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Abstract

Peptide receptor radionuclide therapy (PRRT) with 90Y-octreotide or 177Lu-octreotate 

is an effective treatment for inoperable or metastatic neuroendocrine tumors (NETs), 

particularly well-differentiated gastroenteropancreatic or bronchopulmonary NETs. 

PRRT is generally extremely well tolerated, with modest toxicity to target organs, kidney 

and bone marrow. Nevertheless, a priori concerns regarding long-term effects lead 

clinicians such as Brieau and coworkers, in this ERC issue, to ascribe to the combination of 

alkylating agents and PRRT the apparently high occurrence (n = 4) of myeloproliferative 

events (therapy-related myeloid neoplasms (t-MNs)) in a small cohort of 20 progressive, 

advanced digestive NETs treated with PRRT after chemotherapy. Anecdotal reports 

of myelotoxic events should be placed in the correct perspective of larger series, 

where the reported incidence of these events is ~2%, with the aim of promoting a 

balanced awareness of the issue and unbiased and reasonable overall conclusions. For 

a comprehensive definition of the issue, we provide an evaluation of the occurrence of 

t-MN in patients treated with various myelotoxic treatments.
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Introduction

It is now widely accepted that peptide receptor 
radionuclide therapy (PRRT) is an effective treatment for 
inoperable or metastatic neuroendocrine tumors (NETs), 
particularly well-differentiated gastroenteropancreatic 
(GEP) or bronchopulmonary NETs. Twenty years of 
well-documented investigation in reputable institutions 

have yielded unequivocal evidence of efficacy with 
the commonly used radiopeptides, 90Y-octreotide and 
177Lu-octreotate. The objective response rates range 
from 15 to 35% and the progression-free survival rates 
exceed 30 months. These results are recapitulated by the 
preliminary, as yet unpublished, randomized-controlled 
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trial (NETTER-1) (Strosberg et  al. 2015). The projected 
overall survival rates in the latter compare favorably 
with conventional therapies including somatostatin 
analogs, chemotherapy, and recently approved therapies 
including everolimus and sunitinib. Cumulative 
experience has led to widespread clinical acceptance 
of 177Lu-octreotate as the radiopeptide of choice due 
to its favorable response rates and lower incidence of 
nephrotoxicity compared to 90Y-octreotide.

PRRT is generally extremely well tolerated, with 
modest toxicity to target organs, kidney and bone marrow. 
Serious adverse events are scarce and mostly unpredictable, 
because their pathogenesis is poorly understood and, in 
some cases, apparently idiosyncratic (Frilling et al. 2014).

Main text

Toxicity associated with PRRT is categorized as acute, 
subacute or long term. Acute and subacute side effects 
are typically mild and self-limiting, comprising fatigue 
(common), nausea (25%, rarely vomiting), hair loss 
(maximum grade 1 60%), abdominal pain (10%) and 
occasionally hormonal crisis (1%) (Kwekkeboom & 
Krenning 2016). Nausea (controlled effectively by 
antiemetic therapies, e.g., granisetron) is related to 
concomitant administration of ‘nephro-protective’ 
amino acids (Bernard et al. 1997, Bodei et al. 2003). Other 
subacute side effects are radiation related (Kwekkeboom 
et al. 2005, van Essen et al. 2008, Kwekkeboom & Krenning 
2016). Hematologic toxicity, the most common subacute 
side effect, is typically mild (WHO grades 1–2) and reverses 
within weeks of treatment cessation. More severe WHO 
grade 3 or 4 form (generally reversible within 2–3 months) 
occurs in <15% patients, irrespective of the radiopeptide 
utilized. However, in ~50% of these patients, it may persist 
(Kwekkeboom & Krenning 2016). The mean recovery time 
was 12 months in a series of 203 177Lu-octreotate-treated 
patients (Sabet et  al. 2013). Neoplastic bone marrow 
involvement may increase the likelihood of myelotoxicity 
(Hubble et al. 2010). The majority of renal events are mild 
if the necessary precautions (such as nephroprotective 
amino acid coadministration and therapy adaptation to 
the clinical scenario) are undertaken (Bodei et  al. 2009, 
Hofman & Hicks 2014). In a cumulative analysis of nine 
individual series, ~2500 patients/15 years, chronic and 
permanent effects to target organs were infrequent with 
177Lu-octreotate (Bodei et al. 2016). Loss of renal function 
grade 4 was 0.4%, reduced bone marrow reserve and, more 
infrequently, myelodysplastic syndrome (MDS) was 2–2.3% 
and leukemia (1.8%), respectively (Bodei et al. 2016).

