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Abstract
The majority of metastatic breast cancers cannot be cured and present a major public health

problem worldwide. Approximately 70% of breast cancers express the estrogen receptor,

and endocrine-based therapies have significantly improved patient outcomes. However, the

development of endocrine resistance is extremely common. Understanding the molecular

pathways that regulate the hormone sensitivity of breast cancer cells is important to

improving the efficacy of endocrine therapy. It is becoming clearer that the PI3K–AKT–

forkhead box O (FOXO) signaling axis is a key player in the hormone-independent growth of

many breast cancers. Constitutive PI3K–AKT pathway activation, a driver of breast cancer

growth, causes down-regulation of FOXO tumor suppressor functions. This review will

summarize what is currently known about the role of FOXOs in endocrine-resistance

mechanisms. It will also suggest potential therapeutic strategies for the restoration of

normal FOXO transcriptional activity.
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Introduction
Breast cancer is a leading cause of female death worldwide.

Each year, almost 1.4 million women are diagnosed with

breast cancer, and the disease will be responsible for

450 000 deaths (Siegel et al. 2011). This review will

highlight the importance of forkhead box O (FOXO)

activity in the development of endocrine resistant breast

cancer. FOXO transcription factors are key regulators of

gene expression in numerous physiological and patho-

logical processes. FOXO nuclear exclusion is a key feature

of breast cancer cells transformed by oncogenic PI3K–AKT

signaling (Zhang et al. 2011, Fig. 1). It is also becoming

clear that aberrant FOXO activity promotes a number of

characteristic features of hormone-independent breast

cancer growth, including altered estrogen receptor (ER)

function. Although breast cancer cells express multiple

FOXOs, most studies have focused on the FOXO3A
isoform. FOXOs are subject to extensive post-translational

regulation, and targeting these processes may provide

therapeutic strategies to overcome resistance.
FOXO gene family

The FOXO genes encode for the O-subfamily of proteins

that belong to the larger family of forkhead transcription

factors. Forkhead transcription factors are named after the

Drosophila melanogaster forkhead gene (fkh; Weigel et al.

1989), and to date, w200 members have been identified;

in species that range in complexity from Saccharomyces

cerevisiae that has four members (Wijchers et al. 2006) to

human with 43 members (Katoh & Katoh 2004). These

proteins are characterized solely by the presence of a

highly conserved DNA-binding domain (DBD) called the
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Figure 1

Genetic changes found in different forms of breast cancer that cause

chronic activation of the PI3K–AKT pathway. Afflicted components of the

pathway are highlighted, and the specific nature of the most common

mutations described: (1) HER2 receptor amplification; (2) PI3CA (p110)

activating mutations; (3) deletion of INPP4B gene; (4) PTEN inactivating

mutations/deletions; and (5) AKT1/AKT3 activating mutations.
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FOX, forkhead (FKD) (Weigel & Jackle 1990), or alter-

natively the winged-helix domain (Gajiwala & Burley

2000). On the basis of minor sequence variation within

the FOX-domain, FOX family members are divided into

sub-families, that are each designated with a different

letter (currently there are 17 subfamilies, ranging from A

to Q). Outside of the FOX-domain, there is little shared

homology, and the structure and function of FOX

proteins is found to be incredibly diverse. As is the case

for members of all large transcription factor families,

FOX genes been implicated in the transcriptional

regulation of an extensive range of biological processes.

In the case of FOX genes, such reported functions

include regulation of cell proliferation, differentiation,

DNA-repair, apoptosis, metabolism, and also immune-

regulation (Lam et al. 2006,Wijchers et al. 2006, Ziegler

2006, Laoukili et al. 2007).

In mammalian species, there are four members of the

FOXO gene family. Three of the members exhibit a high

degree of sequence homology: FOXO1 (previously called

FKHR), FOXO3A (FKHRL1), and FOXO4 (AFX). The fourth

member of the family, the FOXO6 gene, exhibits major

structural differences compared with the other three

family members.

In keeping with a high degree of sequence homology

between DBDs shared by members of the same forkhead
http://erc.endocrinology-journals.org q 2016 Society for Endocrinology
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subfamily, all FOXO proteins share the same DNA-

binding specificity, recognizing gene regulatory elements

that share a central core DNA motif consisting of the

nucleotides TTGTTTAC. Profiling of genome-wide FOXO

DNA-binding has been mostly been performed in the

study of the immune-system, with FOXO cistrome

having been determined for B-cells and macrophages.

(Fan et al. 2010, Lin et al. 2010, Litvak et al. 2012). These

studies are somewhat limited in their ability to

determine direct downstream effects of FOXO activity.

However, Eijkelenboom et al. (2013) used an inducible

cell-culture system (DLD1 colon carcinoma cells) to

measure the direct effects of FOXO3A activation.

Analysis of the FOXO3A cistrome reveals that the factor

functions predominantly as a classical transcriptional

activator. Furthermore, a significant part of FOXO3A

gene-regulation is found to proceed through enhancer

regulatory elements.

FOXOs are expressed throughout the human body,

and there is broad overlap in their expression patterns.

However, each factor is uniquely enriched within particu-

lar tissue types: FOXO1 in adipose and liver tissue,

FOXO3A in the brain, and FOXO4 in skeletal muscle.

Uniquely, the FOXO6 gene appears to be expressed almost

exclusively in adult brain (Furuyama et al. 2000). Despite

tissue specific enrichment, there clearly exists some level
Published by Bioscientifica Ltd.
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of functional redundancy between FOXO factors, with the

net activity of multiple co-expressed FOXOs having an

accumulative effect on gene expression. This is high-

lighted by observations drawn from compound gene-

knockout experiments. Initially, such studies that utilized

single- or double-knockouts to disrupt one or two FOXO

factors did not yield the expected tumor-prone phenotype

(see the section covering ‘Tumor suppressor function

of FOXOs’). However, broad somatic-cell deletion of all

three FOXO factors yields the full tumor phenotypes

characterized by thymic lymphomas and hemangiomas

(Castrillon et al. 2003, Hosaka et al. 2004, Paik et al. 2007).

Strikingly, despite widespread expression of FOXOs

throughout the body, carcinogenesis is restricted to

thymocytes and endothelial-derived cell lineages in this

model. At present it is not clear why this is the case.

Interestingly, hemangiomas are a characteristic feature of

Cowden’s disease, which is caused by germline inacti-

vation of the phosphatase and tensin homolog (PTEN)

gene, leading to hyperactivity of the PI3K–AKT pathway.

