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Abstract
The cancer stem cell model proposes that tumors have a hierarchical organization in which

tumorigenic cells give rise to non-tumorigenic cells, with only a subset of stem-like cells able

to propagate the tumor. In the case of prostate cancer, recent analyses of genetically

engineered mouse (GEM) models have provided evidence supporting the existence of cancer

stem cells in vivo. These studies suggest that cancer stem cells capable of tumor propagation

exist at various stages of tumor progression from prostatic intraepithelial neoplasia (PIN) to

advanced metastatic and castration-resistant disease. However, studies of stem cells in

prostate cancer have been limited by available approaches for evaluating their functional

properties in cell culture and transplantation assays. Given the role of the tumor

microenvironment and the putative cancer stem cell niche, future studies using GEM models

to analyze cancer stem cells in their native tissue microenvironment are likely to be highly

informative.
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Introduction
For the past 70 years, androgen-deprivation therapy has

remained the mainstay of treatment for prostate cancer.

Although most prostate cancers initially respond to

androgen deprivation, many will ultimately progress to

lethal castration-resistant disease. The widespread usage of

next-generation anti-androgen agents continues to high-

light the clinical significance of the emergence of

treatment-resistant disease. Thus, understanding the

molecular mechanisms that promote tumor propagation

during the progression of prostate cancer to castration-

resistance is of fundamental importance for the develop-

ment of reliable biomarkers and effective treatments.

Studies using genetically engineered mouse (GEM)

models have revealed that the normal prostate contains

castration-resistant stem/progenitor cells that retain their

stem cell properties after androgen deprivation. These

findings raise the possibility that similar stem cell

populations that resist castration may also exist in prostate
tumors and contribute to the emergence of castration-

resistant disease. Here, we review findings from studies

using GEM models to identify cancer stem cells in prostate

cancer.
Stem/progenitor cells in the normal prostate
epithelium

In both the mouse and human adult prostate epithelium,

there are three primary cell types, corresponding to

luminal cells, basal cells, and neuroendocrine cells,

which can be distinguished by morphology as well as

marker gene expression (Shen & Abate-Shen 2010). In

particular, luminal epithelial cells express cytokeratins 8

(CK8) and CK18, as well as high levels of androgen

receptors (ARs), whereas basal cells express p63, CK5,

CK14, and low levels of AR. Luminal cells also produce

secretory proteins such as prostate-specific antigen (PSA)
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in humans and probasin in mice. The rare neuroendocrine

cells are epithelial cells that display neuronal-like pro-

cesses and express neural markers such as synaptophysin

and chromogranin A (Abrahamsson & di Sant’Agnese

1993, Terry & Beltran 2014). Finally, a population of

basally localized cells that co-express luminal and basal CK

are termed ‘intermediate’ cells (De Marzo et al. 1998, Xue

et al. 1998), but whether these cells constitute a distinct

functional cell type remains unclear.

Following androgen deprivation by surgical or

chemical castration, the prostate epithelium regresses,

with extensive apoptosis of luminal cells (Evans &

Chandler 1987, Isaacs et al. 1992). However, on re-

administration of androgens, the mouse prostate can

regenerate to its original size and is histologically

indistinguishable from the hormonally intact state.

Importantly, the mouse prostate can undergo multiple

rounds of regression and regeneration in response to

androgen deprivation and restoration, indicating the

existence of a castration-resistant stem cell population

within the regressed prostate epithelium (Isaacs 1985,

Tsujimura et al. 2002). Notably, an analysis during serial

regression and regeneration of BrdU-label retaining cells,

which are presumed to be enriched for stem/progenitor

cells, showed that these label-retaining cells are highly

enriched in both basal and luminal populations in the

proximal region of the prostate, near the junction with the

urethra (Tsujimura et al. 2002).

To date, there is substantial evidence supporting the

existence of stem/progenitor activity in both the basal as

well as luminal compartments, with the results potentially

being assay-dependent (Tsujimura et al. 2002, Lawson et al.