The concepts of PRRT tolerability (and potential 
negative outcomes) differ considerably between 
nuclear medicine physicians and referring oncologists, 
endocrinologists, and gastroenterologists. The former 
group accentuates the rarity of PRRT-related toxicity, 
whereas the latter, who are concerned a priori about 
‘therapy-induced’ adverse events, believe them to be 
directly induced by internal radiation therapies. The 
putative rationale is that PRRT is responsible for all cases 
of nephropathy and the induction of mutagenic bone 
marrow events. The latter position is exemplified by 
the communication by Brieau and coworkers published 
in this issue (Brieau et al. 2016). This letter describes an 
apparently high incidence of myeloproliferative events 
in the long-term follow-up (3.1 years) of a small cohort 
of 20 progressive, advanced digestive NETs treated with 
PRRT after chemotherapy. Four patients (20%) from 
a French oncology facility developed therapy-related 
myeloid neoplasms (t-MNs) 30–70 months after PRRT at 
the Erasmus Medical Center (EMC) Rotterdam. Compared 
to the rest of the cohort who also received PRRT, these 
20 patients had more cycles of chemotherapy, more 
cycles of alkylating agents, experienced more frequent 
early high-grade hematotoxicity, and tended to more 
frequently have bone metastases. The authors infer that 
the very high occurrence of t-MN in this cohort was 
due to previous administration of alkylating agents and 
therefore that these agents should be avoided before 
PRRT, particularly in the management of low-grade NETs. 
Their conclusion was that the combination of alkylating 
agents and PRRT poses a high risk of MDS. It should be 
noted that the precise causal relationship between t-MN 
and PRRT remains elusive. Only a small percentage (~2%) 
of patients after 177Lu-octreotate develop t-MN at the EMC 
(Kwekkeboom & Krenning 2016).

Although the association with collateral myelotoxic 
therapy, including chemotherapy or radiotherapy, has 
previously been suggested, mathematical analysis of a 
series of more than 800 patients has led to reconsideration 
of the association. (Bodei et  al. 2015). Although any 
added information that amplifies the understanding 
of t-MN after myelotoxic therapies is valuable, we are 
of the opinion that the interpretation of the results 
reported in this useful communication appears alarmist 
and unduly skeptical. Our major concern is the focus 
on this subset of very advanced and heavily pretreated 
patients referred to another center to receive salvage 
PRRT. They neither represent a prospectively enrolled 
cohort treated with PRRT after chemotherapy nor do 
they accurately reflect the average patient. The letter 
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regrettably depicts anecdotal events defined in a selected 
subset, thereby providing a degree of bias that has led 
to an unreasonable overall conclusion. As currently 
presented, this engenders an erroneous assertion to 
a physician unfamiliar with the complexities of the 
subject that PRRT, used in a multidisciplinary fashion 
together or after chemotherapy (a registered treatment), 
has a significant risk (20%) of causing MDS/AML. As 
noted, the pessimistic conclusions are reached in a small 
subset of over 700 patients treated with 177Lu-octreotate 
at the EMC Rotterdam (Kwekkeboom et  al. 2008). In 
this group, the estimated incidence of these events is 
~2% (Kwekkeboom & Krenning 2016). Of additional 
concern is the argument that the occurrence of t-MN 
in the GEP–NET population treated with alkylating-
based chemotherapy is only 1% (i.e., 1 of 95). This is 
misleading because patients are neither numerically 
matched nor matched for individual chemotherapy, 
years of follow-up, skeletal involvement, and so on. 
The presented analysis of a small subgroup of heavily 
pretreated and progressive patients referred to another 
center to receive salvage PRRT unfortunately reflects 
the current practice of utilizing PRRT in very advanced 
stages of disease. Such data cannot be utilized to signal 
a spurious negative alert regarding safety. In order to 
better define the issue and render it balanced, we have 
evaluated the occurrence of t-MN in patients treated 
with various myelotoxic treatments.