The mechanism by which constitutive PI3K–AKT pathway

activation causes down-regulation of FOXO activity is

discussed in more detail below.
Tumor suppressor function of FOXOs

Interestingly, FOXO1, 3, and 4 were implicated in cancer

biology immediately upon their discovery. FOXO1 was

discovered as a fusion protein (the fusion partner being

either the PAX3 or PAX7 DBD), the product of a

chromosomal translocation event within the cells of

pediatric alveolar rhabdomyosarcoma (Galili et al. 1993,

Sublett et al. 1995, Schmitt-Ney & Camussi 2015). FOXO3A

and FOXO4 were discovered as fusion partners with the

mixed-lineage leukemia gene in acute myeloid leukemias

(Parry et al. 1994). However, experiments that attempted

to recapitulate a tumor phenotype by overexpressing these

fusion proteins were largely unsuccessful (Lagutina et al.

2002), suggesting instead that loss of FOXO function

might be the crucial step in mediating carcinogenesis. It is

now clear that FOXOs are tumor-suppressors, and suppres-

sion of their activity contributes to a number of malignant

processes. For instance, FOXOs are well characterized as

transcriptional regulators of a large number of genes

implicated in carcinogenesis. These include: i) cell-cycle

regulatory components such as p27kip1 (CDKN1B; Dijkers

et al. 2000); ii) pro-apoptotic proteins like TRAIL

(TNFSF10; Modur et al. 2002); iii) DNA repair enzymes

such as GADD45 (Kobayashi et al. 2005); iv) detoxification

pathway enzymes such as manganese superoxide
http://erc.endocrinology-journals.org q 2016 Society for Endocrinology
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dismutase 2 (Adachi et al. 2007); and v) genes involved

in autophagy and the maintenance of cellular organelle

and protein homeostasis (Webb & Brunet 2014).
Breast cancer and hormone dependence

There are four recognized major molecular subtypes of

breast cancer, which are classed according to gene

expression profiling (Perou et al. 2000). The vast majority

of breast cancers (w70%) are ER positive (ERC). They

belong to either the Luminal-A group (mostly ERC and

histologically low grade); or the luminal-B group (mostly

ERC and often higher grade). Endocrine therapy is the

most efficacious treatment for these forms of breast cancer.

The human epidermal growth factor receptor 2 (HER2,

expressed by the ERRB gene)-amplified group, have been a

great clinical success due to the development of effective

HER2-targeting therapies (Bergamaschi et al. 2006, Chin

et al. 2006). In contrast, the triple-negative breast cancer

group (also known as basal-like breast cancers), so-called

because they lack expression of ER, progesterone receptor

(PR), and HER2, are a patient group who currently only

have chemotherapy options (Perou 2011).
Endocrine therapy

The growth and development of normal breast tissue is

governed by the signaling action of the ovarian hormones,

17b-estradiol (E2, the predominant estrogen) and pro-

gesterone, which signal through the nuclear receptors ER

and PR respectively. Two major isoforms of ER exist, ERa

and ERb, which are encoded by separate genes, ESR1 and

ESR2 (ER1 and ER2) respectively (reviewed by Jia et al.

(2015)). The PR also exists as two isoforms, PR-A and PR-B,

the products of transcription from two alternative

promoters of the PR (PGR) gene (reviewed by Jacobsen &

Horwitz (2012)). Immunohistochemical analysis of

normal breast tissue, obtained from pre-menopausal

women, shows that ERa, PR-A, and PR-B are expressed

within the inner luminal epithelial layer of the acini and

intralobular ducts, and also the myoepithelial layer of the

interlobular ducts (Li et al. 2010). ERb exhibits a more

widespread expression pattern, being found within the

epithelial, myoepithelial, and stromal cells of both acini

and ducts. Normal growth of female breast tissue occurs

during puberty, during the menstrual cycle and also

during pregnancy; with E2 regulating the process of ductal

elongation and branching (Deroo et al. 2009), and

progesterone regulating side-branching, and lobular

development (Conneely et al. 2007). The expression levels
Published by Bioscientifica Ltd.
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of ER and PR isoforms are also dynamically regulated

during these processes (Arendt & Kuperwasser 2015). The

classic function of ligand activated ERa is transcriptional

regulation of hundreds of genes involved in processes such

as proliferation, differentiation, survival, invasion, many

of which are particularly relevant for cancer biology.

Seventy percent of all breast cancers exhibit detectable

expression of the ERa and/or the PR (the role of PR is

reviewed in depth by Brisken (2013) and Seton-Rogers

(2015)). A plethora of studies have demonstrated that

ERa-signaling functions as a major driver of breast cancer

tumorigenesis; promoting cancer-cell proliferation, survi-

val, and invasive behavior (Osborne & Schiff 2011). In

contrast ERb is expressed in 50% of breast cancers

(Borgquist et al. 2008), and it appears to possess ERa-

independent function in breast cancer; but it remains

much less well characterized, and studies have yielded

conflicting results regarding its clinical significance

(reviewed by Burns & Korach (2012)). In this review, ER

will refer to the ERa isoform, unless otherwise stated.

Clinically, when compared with the behavior of

ER-negative (K) cancers, affected patients are more likely

to present with indolent disease, bone metastases, and late

disease reoccurrence (Blanco et al. 1990). However, in

contrast with triple-negative breast cancers, endocrine

therapies that target and inhibit ER function, mean that

ERC breast cancer patients have more effective treatment

options available to them.

Currently, three broad classes of endocrine therapy

are commonly used to treat ERC breast cancers: i) selective

ER modifiers, e.g., tamoxifen, which binds directly to the

ER and inhibits its transcriptional activity; ii) selective ER

down-regulators, e.g., fulvestrant, which bind to the ER

and induce its degradation; and iii) aromatase inhibitors

(AIs), e.g., letrozole, anastrozole (both non-steroidal/

reversible) and excemestane (steroidal/irreversible), which

act to inhibit aromatase enzymes expressed throughout

peripheral tissues and the tumor itself, thus reducing the

production, and therefore circulating levels of estrogen.

Endocrine therapy has been successful, and the outcome

for millions of breast cancer patients has been significantly

improved over the past 30 years (Bliss et al. 2012).
Endocrine resistance

Although long-term remission is possible, a significant

proportion of patients will develop some form of

resistance to endocrine therapy. Four commonly occur-

ring clinical scenarios are as follows: i) the breast cancer

initially responds positively to endocrine therapy, but
http://erc.endocrinology-journals.org q 2016 Society for Endocrinology
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eventually acquires resistance. Often, in such cases,

additional positive responses can be temporally gained

from the use of alternative endocrine therapies; however,

the cancer eventually evolves resistance to all therapy;

ii) disease progression following an initial response to

endocrine therapy, followed by a renewed response

to the same therapy when administered years later;

iii) de novo resistance to all endocrine therapies, or the

acquisition of this resistance soon after the patient begins

adjuvant treatment; and iv) de novo resistance to some, but

not all therapies. There is pre-clinical data to suggest that

de novo and acquired forms of resistance share common

pathways (see section discussing ‘Preclinical studies’).