2007, Goldstein et al. 2008, Wang et al. 2009, 2013, Chua

et al. 2014, Karthaus et al. 2014). Lineage-tracing analyses

of prostate organogenesis have shown the existence of

multipotent basal progenitors that generate basal, lumi-

nal, and neuroendocrine progeny, as well as unipotent

luminal progenitors that only generate luminal progeny

(Ousset et al. 2012, Pignon et al. 2013). During neonatal

development, the differentiation of basal progenitors into

luminal cells appears to proceed through a transitional

intermediate cell state (Ousset et al. 2012). In contrast, the

adult prostate epithelium is mostly maintained by

unipotent luminal and basal progenitors (Choi et al.

2012, Lu et al. 2013, Wang et al. 2013). Similarly, the

luminal and basal compartments are also thought to be

largely independent during androgen-mediated regen-

eration (Liu et al. 2011, Choi et al. 2012, Wang et al.

2013). However, luminal as well as basal bipotential

populations have also been identified in regenerating
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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prostate epithelium. Notably, a rare Nkx3.1-expressing

castration-resistant luminal population (CARN) is bipo-

tential and can self-renew during androgen-mediated

regeneration (Wang et al. 2009). Recent studies have also

suggested the existence of bipotential basal progenitors

that undergo asymmetric cell divisions to generate

luminal and basal daughter cells during regeneration

(Wang et al. 2013, 2014a, 2015, Lee et al. 2014).

Interestingly, the fates of daughter cells from a dividing

basal progenitor are correlated with mitotic spindle

orientation, as asymmetric divisions occur when the

spindle is oriented vertically relative to the basement

membrane (Wang et al. 2014a).

Other approaches for identifying stem cell popu-

lations in the normal WT prostate epithelium have

identified multipotent basal cells using cell culture assays

as well as renal graft methods that involve the trans-

plantation of epithelial cells together with supporting

urogenital mesenchyme (Xin et al. 2003, Lukacs et al.

2010). Initial studies used flow sorting to show that cells

expressing high levels of Sca1 are enriched in the proximal

prostate and display stem/progenitor properties in culture

and in graft assays (Burger et al. 2005, Xin et al. 2005, Goto

et al. 2006). Subsequent studies have further defined a

population of LinKSca-1CCD49fhigh (LSChigh) cells that

displays stem-like properties and can be further enriched

using the Trop2 marker (Lawson et al. 2007, Goldstein

et al. 2008, Lukacs et al. 2010). Notably, the LSChigh

population consists of basal cells (Mulholland et al. 2009,

Wang et al. 2013), which may be consistent with the

plasticity of basal cells observed in ex vivo assays as well as

in vivo models of prostate cancer and inflammation (Choi

et al. 2012, Lu et al. 2013, Wang et al. 2013, Kwon et al.

2014a).
Identification of putative cancer stem cells
in prostate cancer

In the cancer stem cell model, tumors contain distinct cell

populations that differ in their genetic/epigenetic features

and thus display intratumor heterogeneity. The model

proposes that these cell populations are functionally

distinct, such that tumorigenic stem cells can give rise to

non-tumorigenic cells, with only the stem cell population

able to self-renew and thereby propagate the tumor. Thus,

cancer stem cells can behave in an analogous manner to

normal stem cells in an untransformed tissue, except that

their proliferation and differentiation are dysregulated.

In principle, this hierarchical organization of tumors has

important therapeutic implications. If only cancer stem
Published by Bioscientifica Ltd.
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cells possess tumor-propagating abilities, then only this

population would need to be targeted for therapy.

However, if most or all tumor cells possess tumor-

propagating abilities, then every tumor cell would need

to be eliminated.

While the cancer stem cell model is conceptually well

defined, there are substantial experimental challenges

associated with investigating the validity of this model for

a given tumor. To assay their functional differences, both

cancer stem cell and non-cancer stem cell populations

must be identified, and most studies to date have isolated

these cell populations for ex vivo analyses using cell culture

and graft assays. In the case of solid tumors, tumor cells are

generally dissociated using mechanical and/or enzymatic

methods and sorted by flow cytometry using cell surface

markers that enrich for putative cancer stem cells.

Following their isolation, the putative cancer stem cells

can be compared with non-stem cells from the same

tumor for their functional activity.

