Bruzzone et al. 2007).

The widespread distribution of 26RFa/QRFP-binding

sites suggests that 26RFa/QRFP exerts multiple

functions in the brain and spinal cord that are mediated
Published by Bioscientifica Ltd
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Figure 5

Alignment of the amino acid sequences of the G protein-coupled receptor

for 26RFa/QRFP, QRFPR, in mammals (human and rat), birds (chicken and

zebra finch), frog (Xenopus), and fish (zebrafish). Fully conserved amino

acids are highlighted with green boxes and highly conserved amino acids

with gray boxes. Putative transmembrane domains (TMD) are underlined.

The disulfide bridge between the two Cys (C) residues located in the first

and second extracellular loops is indicated by a line. The Asp (D) residue in

TMD2 involved in G protein coupling, the conserved Glu (E)-Arg (R)

residues in the second intracellular loop, and the conserved Phe (F), Pro (P),

and Asn (N) residues in TMD6 and TMD7 are represented by colored letters.

A hyphen has been inserted to obtain optimal homology. The GenBank

accession numbers of these sequences are as follows: human QRFPR,

NP_937822; rat QRFPR, NP_937842; chicken QRFPR, NP_001120642; zebra

finch QRFPR, NP_001243137; Xenopus tropicalis QRFPR, NP_001072295;

and zebrafish Qrfpr, XP_001920042.
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Figure 6

Synteny analysis around QRFPR gene loci. Orthologous or paralogous

genes are linked by horizontal lines. The QRFPR genes are shown white

in black boxes. The nucleotide position of each gene on the chromosome

is shown under each gene. The GenBank accession numbers of QRFPR

genes are as follows: human QRFPR, JF810892.1; mouse Qrfpr1,

BC096610.1; chicken QRFPR, NM_001127170.1; Xenopus tropicalis qrfpr,

NM_001078827.1; and medaka qrfpr, XP_004080459.1. Ensembl genome

database accession numbers are as follows: mouse Qrfpr2,

ENSMUSG00000029917; zebrafish qrfpr1, ENSDARG00000039349; zebrafish

qrfpr2, ENSDARG00000068422; zebrafish qrfpr3, ENSDARG00000092652;

coelacanth qrfpr, ENSLACG00000016226; and sea lamprey qrfpr,

ENSPMAG00000005451. GENSCAN (http://genes.mit.edu/GENSCAN.html)

was used to predict putative coelacanth Qrfpr3 precursor protein.
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by at least two distinct receptors, QRFPR and NPFF2

(Bruzzone et al. 2007).
Non-mammalian vertebrates

In birds, the cDNAs encoding QRFPR have been charac-

terized in the brain of chicken and zebra finch (Ukena et al.

2010, Tobari et al. 2011). The sequence of chicken QRFPR

is highly similar to those of human and rat QRFPR (Fig. 5).

The action of 26RFa/QRFP on chicken QRFPR has been

studied by measuring [Ca2C]i in HEK293T cells that had

been transiently transfected with chicken QRFPR. In these

cells, 26RFa/QRFP increases [Ca2C]i in a dose-dependent

manner, with an EC50 value of around 40 nM (Ukena et al.

2010). The mRNA of QRFPR is widely expressed in chicken

and zebra finch brains and the highest concentration of

mRNA is observed in the diencephalon (Ukena et al. 2010,

Tobari et al. 2011). As the mRNA of QRFPR is expressed in

the brain outside the diencephalon in chicken, as it is in

rat (Bruzzone et al. 2007), 26RFa/QRFP may exert multiple

functions in addition to regulating food intake (Ukena

et al. 2010).