However, some clinical scenarios also support the exist-

ence of drug (or class of drug)-specific forms of resistance.
FOXOs in breast cancer

FOXO3A appears to be a key isoform in mediating

hormone-independent breast cancer growth. FOXO3A

overexpression significantly inhibits the growth of breast

tumors in vitro and in animal models (Hu et al. 2004, Yang

et al. 2008, Zou et al. 2008), and also negatively impacts

upon angiogenesis; a process required for malignant

tumor growth, invasion, and metastasis (Potente et al.

2005). Hu et al. (2004) observed that cytoplasmic FOXO3A

staining correlated with the expression of inhibitor of

nuclear factor kappa-B kinase subunit beta (IKKb), raised

phospho-AKT and overall poorer patient survival. Gargini

et al. (2015) showed that FOXO proteins, in concert with

Bim (a member of the BCL2 protein family), mediate the

PI3K–AKT driven cancer stem-cell phenotype within three

commonly used breast cancer cell-lines (MDA-MB-231,

MCF7-Ras, and MCF10A) (Gargini et al. 2015). Further-

more, Lv et al. (2013) found that C-terminus of Hsc70-

interacting protein induced apoptosis resistance to

chemotherapeutics in normal and breast cancer cells,

specifically by modulation of the PI3K–AKT–FOXO3A–

Bim signaling axis (Lv et al. 2013).
Interaction between FOXOs and ER signaling

The function of FOXO3A as a tumor repressor appears to

be dependent on the co-expression of ER. Sisci et al. (2013)

observed that overexpression of FOXO3A induces a

decrease in the malignant behavior (motility, invasive-

ness, and anchorage-independent growth) of an in vitro

ERC cancer cell model, while eliciting the opposite effect

in ERK (or ER-silenced) cell-lines. Immunohistochemical

analysis performed in the same study revealed that on the
Published by Bioscientifica Ltd.
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one hand, nuclear FOXO3A staining inversely

correlated with invasive phenotype of ERC breast tumors,

but on the other hand positively correlated with invasion

of ERK tumors.

This ER-dependent tumor repressor activity of FOXOs

can be explained, at least partly, by their role as the

mediators of crosstalk between ER and growth factor

receptor signaling. Several reports have recently suggested

a functional interaction between ER and FOXO family

members. Estrogen-activated ER binds to FOXO1,

FOXO3A, and FOXO4; which depending on the cellular

context, exhibit co-activator or co-repressor functions

on estrogen-responsive DNA regulatory elements

(Schuur et al. 2001, Zhao et al. 2001, Zou et al. 2008).

Interestingly, ER has also shown to interact with a

diverse number of FOX proteins including FOXE1 (Park

et al. 2012), FOXP1 (Halacli & Dogan 2015), and FOXA1

(Wright et al. 2014); suggestive of a conserved mechanism

of association between the receptor and the wider

forkhead family. The significance of the ER–FOX

interaction is highlighted by the role of FOXA1 as a

pioneer factor, which facilitates ER DNA-binding at

cis-regulatory elements within heterochromatin. Indeed,

FOXA1 expression is positively correlated with a good

prognosis of ERC breast cancers, probably because FOXA1

expression is indicative of a functional ER (reviewed

in depth by Tokunaga et al. (2014)).

Currently, no data exists to whether the potential

pioneer activity FOXOs (reviewed by Lalmansingh et al.

(2012)) can also modulate ER DNA-binding in breast

cancer. However, Morelli et al. (2010) demonstrated that

FOXO3A, functioning as a classical co-repressor of ER,

could exert a protective role in ERC breast tumors. In

agreement with this observation, targeted inhibition of

AKT isoform 2 activity in these cells inhibited ER-directed

transcription via FOXO3A activation.
Other molecular mechanisms of endocrine resistance

HER2 amplification is a well-established marker for

endocrine resistance (Arpino et al. 2004). A meta-analysis

showed that HER2C metastatic breast cancers are less

responsive to all forms of endocrine therapy (De Laurentiis

et al. 2005). The molecular mechanisms of HER2 mediated

hormone resistance are becoming clearer. HER2-

containing heterodimers, particularly HER2–HER3 hetero-

dimers, induce PI3K–AKT pathway activation (Tzahar et al.

1996), and HER2 amplification is positively correlated

with AKT activity in breast carcinomas (Stal et al. 2003,

Zhou et al. 2004, Tokunaga et al. 2006). However, !10% of
http://erc.endocrinology-journals.org q 2016 Society for Endocrinology
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ERC breast cancers are also HER2C. Thus, the underlying

resistance mechanism(s) for the majority of ERC breast

cancers remains to be elucidated.

Pre-clinical studies have implicated growth factor

signaling pathways in the estrogen-independent acti-

vation of ER. In addition to HER2, tyrosine receptor

kinases implicated in the development of endocrine

resistance include: epidermal growth factor receptor

(EGFR), insulin-like growth factor receptor 1 (IGF1R),

insulin receptor, receptor originated from nantes, and

fibroblast growth factor receptor 1 (Frogne et al. 2009,

McClaine et al. 2010, Turner et al. 2010, Fox et al. 2011). All

of these receptors converge on the PI3K–AKT signaling

pathway, hyper-activation of which promotes the

acquired estrogen-independent growth of ERC breast

cancer cells (Miller et al. 2010). They also activate the rat

sarcoma viral oncogene homolog (RAS)/ERK signaling

pathway, contributing to estrogen-independent ER acti-

vation; even in cultured breast cancer cells that are grown

in the presence of tamoxifen. Under these conditions,

ERK phosphorylates ER at serine 118 (Ser118), a site that

is normally phosphorylated in response to estrogen-

stimulation; itself an ERK-independent mechanism

(Kato et al. 1995, Bunone et al. 1996).

In addition to perturbed growth factor signaling,

another mechanism of endocrine resistance involves

the inhibition of transcriptional co-activators, such as

steroid receptor co-activator 1, that interacts with ER

(Shang & Brown 2002). Decreased interactions between

ER and the nuclear receptor co-repressor can also lead to

tamoxifen resistance (Lavinsky et al. 1998). Indeed, Shang

et al. (2000) showed that tamoxifen recruits co-repressors

to ER-responsive gene promoters, but not co-activators.

Autophagy, the process by which a cell degrades and

recycles damaged or unrequired organelles, has also

recently been revealed to play a central role in endocrine

resistance. The unfolded protein response (UPR) is an

evolutionary conserved stress-responsive pathway, acti-

vated when unfolded or misfolded proteins accumulate

within the cells endoplasmic reticulum. The master

regulator of ubiquitin specific peptidase (USP) signaling

is the protein chaperone glucose-regulated protein 78

(GRP78), which integrates signals from several pathways

to concurrently inhibit stress-induced apoptosis and

stimulate a prosurvival autophagic response (Cook et al.

