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G protein-coupled receptors (GPCRs) are the largest family

of cell membrane receptors in the human genome,

comprisingw2% of human proteins. GPCRs are the target

of a variety of signaling molecules such as peptide

hormones, neuropeptides, chemokines, neurotransmit-

ters, nucleotides, steroids, prostaglandins, cannabinoids,

odorants, taste molecules, pheromones, and ions. A large

numberof clinically useddrugs exert their biological effects

via a GPCR, and orphanGPCRs provide valuable targets for

the discovery of innovative drugs. Thus, it did not come as

a surprise that the 2012 Nobel Prize in Chemistry was

awarded to Robert J Lefkowitz and Brian K Kobila for their

pioneer work on GPCR structures and functions.

The presence of GPCRs in the genome of all living

organisms including bacteria, yeast, plants, invertebrates,

and vertebrates shows the early evolutionary origin of

these ubiquitous and versatile receptors. As a result of

two major whole-genome duplication rounds during

vertebrate evolution (Van de Peer et al. 2010), GPCRs

have had the opportunity to explore new functions

(neofunctionalization) while maintaining the ancient

ones. In particular, in the case of peptide hormones,

neuropeptides, and their GPCRs, these genome dupli-

cation events have played a dual role in the diversification

of both ligands and receptors. These (neuro)peptide/GPCR

pairs thus represent exceptional models for studying the

process of co-evolution of ligand–receptor systems. The

aim of this special issue was to assemble a comprehensive

series of review articles that illustrate the molecular and

functional evolution of diverse families of neuropeptide

GPCRs that are involved in the regulation of essential

physiological functions, i.e. reproduction, growth, stress

response, energy, and water homeostasis.
Secretin, the first peptide hormone to be discovered

(Bayliss & Starling 1902), belongs to a large family of

related peptides, which encompasses VIP, PACAP, GHRH,

and glucagon (Vaudry et al. 2009). It is now established

that secretin acts as a neuropeptide that regulates

vasopressin release and water homeostasis (Chu et al.

2009). Herein, the evolutionary origin of secretin and its

receptor is discussed by Tam et al. (2014). Glucagon-like

peptide 1 (GLP1) is also a member of the VIP–PACAP–

glucagon superfamily of peptides. The paper by Hwang

et al. (2014) describes the phylogenetic history of GLP1

and its receptor, GLP1R, which is regarded as a promising

target for the development of new drugs aimed at treating

type 2 diabetes and obesity. POMC-derived peptides exert

their corticotropic and melanotropic activities through

specific interaction with melanocortin receptors (Cone

2006). The paper by Dores et al. (2014) focuses on ligand

selectivity of the five melanocortin receptors and the role

that reverse agonists (i.e. agouti and AgRP) and accessory

proteins are playing in melanocortin receptor functions.

The CRH family comprises several neuropeptides includ-

ing urotensin I, urocortins, and sauvagine (Vaughan et al.

1995). Orthologs of these peptides and their receptors

have now been identified in invertebrates, notably in

arthropods. In their review, Lovejoy et al. (2014) examine

the co-evolution process of these peptide–GPCR systems

and the diversity of their functions from insects to human.

Somatostatin and urotensin II are two cyclic neuro-

peptides that have recently been shown to derive from a

single ancestral gene (Tostivint et al. 2006). In this review,

the authors discuss the evolutionary dynamics of

somatostatin/urotensin II peptides and their receptors

that have led to the unexpected complexity of these
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neuroendocrine systems (Tostivint et al. 2014). The

identification of growth hormone secretagogue receptor

(GHSR) and its natural ligand ghrelin is a striking example

of the power of target base drug discovery, also termed

‘reverse pharmacology’, for the development of innova-

tive therapeutic compounds (Kojima & Kangawa 2010).

In their article, Kaiya et al. (2014) demonstrate that the

remarkable simplicity of the ghrelin–GHSR system of

tetrapods (i.e. one ligand and one receptor) markedly

contrasts with the complexity of this system in teleosts.

Kisspeptin, a member of the RFamide peptide superfamily,

plays a critical role in sexual differentiation and reproduc-

tion (de Roux et al. 2003, Seminara et al. 2003). The paper

by Pasquier et al. (2014) highlights the tumultuous history

of kisspeptins and their receptors during vertebrate

evolution. 26RFa/QRFP is another RFamide peptide that

was initially identified as an orexigenic neuropeptide

(Chartrel et al. 2003). The article by Ukena et al. (2014)

provides a complete overview of the molecular and

functional evolution of 26RFa and its receptor, called

QRFPR, from lamprey to mammals.

It is our hope that this issue will become a major

reference for researchers working on the evolutionary

aspects of GPCRs and their peptide ligands.
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