Many cancer stem-like cells that have been identified

to date express similar markers as normal non-cancerous

stem cells. However, cancer stem cells may or may not be

related to a normal stem cell, which may depend in part

on the cell of origin of a tumor, which is defined as the

normal untransformed cell type from which the tumor

arises. In many tumor types, the cell type of origin

corresponds to a normal stem cell, but there is also

substantial evidence for cells of origin that are not

stem/progenitor cells (Visvader 2011, Blanpain 2013).

Thus, if the cell type of origin is not a stem cell, it is

conceivable that the putative cancer stem cell derived

from it might not share specific markers with normal

tissue stem cells. In studies of the mouse and human

prostate, it is currently unresolved whether luminal cells

or basal cells, or both, may serve as cells of origin

(Goldstein et al. 2010a, Lawson et al. 2010, Choi et al.

2012, Lu et al. 2013, Wang et al. 2013), although lineage-

tracing studies using multiple GEM models indicate that

luminal cells are generally favored as the cell of origin

(Wang et al. 2014b).

Whether stem-like cells that function to maintain and

propagate tumors exist in prostate cancer, and whether

such cells display basal-like or luminal-like properties, has

been a topic of great interest (Goldstein et al. 2010b,

Maitland et al. 2011, Wang & Shen 2011, Chen et al. 2013).

Notably, most prostate tumors display a luminal epithelial

phenotype, because prostate adenocarcinoma is identified

histologically by an absence of basal cells (Brawer et al.

1985, Wojno & Epstein 1995, Weinstein et al. 2002). The

luminal phenotype of prostate cancer is consistent with
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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the hypothesis that stem cells should have luminal

properties but does not exclude the possibility that rare

stem cells with basal features may exist. Furthermore, as

may be the case for the normal prostate, it is conceivable

that multiple stem-like populations may exist in prostate

tumors.

Finding robust and reproducible methods to assess the

activity of prostate cancer stem cells has been a principal

challenge in the field. Both cell culture-based assays and

transplantation assays have been used to assess stem/

progenitor activity (Shibata & Shen 2013) (Fig. 1). A major

approach that has been utilized for assaying prostate

cancer stem cell activity has been the prostasphere assay,

a three-dimensional culture method in which cells are

suspended in a Matrigel matrix together with prostate

epithelial growth (PrEGM) media, which allows cells to

self-renew and differentiate (Lawson et al. 2007, Xin et al.

2007, Lukacs et al. 2010). In addition, tumor propagation

can be evaluated by orthotopic, intravenous, or sub-

cutaneous transplantation into immunocompromised

animals in the absence of exogenous stromal tissue or in

combination with urogenital sinus mesenchyme in renal

grafts (Lukacs et al. 2010, Lawrence et al. 2013, Shibata &

Shen 2013). However, both methods have been severely

limited for analysis of primary human patient samples

because it has not been possible to culture primary tumor

samples using the prostasphere assay (Garraway et al.

2010). Furthermore, it has been difficult to perform high

efficiency xenografts using primary prostatectomy tissue

(Li et al. 2009, Toivanen et al. 2013), perhaps due to the

generally indolent phenotype of most prostate tumors.

Another challenge for the analysis of cancer stem cells

arises from the selective pressures experienced by clones

within a tumor during cancer progression, as individual

clones accumulate distinct genetic and/or epigenetic

changes (Greaves & Maley 2012, Kreso & Dick 2014).

Such mutations can be either neutral or advantageous,

resulting in the expansion of certain clones and the

reduction of others, leading to clonal evolution of

the tumor. In prostate cancer, androgen-deprivation

therapies lead to clonal reduction and provide selective

pressures such that castration-resistant clones can become

dominant (Fig. 2). As tumors evolve, the cancer stem

cells may themselves change genotypically and phenoty-

pically (Anderson et al. 2011, Greaves & Maley 2012).