2012, Clarke & Cook 2015). Elevated GRP78 expression

has been observed within all breast cancer molecular

subtypes, as compared with the levels of expression in

normal breast tissue (Cook et al. 2012). Within breast

cancer cells GRP78 controls the autophagic response via
Published by Bioscientifica Ltd.
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signaling through the 5 0-AMP-activated protein kinase

and mammalian target of rapamycin (mTOR) signaling

pathways (Cook et al. 2012). Cook et al. (2014) observed

that treatments such as tamoxifen and fulvestrant can

stimulate the pro-survival UPR and autophagy signaling

in breast cancer cells.
De-regulation of PI3K–AKT signaling in breast cancer

Constitutive activation of PI3K–AKT signaling is recog-

nized as a major driver of cancer progression. Dysregula-

tion of the pathway has been implicated in an extensive

range of human malignancies; including breast, ovarian,

head and neck, and colorectal cancer. It is also a central

player in the mechanisms leading to endocrine

resistance of breast cancer (Tokunaga et al. 2014). Several

causal mechanisms have been reported; all consequent

to DNA mutations in genes encoding principal com-

ponents of the pathway (see Fig. 1). The exact nature and

frequency of mutation is unique to each type of cancer

(Thorpe et al. 2015).

The PI3K–AKT pathway is extremely well charac-

terized and has been reviewed in considerable detail by

others (Fruman & Rommel 2014, Martini et al. 2014,

Thorpe et al. 2015). Briefly, the PI3K protein/lipid kinases

are grouped into classes I (which itself is further divided

into IA and IB), II, or III according to their structure and

specific substrate specificity. The best characterized of

these are class IA PI3Ks, which are heterodimeric; each

composed of a catalytic subunit (p110) and a regulatory

adaptor protein (p85). They function to transduce input

signals from a wide variety of upstream sources, such as

growth factor/hormone stimulated-receptor tyrosine

kinases (RTKs), G-protein coupled receptors, and also

oncogenic signaling molecules such as RAS.

The p110 catalytic subunit has three isoforms: p110a,

p110b, and p110d that are encoded for by three individual

genes; PIK3CA, PIK3CB, and PIK3CD respectively. The p85

regulatory subunit also has three isoforms: p85a, p55a,

and p110d which are also transcribed from three different

genes; PIK3R1, PIK3R2, and PIK3R3 respectively.

Following growth factor/hormone activation of a RTK,

the p85 subunit binds via its SH2-domain to the

phosphorylated-protein motifs of the RTK. This recruit-

ment has the effect of lifting p85-mediated inhibition of

the p110 subunit, allowing p85 to catalyze conversion of

phosphatidylinositol 4,5-bisphosphate (PIP2) into phos-

phatidylinositol 3,4,5-trisphosphate (PIP3). The tumor

suppressor gene PTEN encodes a phosphatase that

removes phosphate from PIP3; and thus functions as a
http://erc.endocrinology-journals.org q 2016 Society for Endocrinology
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negative regulator of the PI3K–AKT pathway. Another

phosphatase with tumor-suppressor function is inositol

polyphosphate-4-phosphatase, type II (INPP4B), the gene

product of which also negatively regulates the pathway, by

depleting cellular levels of PIP2. Upon generation, PIP3

functions as a secondary messenger, attaching to the

pleckstrin-homology-domain of proteins such as v-akt

murine thymoma viral oncogene homolog 1 (AKT) and

pyruvate dehydrogenase kinase isoform 1. PIP3 binding to

AKT targets this Ser/threonine (Thr) kinase to the cell-

membrane where it can be activated by phosphorylation

at Ser473 by mTOR, and then at Thr308 by phosphoinosi-

tide dependent kinase 1. AKT activation initiates cascades

of downstream phosphorylation events that impact on

several aspects of cellular behavior that are of relevance to

cancer; including cell cycle progression, enhanced chemo-

therapeutic resistance, elevated cell metabolism, increased

resistance to hypoxia, and tumor metastasis.

According to The Cancer Genome Atlas PIK3CA is

frequently mutated gene in breast cancer, present at a

frequency of 49 and 32% in ERC luminal A and B

subtypes; 42% of HER2-enriched, and 7% of basal-like

breast cancer subtypes. Other mutations impacting upon

PI3K–AKT pathway activity, such as PTEN mutation/loss

and INPP4B loss were also commonly found in all four

subtypes (Cancer Genome Atlas N 2012). Recent studies

have reported that alterations to the AKT3 gene (e.g. the

MAGI–AKT3 gene fusion), leading to constitutive AKT

activation, also occur in some ERC and triple-negative

breast cancers (Kirkegaard et al. 2010, Banerji et al. 2012,

O’Hurley et al. 2014).

The PI3K–AKT pathway can also be activated via

signaling crosstalk with the ER. The ER binds to the p85

regulatory subunit of PI3K, in an estrogen-dependent

manner, resulting in downstream activation of AKT

(Simoncini et al. 2000). The treatment of breast cancer

cells with E2 stimulates cellular proliferation via PI3K–AKT

pathway activation (Lee et al. 2005). Interestingly, this

activity was found to be ERa-dependent, while ERb

appears not to play a role.
The role of PI3K–AKT–FOXO signaling in breast cancer

Mechanisms of FOXO regulation Cancer associated

FOXO dysregulation activity can arise from genetic

mutations (chromosomal translocation; described above)

or through disruption of their transcriptional activity.

In-keeping with the pleiotropic functioning of FOXOs,

their activity is subjected to a variety of different

regulatory mechanisms depending upon the cellular
Published by Bioscientifica Ltd.
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context. These can be broadly divided into those which are

exerted at the transcriptional level, and those which

involve post-translational modifications.

Transcriptional regulation of FOXOs Recent studies have suggested

that the expression of FOXO1 and FOXO3A is subjected to

modulation at the gene-promoter level by the transcrip-

tion factor E2F1. Nowak et al. (2007) found that E2F1, in

a glioblastoma in-vitro model, induced the transcription

of both of FOXO1 and FOXO3A. Both gene promoters

contained evolutionary conserved E2F1 binding-sites, and

therefore, they are highly likely to be direct targets of E2F1.

Interestingly, the ER regulated E2F1 expression has been

associated with tamoxifen resistance in ERC breast cancer

cells (Montenegro et al. 2014).

FOXO gene transcription is regulated by nutrient

intake and insulin signaling in an in vivo insulin resistance

model. Reduced nutrient availability in an artificially

induced insulin-resistance state, stimulated transcription

of FOXO1, FOXO3A, and FOXO4 in rat hepatocytes

(Imae et al. 2003). Recently, observations of an in vivo

model of fasted blood glucose revealed the cAMP–protein

kinase A (PKA) stimulated transcriptional co-activator

p300 induces transcription of FOXO1 (Wondisford

et al. 2014).