Myeloid neoplasms are considered either the 
consequence of mutational events induced by cytotoxic 
therapies or to arise via the selection of a myeloid clone 
with a mutator phenotype that has a markedly elevated 
risk for mutational events (Boehrer et al. 2009). MDS and 
AML secondary to chemo- or radiotherapy are a recognized 
category in the WHO 2008 classification (t-MN), as a 
nosologic group with a heterogeneous clinical outcome 
(Vardiman et al. 2009). The latency between diagnosis and 
therapy-related disease ranges from a few months to more 
than 10 years, depending on the cumulative dosage or 
dose intensity of therapy and exposure to specific agents 
(Godley & Larson 2008). The incidence of primary MDS 
is estimated at 3–20/100,000 and tends to increase with 
age (Rollison et  al. 2008). No rigorous data that define 
the incidence of t-MN are available; estimates indicate a 
range of 10–15% of all MDSs. The overall risk of t-MDS 
is therefore low but not negligible. In the assessment 
of clinical trials of alkylating therapy, an incidence of 
0.25–1% per year beginning 2 years after the initiation of 
therapy and decreasing 7 years after the completion has 
been reported (Churpek & Larson 2013).

The incidence of t-MN after chemotherapy trials 
exhibits large variations due to inherent selection 
biases, with the highest percentages reported with 
older forms of intensive treatments and smaller series  
(Churpek & Larson 2013, Candelaria & Duenas-Gonzalez 
2015). Large series with extended follow-up are more 
reliable. In the SEER database (1975–2008), the occurrence 
of t-AML in more than 400,000 cancer patients treated 
with chemotherapy ± radiotherapy was 0.18%. This is 
4 times higher than the normal population. Of note, 
radiochemotherapy combinations for solid cancers 
did not carry a significantly increased risk, compared 
with chemotherapy alone (Morton et  al. 2013). Many 
conditions treated with alkylating agents have poor long-
term survival, unlike that of low-grade NET, and therefore, 
estimates of the long-term impact of these agents on the 
development of t-MN may be underestimated.

t-MN secondary to radiation is more complex and 
is a multifactorial process that originates due to single- 
or double-strand breaks in the DNA, involving errors in 
repair mechanisms and genetic mutations, with loss of 
function or oncogene activation. A critical parameter 
is the different sensitivities of DNA to radiation during 
the cell cycle and intrinsic host repair mechanisms 
(Bourguignon et  al. 2005). High-dose total body 
irradiation, as in atomic bomb survivors, Chernobyl 
nuclear disaster liquidators, or large-field conditioning 
radiotherapy before bone marrow transplantation, is 
known to be leukemogenic in a dose-dependent manner 
(Gluzman et  al. 2015). However, the absolute rate of 
MDS is very low. A cohort study of Nagasaki A-bomb 
survivors identified only 198 cases out of 86,271 (0.2%) 
irradiated individuals followed for 40–60 years, with 
greatest risk among the young (Iwanaga et  al. 2011). 
Although a potential increased risk of radiation therapy 
in association with chemotherapy has been reported (Sun 
et al. 2015), the relative contribution of chemotherapy to 
the incidence of t-MN is unclear. Follow-up of patients 
treated with chemotherapy for advanced Hodgkin 
lymphoma found t-MN in up to 2.7% (Engert et al. 2012). 
The mutagenic potential of lower doses of radiotherapy 
as used in modern radiation therapy planning, which 
greatly reduces the exposure of the bone marrow, is 
more controversial. This is especially relevant because 
many of the reported myeloid neoplasms share genetic 
features with de novo forms (Nardi et al. 2012, Cogle 2014, 
Zhang & Wang 2014). In such cases, the correlation with 
irradiation is debatable and is considered representative 
of epiphenomena that are either coincidental or reflect 
individual genetic susceptibilities (Zhang & Wang 2014).

http://dx.doi.org/10.1530/ERC-16-0258
http://erc.endocrinology-journals.org


C4Commentary L Bodei et al. t-MN: myth and reality
En

d
o

cr
in

e-
R

el
at

ed
 C

an
ce

r

DOI: 10.1530/ERC-16-0258
http://erc.endocrinology-journals.org © 2016 Society for Endocrinology

Printed in Great Britain
Published by Bioscientifica Ltd.

23:8

The same assertions may be made for radionuclide 
therapies, which are targeted therapies aimed at 
maximizing the target-to-normal tissue dose ratio, and 
exhibit a relatively limited total body distribution. 
One day after PRRT administration, radioactivity is 
typically <1% in the blood and <20% in the whole 
body, leading to cumulative red marrow and total body 
doses of ~1 and ~1.5 Gy, respectively (Cremonesi et  al. 
2010). t-MN after radionuclide therapies is considered 
uncommon and has only been sporadically reported 
with the various treatment modalities (radioiodine (RAI), 
131I-metaiodobenzylguanidine (131I-MIBG) (Matthay et al. 
2007)), radioimmunotherapies (131I or 90Y) (Leahy et  al. 
2006), and PRRT (111In, 90Y, and 177Lu). As a consequence, 
studies are retrospective and statistical analyses include 
myeloproliferative events after radionuclide therapies 
generically encompassing the rubric of radiation therapy. 
Rigorous assessments are therefore not feasible.