Thus, clonal evolution may alter the phenotype and

functional properties of cancer stem cells during tumor

progression, which may create difficulties for experi-

mental interpretation.
Published by Bioscientifica Ltd.
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Figure 1

Assays for cancer stem cells from genetically engineered mouse (GEM)

models of prostate cancer. Prostate tumor cells from GEM models can be

dissociated and flow sorted to assay for tumor propagation in cell culture

or by transplantation into immunodeficient mice. The fate of candidate

cancer stem cells can be also directly assessed by in vivo lineage tracing.
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GEM models of prostate cancer

Over the past 20 years, numerous GEM models have been

developed that model various stages of prostate cancer

progression, from the precursor state known as prostatic

intraepithelial neoplasia (PIN) to adenocarcinoma as well

as advanced metastatic and castration-resistant disease.

These GEM models usually incorporate inactivation of

tumor suppressor genes such as Nkx3.1, Pten, and Trp53

and/or overexpression of oncogenes such as c-Myc, Erg,

and K-ras (Shappell et al. 2004, Irshad & Abate-Shen

2013, Ittmann et al. 2013). Notably, alterations such as
S
Cell of origin

Cancer stem cell

Oncogenic
transformation

Tumor heterogeneity Clonal evolut

Figure 2

Clonal evolution of cancer stem cells in prostate cancer. Intratumor

heterogeneity in prostate tumors increases as tumor cells accumulate

mutations. Distinct clones within the tumor are indicated by different

colors. Although most prostate tumors respond to androgen-deprivation

therapy, as shown by the loss of some clones (blue and green) and

reduction of others (yellow), they may contain castration-resistant stem

http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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down-regulation of NKX3.1, mutation of Pten, and

increased expression of ERG are frequently observed in

human prostate cancers (Taylor et al. 2010, Barbieri et al.

2012, Baca et al. 2013, Robinson et al. 2015), and

consequently these models may be relevant for studies of

prostate tumorigenesis.

Although many GEM models of prostate cancer have

been developed, it is important to note that some features

of the human prostate are intrinsically difficult to model

in mice. In particular, the mouse prostate is comprised of

distinct anterior, ventral, dorsal, and lateral lobes, whereas
S S
Androgen
deprivation

ion Tumor regression Castration-resistance

cells (indicated by ‘S’) that can survive androgen deprivation and

propagate castration-resistant prostate cancer. As the clonal architecture of

the tumor evolves during progression, depicted by the emergence of

castration-resistant clones (orange and red), the cancer stem cells that

propagate the tumor may also evolve.
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the human prostate lacks overt lobular structure. Instead,

the human prostate displays a zonal architecture at the

histological level, being composed of peripheral, tran-

sition, and central zones, with most prostate cancers

originating in the peripheral zone (McNeal et al. 1988). In

certain GEM models, the tumor phenotype may vary

between prostate lobes, but overall there does not appear

to be a specific lobe that more accurately recapitulates

human prostate cancer (Ittmann et al. 2013).

Several additional limitations of GEM models of

prostate cancer reflect the current state of the art and are

likely to be overcome by future technical improvements.

At present, many current GEM models utilize androgen-

dependent promoters, frequently the Probasin promoter or

a modified derivative such as the ARR2PB promoter used

in the commonly used PB-Cre4 driver (Wu et al. 2001).

However, the use of such androgen-dependent promoters

has posed a challenge for the modeling of the emergence

of castration-resistant disease, because androgen depri-

vation eliminates driver expression (Irshad & Abate-Shen

2013). Furthermore, it has been relatively difficult to

model metastatic prostate cancer, particularly bone

metastasis, which is a major metastatic site in human

patients (Irshad & Abate-Shen 2013). Finally, the frequent

chromosomal rearrangements and extensive intratumoral

heterogeneity observed in advanced human prostate

cancers are not observed in many GEM prostate cancer

models (Bianchi-Frias et al. 2015, Wanjala et al. 2015).

However, a recent study has reported high frequencies

of genomic alterations and intratumoral heterogeneity in

the PB-Cre4; Ptenflox/flox; Trp53flox/flox model (Wanjala et al.

2015). This GEM model may therefore be useful for

investigating the extensive intratumoral heterogeneity

and clonal evolution typically observed in metastatic

human prostate cancers (Gundem et al. 2015, Hong et al.