Post-translational regulation of FOXO activity Post-translational

protein modification of FOXOs has been extensively

studied, and it is apparent the function of these factors

is subjected to multiple layers of regulation. Although,

apparently complex, FOXO post-translational regulation

appears to operate by modulating two complementary

mechanisms: i) altered FOXO subcellular localization and

ii) modulation of FOXO DNA-binding and/or association

with other DNA-binding proteins. The net action of these

processes can profoundly impact upon FOXO-regulated

gene transcription. Outlined below are the most exten-

sively characterized FOXO protein modifications:

Phosphorylation Brunet et al. (1999) discovered that FOXOs

were subject to regulation by the PI3K–AKT signaling

pathway. They demonstrated that AKT possesses high

binding affinity for the FOXO3A protein motif RXRXXS/T,

and upon binding to the FOXO factor, catalyzes the

phosphorylation of three specific amino-acids: Thr32,

Ser253, and Ser315. All FOXO proteins, with the exception

of FOXO6, contain evolutionary conserved variants of

these phosphorylation sites (see Fig. 2). The phosphory-

lated-FOXO3A isoform is subsequently translocated out of

the nucleus and sequestered in the cytoplasm. Each of the

three phosphorylation events contributes to this
http://erc.endocrinology-journals.org q 2016 Society for Endocrinology
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translocation by a different mechanism. Phosphorylated

Thr32 is directly involved in regulating the binding of

14-3-3 chaperone proteins (Brunet et al. 2002). The residue

Ser253 resides within a nuclear localization sequence

(NLS), and the addition of a negatively charged phos-

pho-group to this basic sequence physically disrupts the

signal, and inhibits the re-entry of cytoplasmic FOXOs

into the nucleus. In contrast, Ser315 phosphorylation

results in the unmasking of a nuclear export sequence

(NES), which mediates physical association with the

exportin chromosome region maintenance 1 (CRM1;

also known as exportin-1 or Xpo1 protein). Thus, cultured

cells treated with the CRM1 inhibitor leptomycin exhibit

predominant FOXO nuclear localization and this inhi-

bition of nuclear export is independent of FOXO

phosphorylation status (Brunet et al. 2002). The import-

ance of the NES is also highlighted by the behavior of

FOXO6, which is the only FOXO to lacks the NES, and

unlike the other three subfamily members; it is predomi-

nantly a nuclear protein (Jacobs et al. 2003).

Other inhibitory kinases The conserved RXRXXS/T protein

motif also serves as a binding-substrate for several other

kinases such as PKA, PKC, and serum and glucocorticoid-

induced kinase (SGK; Pearce et al. 2010). Thus, several

growth factors signaling converge on the FOXOs to

negatively regulate their function. Interestingly, in vitro

experiments utilizing dominant-negative mutant forms of

AKT or SGK, inhibiting their respective pathways, both

lead to nuclear accumulation of FOXOs; suggesting a non-

redundant role for at least some kinases in targeting

FOXOs to the cytoplasm (Brunet et al. 2001). It remains

unclear why such redundancy exists, but it may be the case

that the activity of each kinase is specific to a particular

physiological/cellular context.

ERK phosphorylates FOXO3A on the amino-acid

residues: Ser294, Ser344, and Ser425, and similarly to

AKT-mediated phosphorylation, these promote the cyto-

plasmic sequestration of the factor. However, an

additional consequence of these modifications is they

target the FOXO3A for proteasomal degradation. It has

been proposed that this may occur due to increased

interaction with the E3-ligase, MDM2 (Yang et al. 2008; see

‘Ubiquitination’ section).

The IkB kinase (IKK), a component of the NFkB

pathway, phosphorylating Ser644, appears to inhibit

FOXO3A activity in a similar manner (Hu et al. 2004).

This may be of particular relevance to breast tumori-

genesis, as constitutive activation of the kinase has been

linked to the disease. Furthermore, Chen et al. (2015a)
Published by Bioscientifica Ltd.

http://erc.endocrinology-journals.org
http://dx.doi.org/10.1530/ERC-15-0461


FOXO1

FOXO3

FOXO4

FOXO6

Post-translational modifications

151-2601

1

1

1

655

673

505

492

Forkhead domain

Nuclear import signal peptide 

Nuclear export signal peptide 

Phospho-serine

Phospho-threonine

Acetylated-lysine

148-257

92-201

79-188

32 253 315

28 193 258

24
256

319
262242 245

26 184

Figure 2

Location of post-translational modifications that regulate FOXO

transcriptional activity. A schematic representation of the four members of

the human FOXO family are shown with amino-acid positions of important
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have recently shown that activated-IKKb is required to

sustain the ‘stemness’ of breast cancer stem cells.

Casein kinase 1 (CK1) plays a role in cell differen-

tiation and its de-regulation has been shown to contribute

to cancer development. CK1 phosphorylates the amino

acid residues Ser318 and Ser321 of the FOXO protein, but

only following the prior phosphorylation of Ser315 by

SGK. In vitro experiments have shown that these phos-

phorylation events occur in a specific hierarchical fashion:

phosphorylation by SGK creates the consensus recog-

nition sequence motif for CK1 phosphorylation

(S/T(P)XXS/T) at Ser318, which in turn creates a second

consensus sequence for the CK1 catalysed phosphoryl-

ation of Ser321. These modifications are generally believed

to influence the rate of nuclear export of FOXOs,

potentially through differential interaction with com-

ponents of the nuclear export complex, though this

remains to be proven (Rena et al. 2002).

Dual specificity tyrosine phosphorylated and regulated kinase 1A Dual

specificity tyrosine phosphorylated and regulated kinase

1A (DYRK1A), a Ser/Thr kinase, catalyses the phosphoryl-

ation of Ser325, in a manner that appears to be

independent of SGK-and-CK1 kinase activity, and this
http://erc.endocrinology-journals.org q 2016 Society for Endocrinology
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acts to induce the nuclear accumulation of FOXOs.

DYRK1A mediated modifications also appears to occur

independently of PI3K–AKT activity. However, phos-

phorylation of Ser325 does seem to exhibit a synergistic

effect when occurring in concert with SGK-and-CK1-

mediated phosphorylation. This also may occur as the

result of further enhancement of the association of FOXOs

with the nuclear export complex; though this also needs

to experimentally verified (Gao et al. 2012).

Co-factor interactions The phosphorylation-directed binding

of 14-3-3 proteins can also negatively impact the ability of

FOXOs to interact with other transcriptional regulatory

proteins. FOXOs participate in several known transcrip-

tional complexes, such as: i) ER (Schuur et al. 2001, Zhao

et al. 2001); ii) p53 (Wang et al. 2008); and iii) CREB

binding protein (CBP)/p300. In the case of CBP/p300, the

phospho-Thr32/Ser253-isoform has been shown to have

lost the ability to physically associate with these transcrip-

tional co-activator proteins (Wang et al. 2009, 2012a), and

thus, this modification negates the transcriptionally

favorable chromatin remodeling that this protein associ-

ation generally promotes. CBP/p300 also functions to

acetylate the lysine residues within the FOX-domain, thus
Published by Bioscientifica Ltd.
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repressing FOXO DNA-binding activity (see ‘FOXO acetyl-

ation’ section).