Several studies combining the data of thyroid cancer 
patients of various age groups have shown that 131I 
therapy may be associated with an increased risk for 
second primary malignancies (SPMs) (Rubino et al. 2003, 
Dottorini & Salvatori 2013). However, dose–response 
relationships between radioiodine therapy and the risk 
of SPM were found in only a few studies (Clement et al. 
2015). Brown and coworkers reviewed 30,000 SEER 
patients and identified a significant increase in second 
malignancies among patients treated with 131I (relative 
risk 1.16, P < 0.05) (Brown et  al. 2008), especially in 
younger patients. Another analysis of the SEER database 
(n = 27,775 thyroid cancer patients surviving at least 
5 years after diagnosis; 39% treated with RAI) reported 
a relative risk attributable to radioiodine of 1.12 (95% 
confidence interval (CI) 1.01–1.25) (Berrington de 
Gonzalez et  al. 2011). A meta-analysis of RAI literature 
(n = 16,502) revealed a 2.5-fold risk increase of leukemia 
(Grudeva-Popova et  al. 2007). A separate systematic 
review of European and North America cohorts identified 
a 10–20% increase in secondary malignancies and that 
each GBq of 131I increased the risk of a second solid 
cancer by an average of 3.5% and of leukemia by 39% 
(Sawka et al. 2004). Whether this increase resulted from 
aggressive treatment or an underlying predisposition to 
cancer remains unclear because cause–effect relationships 
are difficult to establish. It is possible that these figures 
also reflect the longer life expectancy of thyroid cancer. In 
the Dusseldorf MDS Registry, t-MN following radioiodine 
therapy was 5% (8 of 173), with a median latency of 
79 months. The karyotype was abnormal in 68%, with 
aberrations noted most frequently in chromosomes 7, 5, 8, 

and 3 and a poor survival similar to those of patients with 
t-MN following other cytotoxic treatments (Schroeder 
et al. 2012a). In a separate cohort from Marseille (n = 10), 
60% of the AL karyotypes had unfavorable characteristics. 
This suggests that four patients had de novo features, 
with an as yet undefined relationship to cytotoxic events 
(Gilabert & Prebet 2012).

The non-Hodgkin lymphoma group of neoplasia is at 
considerable risk of developing secondary bone marrow 
neoplasms due to extensive myelotoxic treatments. 
The incidence of t-MDS was 2.5% (19 patients of 746 
NHL treated with 90Y-ibritumomab tiuxetan), occurring 
at a median interval of 5.6 years from the primary 
chemotherapy and 1.9 years after radioimmunotherapy. 
The underlying cytogenetic aberrations, the time from 
the exposure, and the expected number of t-MNs were 
consistent with the previous exposure to chemotherapy, 
and the expected incidence was not increased by  
the radioimmunotherapy. The authors suggested that 
cytogenetic testing in heavily pretreated patients might 
identify those more likely to develop t-MN (Czuczman 
et al. 2007).

In comparison to other therapies, PRRT constitutes 
a relatively recent intervention. t-MN events have 
been sporadically reported after 111In-pentetreotide, 
90Y-octreotide and 177Lu-octreotate (Kwekkeboom et  al. 
2010). A recent analysis of the largest cohort available 
(n = 807 treated with 90Y- and/or 177Lu-peptides) identified 
an incidence of 2.34% for MDS and 1.8% for leukemia 
(75% evolved from MDS) (Bodei et al. 2015). The median 
latency from exposure was 4.4 years (Bodei et  al. 2015). 
These data as well as those from the work of Brieau and 
coworkers suggest that the development of marrow 
neoplasms most likely is a consequence of previous 
treatments, such as chemotherapy. The percentage of cases 
with anomalous karyotypes after PRRT is, unfortunately, 
not known.