2015, Shen 2015).
Cancer stem cells in GEM models of
prostate cancer

To date, candidate cancer stem cell populations have been

identified in several prostate cancer GEM models using cell

culture and/or grafting assays. One cell population of

particular interest has been the LinKSca-1CCD49fhigh

(LSChigh) population, based on the original finding that

WT LSChigh cells display stem cell properties (Lawson et al.

2007). In particular, the percentage of Sca1C and LSChigh

cells increases with disease progression in the PB-Cre4;

Ptenflox/flox model of high-grade PIN and prostate cancer

(Wang et al. 2006, Mulholland et al. 2009), and LSChigh
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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cells from PB-Cre4; Ptenflox/flox prostates form larger prosta-

spheres than controls (Mulholland et al. 2009). In

addition, LSChigh cells display tumor-propagating

activity after sorting and recombining with WT

urogenital sinus mesenchyme in renal grafts (Mulholland

et al. 2009). Furthermore, isolation of cells that express

high levels of CD166 (ALCAM) from the LSChigh popu-

lation further enriches for tumor prostasphere formation

(Jiao et al. 2012).

The identity of putative cancer stem cells has also been

investigated in more aggressive GEM models of prostate

cancer. Thus, tumor cells from PB-Cre4; Ptenflox/flox;

Trp53flox/flox mice, which rapidly develop lethal prostate

adenocarcinomas that are non-metastatic, form prosta-

spheres of greater size, have increased efficiencies of

colony formation, and develop tumors upon orthotopic

transplantation (Abou-Kheir et al. 2010). Similarly, LSChigh

cells from PB-Cre4; Ptenflox/flox; KrasLSL-G12D/C prostates,

which generate invasive and metastatic prostate tumors,

display increased prostasphere formation compared to

LSChigh cells from PB-Cre4; Ptenflox/flox prostates (Mulhol-

land et al. 2012). After orthotopic injection of prostasphere

cells established from PB-Cre4; Ptenflox/flox; KrasLSL-G12D/C

LSChigh cells into immunodeficient recipients, the result-

ing grafts form poorly differentiated carcinomas and

metastases that recapitulate the original tumor phenotype

(Mulholland et al. 2012). A recent study showed

that expression of a vimentin-GFP reporter in PB-Cre4;

Ptenflox/flox; KrasLSL-G12D/C animals can be used to isolate

tumor cells with mesenchymal features, as well as

tumor cells harboring both epithelial and mesenchymal

characteristics, which are termed ‘epithelial-mesenchymal

transition’ (EMT) tumor cells (Ruscetti et al. 2015). Both

mesenchymal-like tumor cells and EMT tumor cells

display a tumor-initiating capability, suggesting that

these populations also contain cells with cancer stem

cell properties (Ruscetti et al. 2015). Finally, studies of

KrasLSL-G12D/C prostate cells infected with lentiviruses

overexpressing Cre and AR indicate that epigenetic

mechanisms, such as the increased expression of Ezh2,

promote tumor-propagation and secondary tumor growth

(Cai et al. 2012).

Several GEM models of prostate cancer develop

castration-resistant tumors in response to androgen

deprivation and have been used for studies of castration-

resistant cancer stem cells. In particular, tumors in PB-

Cre4; Ptenflox/flox mice initially regress in response to

castration but subsequently regrow tumors that are

castration resistant, which is associated with an increase

in the percentage of LSChigh cells (Mulholland et al. 2009).
Published by Bioscientifica Ltd.
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Moreover, the CD166high population is also expanded in

prostates from castrated PB-Cre4; Ptenflox/flox mice, consist-

ent with the up-regulation of CD166 expression in

human castration-resistant prostate cancer (Jiao et al.

2012). Finally, the existence of castration-resistant

stem-like cells that have basal or intermediate

phenotypes in the proximal region of PB-Cre4; Ptenflox/flox

prostates is supported by analyses of PB-Cre4; Ptenflox/flox;

ARflox/Y animals lacking AR transcription factor activity

(Mulholland et al. 2011).