Activation by kinases There are some reported

phosphorylation events that have a positive impact on

FOXO activity. For instance, protein kinases such as MST1

(Lehtinen et al. 2006), JNK (Essers et al. 2004), and CDK1

(Yuan et al. 2008), promote nuclear accumulation of

FOXOs, generally in response to signals arising from

cellular stress (e.g. oxidative stress).

FOXO acetylation The acetylation of FOXOs changes

their transcriptional activity. The acetylation-status of a

given FOXO is the product of an equilibrium between the

action of histone deacetylases (HDACs), such as silent

information regulator 1 (SIRT1) and SIRT2; and histone

acetyl transferases (HATs), such as CBP/p300 (Daitoku

et al. 2011).

Acetylation by HATs deactivates FOXOs through two

sequential steps. First, when FOXO are acetylated at three

conserved lysine residues (corresponding to Lys242,

Lys245, and Lys262 of FOXO1; see Fig. 2), their DNA

binding capacity is dramatically reduced (van der Heide &

Smidt 2005, Matsuzaki et al. 2005). Secondly, the

acetylated isoform of FOXO has increased potential as an

AKT substrate, and it is thus ‘sensitized’ to PI3K–AKT

induced translocation out of the nucleus.

The deacetylation of FOXOs is performed by both class

I HDACs and the class III, NAD-dependent histone HDACs

(members of the Sirtuin protein family). The effect of

SIRT1 activity on the transcription regulatory function of

FOXOs varies for different subsets of FOXO-regulated

genes. It appears that some FOXO-regulated genes,

especially genes related to cell-cycle control and senes-

cence, are up-regulated; while pro-apoptotic genes are

down-regulated. For instance, SIRT1-mediated acetylation

increases the ability of FOXOs to induce cell-cycle arrest

and promote resistance to oxidative stress (e.g. up-regula-

tion of p27KIP1 and GADD45; Daitoku et al. 2004,

Kobayashi et al. 2005). In contrast, SIRT1 negatively

regulates the FOXO-induced expression of pro-apoptotic

genes. Wang et al. (2015), investigating the role of SIRT1

in an in vitro oxidative stress-induced apoptosis model,

observed that a decrease in FOXO3A-acetylation accom-

panied a corresponding increase in ubiquitination (see

‘Ubiquitination’ section). The subsequent degradation of

the protein leads to down-regulation of FOXO3A-

regulated pro-apoptotic genes. Also, in an in vitro mouse

myoblast oxidative stress model, the expression of

FOXO1, FOXO3A, and FOXO4 were all found to be
http://erc.endocrinology-journals.org q 2016 Society for Endocrinology
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indispensable for anti-apoptotic effects of SIRT1 activity

(Hori et al. 2013). The underlying mechanisms responsible

for this selective effect of SIRT1 on FOXO3A-regulated

genes are not understood.

Other members of SIRT family like SIRT2 and SIRT3

can also interact and deacetylate FOXOs (Jacobs et al.

2008, Sundaresan et al. 2009, Wang et al. 2012b). Also,

class I HDAC4/5 has been observed to recruit the

deacetylase activity of HDAC3 to FOXO, which results in

activation of FOXO-regulated genes (Mihaylova et al.

2011).

Ubiquitination Expression levels of FOXOs are also

governed by ubiquitin-regulated proteolysis. The PI3K–

AKT, NFkB, and ERK signaling pathways have all been

implicated in regulating this process. The E3-ubiquitin

ligase S-phase kinase-associated protein 2 (SKP2) is

recruited by the AKT-phosphorylated Ser256 of cyto-

plasmic FOXO1 and proteasomal-mediated degradation

of FOXO1 can be rapidly induced in response to PI3K–AKT

pathway stimulation (Huang et al. 2005). In contrast, the

NFkB appears to be the relevant signaling pathway for

targeting FOXO3A to the proteasome. Hu et al. (2004)

found that the IKKb mediated phosphorylation of

FOXO3A at Ser664, targeted the protein for ubiquitin-

dependent proteolysis; however, as or yet, the ubiquitin

responsible remains to be identified.

Another E3-protein ligase MDM2 is activated by

ERK-pathway activity, to induce both mono- and poly-

ubiquitination of FOXOs. Interestingly, these two

modifications of FOXO have very different effects on

their function. The monoubiquitinated isoform of FOXO

cannot be acetylated, thus the modification maintains

the factor in an in-active, but ‘transcriptionally poised’

state (van der Horst et al. 2006, Brenkman et al. 2008). It is

thought that this form of the protein can be rapidly

activated, in response to certain stress stimuli (e.g.

oxidative stress), most likely through the action of the

deubiquitinating enzyme USP7/herpesvirus-associated

ubiquitin-specific protease (van der Horst et al. 2006). In

contrast, polyubiquitination targets FOXO proteins for

proteasome-mediated degradation, and so, long-term

inhibition of FOXO transcriptional activity (Fu et al.

2009). Activation of the PI3K–AKT pathway has been

implicated in stimulating FOXO proteolysis in several

different cellular contexts (Matsuzaki et al. 2003, Plas &

Thompson 2003, Aoki et al. 2004). In addition to AKT,

other kinases such as IKK and ERK have been observed to

promote the proteolysis of FOXO3A (Hu et al. 2004, Yang

et al. 2008).
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It has been proposed, that in response to certain

cellular conditions (e.g. high expression levels of MDM2),

monoubiquitination of FOXO4 can promote its sub-

sequent polyubiquitination by SKP2.
Therapeutics targeting the PI3K–AKT–FOXO signaling axis

Clinical interventions that are able to restore FOXO tumor

suppressor function, could potentially be used as thera-

peutic strategies to overcome endocrine resistance (Hill

et al. 2014a). To this end, potential drug targets that

warrant future investigation include: i) growth factor

signaling pathways that converge on, and negatively

regulate FOXO; ii) the cellular transportation machinery

responsible for the nuclear/cytoplasmic shuttling of

FOXOs; iii) proteasomes that target FOXOs for

degradation; and iv) the DNA-binding activity of the

FOXO proteins themselves (see Fig. 3).
PI3K–AKT pathway inhibition

Preclinical studies As has been described, numerous

studies have implicated PI3K–AKT–FOXO dysregulation as

possessing a significant contributory role in the develop-

ment of endocrine resistance. This has spurred the trial of

endocrine/PI3K-inhibition combination therapies, and

initial pre-clinical studies have generally yielded encoura-

ging results in terms of the potential utility of these

strategies to prevent or overcome resistance.
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Figure 3

Potential therapeutic targets that could be used to restore FOXO signaling

activity in breast cancer cells: (1) kinase signaling pathways that promote

nuclear export and sequestration of FOXOs in the cytoplasm; (2) chaperone
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Unfortunately, the examination of FOXO activity was

beyond the scope of the majority of these studies; though

it is likely that future experiments will demonstrate that

FOXOs have a contributory role in many of the positive

effects observed.