Given the demonstrable issue of secondary myeloid 
neoplasms, the need to predict or accurately assess the risk 
of such events is crucial. A clear dose–effect relationship, 
evident and linear with the dose for irradiation such as 
nuclear blasts (Gluzman et al. 2015), is not apparent in 
radionuclide therapies such as PRRT. In the latter, the doses 
delivered to the bone marrow are generally low (mean 
0.02–0.07 Gy/GBq), resulting in a mean dose, for typical 
administrations of 7.4 GBq, of 0.15–0.5 Gy. This is well 
below the threshold of 3.7 Gy for a single administration, 
as reported for radioiodine (Garkavij et  al. 2010, 
Lassmann et al. 2010, Sandstrom et al. 2013). Despite the 
theoretical appeal correlating individual bone marrow 
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doses with adverse effects, dosimetry has failed to provide 
a reliable instrument to predict myeloproliferative events 
in PRRT. A key issue is the difficulty in accurate bone 
marrow modeling (Cremonesi et  al. 2010). In a cohort 
of 34 dosimetry-assessed patients, Bodei and coworkers, 
failed to demonstrate a clear correlation between dose 
and occurrence of t-MN. Furthermore, neither the 
amount of administered radioactivity nor the type of 
radionuclide employed had a significant impact on the 
occurrence of marrow neoplasms. This, together with the 
observation that only 29% of MDS and 22% of leukemia 
could be mathematically modeled by clinical data, 
suggests that intrinsic, genetically determined factors 
may have a critical role in the pathobiology of t-MNs 
(Bodei et al. 2015). This is substantiated by observations 
in radioiodine therapy for thyroid diseases where no 
difference could be established in the incidence of 
myeloid neoplasia between high activities used for 
cancer and low activities for benign diseases (Schroeder 
et al. 2012b). Such observations support the hypothesis 
of a preexisting biological (genomic) susceptibility to a 
radiation-induced effect.

In a post hoc analysis of t-MN etiopathology, 
it remains scientifically challenging to identify 
particular perpetrators. It is therefore important to resist 
the simplistic temptation to explain all events on 
‘known knowledge’. Although it is generally accepted 
as a fait accompli that a myelotoxic event is linked 
to myelotoxic therapies (cytotoxics or radiation), 
other explanations require consideration. It remains 
essential to rigorously identify and define stochastic 
events, susceptibility to mutagenic events, and myeloid 
neoplasia predisposition, irrespective of exposure 
(Churpek & Larson 2013, Bueso-Ramos et al. 2015). It is 
noteworthy that many authors have proposed a role of 
individual genetic predisposition (Kitamura et al. 2014). 
The likelihood of an intrinsic molecular genomic basis is 
further supported by the increased incidence of myeloid 
neoplasia in Fanconi anemia, Li–Fraumeni syndrome, 
neurofibromatosis type 1, Down syndrome, as well as in 
circumstances characterized by genetic polymorphisms 
of enzymes involved in the metabolism of cytotoxic 
agents (e.g., glutathione S-transferase) (Liew & Owen 
2011, Churpek & Larson 2013).

We agree that, in the absence of an accurate, 
personalized assessment of the individual risk of 
developing radiation associated disease, the use of 
radionuclide therapies in patients heavily pretreated 
with alkylating agents remains a cause for concern.  

The possibility of developing a t-MN can never be 
ignored. However, anecdotal reports of myelotoxic events 
should be placed in the correct perspective of larger series, 
with the aim of promoting a balanced awareness of the 
issue rather than an emotional response that diminishes 
the utility and efficacy of the therapy. An incidence of 
an adverse event of 2–3% is worthy of clinical evaluation 
using a thoughtful risk–benefit ratio assessment (Strosberg 
et  al. 2015) rather than succumbing to any unduly 
pessimistic assessment.

To move toward a more modern and personalized 
assessment of risk, in future evaluation of therapy, 
individual radiosensitivity will need to be assessed by 
specific biomarkers, such as chromosomal screening 
of bone marrow of patients potentially at risk, γ-H2AX 
assays (Denoyer et  al. 2015), and genetic testing. An 
unmet need is the availability of pre- or intratherapeutic 
assessment of circulating transcriptional markers to 
predetermine or delineate impending neoplastic marrow 
events. The latter require identification and development 
for application to PRRT and other radiopharmaceutical 
therapies. The necessity for national registries as well 
as multidisciplinary assessments with mathematical 
integration of clinical, dosimetric, biomarker and genetic 
information is clearly needed. This will enable the 
development of objective risk assessment nomograms and 
facilitate risk–benefit quantification based upon impartial 
analysis of results obtained in long-term follow-up of 
large cohorts of comparable patients. Nevertheless, based 
on the data presented in the letter as well as our own 
experience with PRRT, we believe that the treatment 
of patients with low-grade tumors with alkylating 
chemotherapy should be avoided, and preference should 
be given to PRRT due to its the relatively high response 
rate, prolonged associated survival and low toxicity. More 
importantly, patients should avoid treatments associated 
with long-term toxicity unless there are uncontrolled 
symptoms or objective evidence of disease progression 
that, if unchecked, would lead to reduction in quality and 
duration of life.
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