Taken together, these studies suggest the frequency of

tumor-propagating cells increases with tumor progression

and with tumor severity and supports the cancer stem cell

properties of the LSChigh population. However, the basal

phenotype of LSChigh cells in the normal prostate

epithelium raises questions about the specific properties

of this population in prostate tumors, which should have a

luminal phenotype. One possible explanation is that there

is a significant increase in the percentage of intermediate

cells that co-express basal and luminal markers in GEM

models with Pten inactivation (Mulholland et al. 2011,

Wang et al. 2013) and may harbor LSChigh cells.

Furthermore, the strong bias of the prostasphere assay

for growth of basal cells (Wang et al. 2013, Huang et al.

2015) would also be consistent with the identification of

LSChigh cells from GEM models. Thus, the identification of

additional candidate markers for cancer stem cells is

important for clarifying the role and identity of putative

cancer stem cells in GEM models of prostate cancer.

Notably, several other genes that are candidate

markers for stem/progenitor cells in the normal prostate

epithelium have also been proposed to serve as markers for

castration-resistant cancer stem cells. For example,

increased expression of Sca1, CD133, and c-kit has been

observed after the castration of TRAMP transgenic mice,

which have a minimal probasin promoter driving

expression of SV40 large and small T-antigens and

develop adenocarcinoma and neuroendocrine tumors, as

well as castration-resistant disease (Gingrich et al. 1997,

Chiaverotti et al. 2008). In addition, expression of Sox2

appears to mark a luminal castration-resistant stem cell

population in human prostate tumors and is increased in

PB-Cre4, Ptenflox/flox mouse tumors after castration

(Bae et al. 2010, Kregel et al. 2013, Wang et al. 2014a).

Another candidate cancer stem marker for a luminal

castration-resistant population is Nkx3.1, which is

expressed in rare castration-resistant Nkx3.1 expressing

cells (CARNs) (Wang et al. 2009), while human

CARN-like cells that survive castration have been

identified in BM18 human prostate cancer xenografts
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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(Germann et al. 2012). However, functional studies

evaluating tumor-propagating abilities have not yet been

conducted on all of these populations that have been

identified using these markers.
Role of tumor microenvironment and the
cancer stem cell niche

In a normal untransformed tissue, stem cell activity is

regulated by the surrounding microenvironment, or niche.

In the case of the prostate, the stem cell niche has not

been identified, although there is evidence that a stem/

progenitor population resides in the proximal prostate

(Tsujimura et al. 2002, Burger et al. 2005, Xin et al. 2005,

Goto et al. 2006). In principle, however, the functional

properties of cancer stem cells may be influenced by the

tissue microenvironment and the presence or absence of

the endogenous niche (Medema 2013).

For example, evidence for a role of the microenviron-

ment is provided by the PB-Cre4; Trp53flox/flox; Rbflox/flox

model, which develops aggressive tumors with both

luminal and neuroendocrine features in the proximal

but not distal prostate (Zhou et al. 2007). Interestingly,

both proximal and distal cells gave rise to tumors in assays

in which dissociated epithelial cells were injected sub-

cutaneously together with Matrigel into SCID mice,

suggesting a possible effect of the tissue microenviron-

ment in suppressing distal tumorigenesis in this GEM

model (Zhou et al. 2007). Conversely, the tissue micro-

environment may also be disrupted during tumor pro-

gression, which may affect the localization of

stem/progenitor cells. Thus, LSChigh cells have a basal

location in nonmutant prostates, but tumor LSChigh cells

from PB-Cre4; Ptenflox/flox prostates are in both basal and

luminal locations (Mulholland et al. 2009).

An additional study has provided evidence that

functional effects of the tissue microenvironment on

tumor-propagating cells can be exerted by stromal

components. In particular, prostasphere formation by

LSChigh cells from PB-Cre4; Ptenflox/flox tumors is increased

by co-culture with normal primary stromal cells or

urogenital sinus mesenchyme and further enhanced by

co-culture with cancer associated fibroblasts (CAFs) (Liao

et al. 2010). In addition, the PB-Cre4; Ptenflox/flox LSChigh

cells form highly proliferative tumor-like glandular

structures more efficiently in renal grafts after recombina-

tion with CAFs than with normal prostate fibroblasts (Liao

et al. 2010). To date, several distinct stromal subtypes,

including a Gli1-expressing stromal stem cell population,

have been defined in the normal mouse prostate (Peng
Published by Bioscientifica Ltd.
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et al. 2013), but more studies are required for functional