The simultaneous treatment of ERC/HER2C breast

cancer cells (the BT-474 cell-line) with the anti-HER2

antibody trastuzumab (Herceptin) and tamoxifen, syner-

gistically inhibits their growth in vitro, and also within a

xenograft mouse model (Argiris et al. 2004, Wang et al.

2005). Targeting HER2 was found to potently inhibit both

the PI3K–AKT and ERK signaling pathway in these

experiments. Another pre-clinical study found that treat-

ing tamoxifen-resistant breast cancer cells (MCF7 cells

expressing constitutively active AKT) with the mTOR

inhibitors CCI-779 (temsirolimus) or rapamycin, restored

the sensitivity of these cells to tamoxifen-induced growth

inhibition (deGraffenried et al. 2004). The mTOR1

complex is a downstream target of PI3K–AKT signaling;

directing cellular metabolism and growth, and its dysre-

gulation is frequently implicated in human malignancy

(Dibble & Cantley 2015).

Miller et al. (2010) observed that their in vitro acquired

resistance model is heavily reliant on PI3K–AKT–mTOR

signaling. They created several long-term estrogen depri-

vation (LTED) breast cancer cell-lines to study the

mechanisms of escape from E2 dependent growth.

Molecular characterization of the LTEDs revealed signi-

ficantly increased AKT and mTOR activity compared with
O
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proteins such as 14-3-3 and exportins; (3) proteasomal degradation of

FOXOs; and (4) FOXO interaction with DNA-promoter targets and

transcriptional machinery.
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the corresponding parental cell-lines. Furthermore, the

PI3K/mTOR dual inhibitor, BEZ235, was extremely effec-

tive at inducing growth arrest and apoptosis of LTEDs, and

also effectively prevented the emergence of new resistant

cancer cell populations (Miller et al. 2010). In a subsequent

study, Miller et al. (2011) observed an E2-independent ER

transcriptional activity; that directs the cell-cycle pro-

gression of both LTEDs and primary cultures of AI treated

breast tumors. Combined down-regulation of ER (fulves-

trant) and PI3K inhibition with BKM120 (Buparlisib)

induces a regression of tumors comprising these cells

(Miller et al. 2011).

To date, only a small number of studies have directly

examined FOXO activity in response to PI3K inhibition

within breast cancer cells. Recently, Hill et al. (2014a,b)

reported that the compound ETP-45658, a pyrazolo-

pyrimidine derivative that is a PI3K inhibitor, potently

inhibited the growth of breast cancer cells via cell-cycle

arrest (observed in MCF7 and MDA-MB231 breast cancer

cell-line models). The authors observed treatment of

MCF7 cells inhibited and increased phosphorylation

(Ser253) and nuclear accumulation of FOXO3A, respect-

ively, and specifically induced a FOXO-dependent tran-

scriptional response enriched for cell-cycle related genes

(Hill et al. 2014b). Chu et al. (2015) found that treatment of

human breast cancer cells with a 2-aryl benzimidazole

compound, that likely targets EGFR and HER2 signaling

activity, inhibited the phosphorylation of FOXO1 (Ser319

and Ser256) and FOXO3A (Thr32 and Thr24), promoting

the translocation of these FOXO proteins from the

cytoplasm into the nucleus.

Although there is little data in the context of breast

cancer, restoration of FOXO activity by PI3K–AKT inhi-

bition has also been observed in the treatment of a variety

of other human cancers. For instance, treatment of

chronic myeloid leukaemia with the pan tyrosine kinase

inhibitor imatinib (Gleevec), inhibited PI3K–AKT signaling,

and effectively restored FOXO3A transcriptional activity

(Fernandez de Mattos et al. 2004, Essafi et al. 2005). A similar

effect is also observed in osteosarcoma cells treated with the

PI3K–AKT inhibitor Grifolin (Jin et al. 2007).

Clinical trials Clinical trials have also shown the

efficacy of PI3K–AKT pathway inhibition as a strategy to

overcome endocrine resistance. Two trials have investi-

gated the utility of treating ERC/HER2C metastatic breast

cancers with combination of anastrozole (AI) treatment

and HER2 inhibition; with either trastuzumab or latatinib.

In both trials, progression-free survival (PFS) was found to
http://erc.endocrinology-journals.org q 2016 Society for Endocrinology
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be superior in the combination arms (Johnston et al. 2009,

Kaufman et al. 2009).

More recently, some large clinical trials have explored

whether targeting mTORC1 is of benefit to patients with

ERC breast tumors; that have relapsed following previous

AI treatment. In the tamoxifen plus RAD001 phase-II trial,

metastatic breast cancer patients were randomized to

tamoxifen combined with the mTOR inhibitor everolimus

(formerly known as RAD001) or tamoxifen alone

(Bachelot et al. 2012). Statistically significant improve-

ments in PFS and clinical benefit were seen in the

combination arm (8.6 months vs 4.6 months with

tamoxifen alone, hazard ratio (HR) 0.54). Of note,

subgroup analysis revealed that the benefit received from

combination therapy is only seen in patients with

acquired resistance.

In the breast cancer trials of oral everolimus 2

(BOLERO-2) phase-III trial, post-menopausal with ERC

HER2K advanced breast cancer were randomized to groups

receiving everolimus or placebo, combined with the AI

exemestane (Baselga et al. 2012, Yardley et al. 2013). The

final study results (median follow-up of 18 months) showed

that everolimus combined with the AI improves PFS in

patients with ERC HERK cancers that had been previously

treated with non-steroidal AIs (letrozole or anastrozole).

The primary end-point PFS was more than doubled in the

combination treatment arm (7.8 months vs 3.2 months in

the combination and exemestane alone arms, respectively;

HR 0.89; 95% CI 0.38–0.54; P!0.0001; Yardley et al. 2013).

Furthermore, subgroup analysis showed that clear

improvement in PFS in elderly patients (improved median

PFS by 2.82 months in patients O65 years of age, HR 0.59;

and by 5.26 months in patients R70 years of age, HR 0.45;

in the combination and exemestane alone arms respect-

ively), an outcome of particular clinical importance

considering the typical age distribution of women with

ERC advanced breast cancer (Pritchard et al. 2013).