Synteny analysis has revealed the existence of species-

specific paralogous genes of QRFPR in mouse, zebrafish

and coelacanth (Fig. 6). These paralogous genes may have

emerged along with the species-specific gene or genome

duplications that occurred during the course of vertebrate
http://jme.endocrinology-journals.org
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evolution. Phylogenetic analysis data are consistent with

synteny analysis (Fig. 7). Although there are homologous

sequences to QRFPR in the genome database of Xenopus,

zebrafish, coelacanth and lamprey (Figs 5 and 6), Qrfpr has

been studied only in mammals and birds. Further

characterization of QRFPR is thus needed to determine

the functional significance of the 26RFa/QRFP–QRFPR

system in other vertebrate phyla, such as reptilians,

amphibians, and fish.
Conclusions and future directions

The neuropeptide 26RFa/QRFP belongs to the most

recently identified group of the RFamide peptide family

and was first identified in the brain of the European green

frog. Subsequently, the cDNAs encoding the 26RFa/QRFP

precursors have been characterized in various animals,

including goldfish, quail, chicken, zebra finch, mouse, rat,

bovine, and humans, and these analyses have shown the

existence of the 26RFa/QRFP-encoding gene in represen-

tative species of the vertebrate phylum. In mammals,

26RFa/QRFP has been found to be a high-affinity

endogenous ligand for the previously identified orphan

GPCR, GPR103 (QRFPR). In rodents and monkeys,

26RFa/QRFP exerts diverse biological actions, including

regulation of food intake and energy homeostasis,

hormone secretion, nociception, and bone formation.
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Figure 7

Phylogenetic analysis of QRFPR precursor proteins. Drosophila melanoga-

ster peptide GPCR was used as an outgroup. NPY receptors are included in

the phylogenetic tree as a reference group of vertebrate GPCR. Scale bar

refers to a phylogenetic distance of 0.1 nucleotide substitutions per site.

Numbers on the branches indicate bootstrap percentage following 1000

replications in constructing the tree. The GenBank accession numbers of

the NPY1R genes are as follows: human NPY1R, NM_000909; mouse Npy1r,

NM_010934; chicken NPY1R, NM_001031535; anole lizard NPY1R,

XM_003221700; Xenopus laevisnpy1r, NM_001085879; zebrafish npy1r,

NM_001102391; and Drosophila melanogaster peptide GPCR, AY217746.1.
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Recently, the mature sequences of 26RFa/QRFP have been

identified by structural analysis in quail and zebra finch. In

birds, as in mammals, 26RFa/QRFP-producing neurons are

only located in the hypothalamus, while QRFPR is widely

distributed throughout the brain. In birds, 26RFa/QRFP

also exerts an orexigenic action, as it does in rodents, and a
http://jme.endocrinology-journals.org
DOI: 10.1530/JME-13-0207
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similar effect of 26RFa/QRFP has been suggested in fish,

because of upregulation of 26RFa/qrfp mRNA by a negative

energy state. Thus, the structure, distribution pattern, and

biological actions of the 26RFa/QRFP–QRFPR system have

been conserved across the vertebrate phylum, from fish to

mammals. However, further studies are clearly required to
Published by Bioscientifica Ltd
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fully elucidate the molecular evolution and functional

significance of the 26RFa/QRFP–QRFPR pair in vertebrates.

In particular, in vitro and in vivo studies on development,

morphogenesis, and behavior in non-mammalian model

organisms, such as Xenopus and zebrafish, should

bring to light previously unknown physiological

actions of the 26RFa/QRFP–QRFPR system. Recent

studies have shown that a number of neuropeptide/GPCR

pairs initially discovered in vertebrates/deuterostomes

actually possess homologs in protostomes (Sherwood

et al. 2006, Roch et al. 2011, Frooninckx et al. 2012,

Grimmelikhuijzen & Hauser 2012, Mirabeau & Joly 2013).

It would thus be interesting to look for the existence of

26RFa/QRFP and/or QRFPR orthologs in representative

species of protostomes.
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Ségalas-Milazzo I, Guilhaudis L, Cosette P, Jouenne T et al. 2006b

Structure and functions of the novel hypothalamic RFamide neuro-

peptides R-RFa and 26RFa in vertebrates. Peptides 27 1110–1120.

(doi:10.1016/j.peptides.2005.06.035)

Chartrel N, Alonzeau J, Alexandre D, Jeandel L, Alvear-Perez R, Leprince J,

Boutin J, Vaudry H, Anouar Y & Llorens-Cortes C 2011 The RFamide

neuropeptide 26RFa and its role in the control of neuroendocrine

functions. Frontiers in Neuroendocrinology 32 387–397. (doi:10.1016/

j.yfrne.2011.04.001)
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