characterization of stromal populations in both the

normal and the transformed prostate and to identify

putative stromal signals that influence tumor propa-

gation. As a cautionary note, these findings also suggest

that results from cell culture and transplantation assays

in which putative cancer stem cells are isolated from

their native microenvironment should be interpreted

with caution.
Current challenges and future directions

It is important to emphasize that the identification of

cancer stem cells is limited by the functional assays

available for their detection. However, the methods used

for the isolation and analysis of cancer stem cells can

generate inherent biases. In particular, the dissociation of

tumor cells for flow cytometry and further analysis can

result in a bias for cells that are robust enough to survive

the dissociation methods (Kreso & Dick 2014). Further-

more, if the dissociated tumor cells are cultured in vitro or

transplanted to assay tumor propagation, they will also

undergo selection for cells able to grow in the specific

conditions utilized.

Notably, a major obstacle in the analysis of prostate

cancer stem cells has been the severe difficulties encoun-

tered in growing prostate cells with a luminal phenotype

(Peehl 2005). Although constitutive expression of the

Notch1 intracellular domain can suppress anoikis and

promote survival of some prostate luminal cells in prosta-

sphere assays (Kwon et al. 2014b), prostasphere assays are

highly biased toward the growth of basal cells (Wang et al.

2013, Huang et al. 2015). Thus, a significant recent

technological advance has been the development of two

independent culture systems that can promote growth of

luminal cells into three-dimensional organoids (Chua

et al. 2014, Gao et al. 2014, Karthaus et al. 2014). Both of

these culture conditions support the long-term growth of

mouse and human prostate tumor cells and should allow

the identification and functional analysis of luminal

cancer stem cells. Nonetheless, experimental findings

using organoid systems will require validation using

in vivo approaches and should be viewed as comp-

lementary to results obtained using GEM models.

In addition, although transplantation/grafting assays

represent highly important approaches for functional

analyses of candidate cancer stem cells, these assays test

the potential of cells to propagate tumors, and not

their actual fate (Magee et al. 2012). With respect to the

normal prostate, stem cell properties can be highly assay-
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dependent and may not reflect in vivo activities (Choi et al.

2012, Wang et al. 2013). Consequently, it is essential to

pursue in vivo studies of prostate cancer stem cells in GEM

models to establish their endogenous role in tumor

propagation (Fig. 1). In particular, lineage-tracing, clonal

analyses, and cell ablation studies have provided evidence

for cancer stem cells in solid tumors of the brain, skin, and

intestine (Chen et al. 2012, Driessens et al. 2012, Schepers

et al. 2012, Oshimori et al. 2015). Lineage-tracing studies

of metastasis in suitable GEM models, such the

Nkx3.1CreERT2/C; Ptenflox/flox; KrasLSL-G12D/C model (Aytes

et al. 2013), would also be useful to determine whether

cancer stem cells have the potential to serve as metastasis-

initiating cells. Interestingly, however, recent studies

provide evidence for polyclonal metastases in prostate

cancer patients, suggesting that metastases might be

seeded by multiple cells (Gundem et al. 2015, Shen 2015)

and raising the possibility that tumor-propagating activity

may itself require cooperative interactions between

different cell types (Marusyk et al. 2014).

Finally, it is evident that additional markers for cancer

stem cells will need to be identified, particularly those that

are conserved between mouse and human. For example,

candidate markers may emerge from next-generation

sequencing efforts of mouse and human prostate tumors,

as well as from molecular analyses of candidate cancer stem

cell populations identified in GEM models. Such studies

could lead to the identification of new cell surface markers

that will enable functional analyses of intratumor hetero-

geneity, as well as biomarkers with potential clinical utility.

In particular, biomarkers for castration-resistant stem cells

could potentially distinguish indolent from aggressive

disease and thereby decrease the overtreatment of indolent

prostate tumors, which represents a major clinical challenge.
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