However, despite being generally well-tolerated, there

are still some significant toxicity issues caused by ever-

olimus treatment. Commonly reported symptoms include

fatigue, stomatitis, rashes, hyperglycemia, hypolipidemia,

myelosuppression, and diarrhea. Also, 3% of patients have

reported non-infectious pneumonia which appears to be

immunologically mediated. These are typical class-effects

associated with mTOR inhibitors. Fortunately most of

these adverse effects are not life-threatening and can be

managed by proper prevention and management

strategies (reviewed by Rugo (2015)).

These data are generally encouraging that strategies

that employ simultaneous targeting of PI3K–AKT and ER
Published by Bioscientifica Ltd.
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pathways may be of benefit to breast cancer patients with

acquired resistance. Indeed, on the basis of the BOLERO-2

study, FDA approval was granted for the use of everolimus

in combination with exemestane for the treatment of ERC

HERK advanced breast cancer that have progressed during

treatment with either letrozole or anastrozole. However,

since then, analysis of the overall survival data has

revealed that for this secondary end-point of the study,

there was no significant difference between the treatment

arms (Piccart et al. 2014). This lack of a robust clinical

response could be, as is often the case for PI3K–AKT

targeting therapeutics, the result of cellular resistance

mechanisms to PI3K–AKT inhibition.

Resistance mechanisms to PI3K–AKT inhibi-

tion Both clinical and pre-clinical studies have ident-

ified several different mechanisms by which resistance to

PI3K–AKT–mTOR inhibition can arise. These include

feedback activation of AKT, increased expression of RTKs

and cross-talk with other growth-promoting pathways

(reviewed in detail by Thorpe et al. (2015)).

Of particular relevance to the subject of this review,

restored FOXO activity, following AKT inhibition, directly

mediates the up-regulation of HER3, IGF1R, and insulin

RTK gene expression (Chandarlapaty et al. 2011).

Recently, Bihani et al. (2015), investigated the

mechanisms of acquired resistance of breast cancer cells

to everolimus. The authors demonstrated that breast

cancer cell-lines, having acquired everolimus resistance,

exhibit bromo domain containing protein 4 (BRD4)-

mediated up-regulation of the MYC gene. Up-regulation

of MYC expression in ERC antiestrogen resistance breast

cancer cells triggers a pro-survival autophagic adaptation

in glucose deprived culture conditions (Shajahan-Haq

et al. 2014). As has already been discussed, autophagy

appears to be a central player in mechanisms of endocrine

resistance. Promisingly, it is possible to pharmacologically

inhibit BRD4, and doing so has been shown to overcome

the resistance of the cancer cells to mTOR1 inhibition

(Bihani et al. 2015).

Concerning the feedback activation of AKT, the Src/

c-Abl, multikinase-inhibitor dasatinib, has been shown to

effectively block AKT activation following mTOR inhi-

bition in several breast cancer cell lines (Yori et al. 2014).

Furthermore, the combination treatment of dasatinib and

rapamycin has a synergistic effect upon tumor regression

in mouse models, accompanied by a reduction in

pulmonary metastasis as well as an increase in time to

tumor recurrence (Yori et al. 2014).
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Other potential therapeutic targets Although the

targeting of PI3K–AKT still presents the most promising

strategy to restore FOXO activity, acquired resistance to

PI3K–AKT inhibition currently presents a significant

barrier that needs to be overcome. The current trend of

trialling combination therapies, whereby PI3K–AKT is

inhibited in conjunction with additional molecular

targets, may prove effective in maximizing the clinical

efficacy of the PI3K inhibitors. Fortunately, the complex

cellular regulation of FOXO factors summarized in this

review, presents a number of additional molecular targets

that could be potentially investigated.
Nuclear export machinery

Nuclear export of FOXOs can be blocked by inhibitors of

the 14-3-3 chaperone protein family and related exportins.

Dong et al. (2007) demonstrated that treatment of an

in vitro leukemia cell-model with the peptide R18, down-

regulated 14-3-3 protein expression, which in turn leads to

increased nuclear accumulation of FOXO3A; and restored

transcription of its anti-proliferative targets p27kip1 and

Bim. More recently, Mori et al. (2014) have developed

novel compounds that also interact and inhibit the 14-3-3

chaperone proteins, increasing the possibility that even-

tually some compounds may be suitable for clinical use.
Proteasome

Inhibiting the proteasome-mediated degradation of

FOXOs could represent an interesting strategy to restore

their cellular levels. However, to date, there are no studies

on this topic available in the literature.

FOXOs

Transcription factors are predominantly located in the

nucleus and they do not possess enzymatic activity. For

these reasons they have historically been considered to be

‘undruggable’ molecular targets. However, a growing

number of studies have challenged this assumption.

Improved understanding of transcription factor biology,

coupled with improved drug design and delivery, make

transcription factors attractive and realistic alternative drug

targets. This may be particularly useful in clinical scenarios

where targeting kinase signaling pathways in cancer cells

have met with limited efficacy (Rodon et al. 2013).

Although no examples of directly targeting FOXOs

exist, attempts at targeting other members of the FOX

family have been reported. Notably, Bhat et al. (2009)
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identified two thiazole antibiotic compounds, siomycin-A

and thiostrepton, that selectively bind to and inhibit the

transcriptional activity of the oncogenic FOXM1 protein in

in vitro cancer cell-line models. Although the poor water

solubility of these compounds (Zhang & Kelly 2012) make

them of limited clinical use; nevertheless these observations

have propelled a search for other small molecule inhibitors

of FOXM1 that can be used safely (Chen et al. 2015b).
A need for caution

It is important to consider that FOXOs are regulators of

cellular stress resistance mechanisms, and in at least some

circumstances, such treatments may also increase resist-

ance to chemotherapeutics. Therefore, it is crucial to fully

characterize FOXO-regulated transcriptional programmes

in specific disease-states; to identify those which would be

most suitable for targeted reactivation of FOXO tumor

suppressor function.
Conclusion

In conclusion, the dysregulation of FOXO factors has

emerged as a key molecular feature of endocrine resistance

mechanisms. Both pre-clinical and clinical research has

shown the promising potential of targeting the PI3K–AKT

pathway; as a therapeutic strategy to restore hormone-

sensitivity to resistant breast tumors. Furthermore, restor-

ation of FOXO tumor suppressor appears to be a key player

in this process. However, PI3K–AKT inhibition may not

turn out to be the best approach. As has been discussed,

cancer cells can utilize a multitude of different resistance

mechanisms to acquire resistance to PI3K–AKT inhibition.

Although, preclinical experiments show promising data

with regard to blocking PI3K–AKT resistance pathways, it

remains to be ascertained whether such strategies will

translate into superior clinical efficacy. Therefore, one of

the aims of this review was to provide a generalized

overview of the multiple interconnected regulatory layers

that impact upon FOXO transcriptional activity. Further

understanding these processes may identify future mol-

ecular targets that can allow clinicians to manipulate

FOXOs in a more therapeutically targeted manner.
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