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Abstract
Research in the area of stem/progenitor cells has led to the identification of multiple stem-

like cell populations implicated in prostate homeostasis and cancer initiation. Given that

there are multiple cells that can regenerate prostatic tissue and give rise to prostate cancer,

our focus should shift to defining the signaling mechanisms that drive differentiation and

progenitor self-renewal. In this article, we will review the literature, present the evidence

and raise important unanswered questions that will help guide the field forward in

dissecting critical mechanisms regulating stem-cell differentiation and tumor initiation.
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Introduction
The study of the control of epithelial differentiation began

with the so-called ‘Hen’s tooth’ experiment. Primitive

epithelium from chicken beak could be instructed to

develop into teeth when recombined with mouse

embryonic dermal papilla, even though the ancestor of

modern birds lost the ability to grow teeth w100–80

million years ago (Kollar & Fisher 1980). This ingenious

experiment demonstrated that epithelial differentiation

was not simply a cell-autonomous event, and it was

subsequently demonstrated across multiple organs that

tissue interactions maintain the stem cell niche and

dictate epithelial cell fate. Multiple lines of evidence

have now demonstrated that organs harbor tissue-

restricted multipotent progenitors into adulthood. The

regulation of these progenitors has been the subject of

intense research and debate with implications for a wide

range of diseases, including those of the prostate.

Because of the resistance of prostate progenitor cells

to current anti-androgen therapies, research has focused

on the identification of cells of origin for benign and

malignant prostatic growth. Striking similarities in the
regulation of epithelial stem cell niches have been

recognized across various tissues (Blanpain et al. 2007),

which may provide clues to the regulation of epithelial

differentiation and androgen-independent growth of

initiated stem cells in the prostate. There is ample

evidence that multiple cell types can act as progenitors

for fully differentiated secretory luminal cells but also as

cells of origin for prostate tumors (Fig. 1), which may

relate to the genotypic heterogeneity in prostate cancer.

We suggest that a deeper understanding of the

mechanisms that govern cell fate decisions in prostate

development, homeostasis and disease may provide new

avenues for patient-specific treatments.
Prostate diseases

The normal prostate is around 20 g in men between 21 and

30 years old. Benign prostate hyperplasia (BPH) of the

transition zone is a common age-related disorder,

observed histologically in 50% of men over 50 with

doubling time of 4.5 years in men between 51 and 70
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Figure 1

Model of prostate epithelial homeostasis and cancer initiation. In the

benign prostate, basal cells and luminal cells predominantly self-renew to

make more of themselves, while rare basal cells differentiate into the

luminal lineage. Upon basal cell transformation, basal to luminal

differentiation is enhanced and cancers become driven by tumorigenic

luminal cells in the absence of the initiating basal cells. Luminal

transformation rapidly gives rise to tumorigenic luminal cells.
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years old (Berry et al. 1984). Lower urinary tract symptoms

(LUTS) due to an enlarged prostate are predominantly

treated with 5 alpha reductase inhibitors (5ARI), which

reduce prostate volume w25%, predominantly through

apoptosis of androgen-dependent epithelia (The Finasteride

Study Group 1993). Baseline prostate volume is the most

reliable indicator of future resistance to 5ARI therapy

(Roehrborn 2006), making the understanding of andro-

gen-independent prostate growth crucial to slowing

symptomatic progression.

Prostate cancer is the most common non-cutaneous

malignancy and second leading cause of cancer mortality

in Western men, and has been treated with surgical and

chemical androgen deprivation therapy for 60 years

(Huggins & Hodges 2002). Because of the inability to

predict which tumors will progress to cause lethality,

biopsy and surgical intervention are necessarily overused

(Vickers et al. 2011, Schroder et al. 2012). Although most

men initially respond to androgen deprivation, castration-

resistant cancer almost universally recurs (The Leuprolide

Study Group 1984). Furthermore, our continued effort at

better targeting androgen signaling has not drastically

improved survival, due to tumor cell compensatory

mechanisms (Antonarakis et al. 2014).

The design of new treatments for androgen-indepen-

dent progression of BPH and prostate cancer relies on a

deeper understanding of the extrinsic and intrinsic
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0195 Printed in Great Britain
regulators of prostate epithelial differentiation. Persistent

growth in both benign and malignant disease has led

many to suggest that progression is driven either by clonal

evolution (Gundem et al. 2015, Hong et al. 2015) or by

androgen-independent progenitors giving rise to andro-

gen-dependent progeny. The search for these progenitors

has revealed a deeper understanding of the lineage

hierarchy of prostate epithelium, but many questions

remain as to the triggers that regulate self-renewal and

differentiation. The answers to these questions may

provide a way to therapeutically target the tumor-

propagating cell types.
Prostate glandular composition and the origins of disease

Prostate glands are composed of a pseudostratified bilayer

of basal and luminal epithelium, which are positional

terms that do not fully reflect the cellular subtypes within

each layer (Abate-Shen & Shen 2000). The basal epithelial

layer is believed to contain a small (!5%) population of

multipotent stem cells, which are thought to give rise to

committed basal, transit amplifying, intermediate cell

phenotypes and the luminal/secretory layer, which also

contains a small population (!1%) of progenitors (Uzgare

et al. 2004, Xin et al. 2007, Wang et al. 2009, Rane et al.

2014). The basal and luminal epithelial layers are thought

to be important in the pathogenesis of both benign and
Published by Bioscientifica Ltd.
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malignant prostate disease, albeit for different reasons

(De Marzo et al. 1998). Proliferation of basal/stem cells is

thought to contribute to benign prostatic enlargement,

although direct evidence for this is still lacking (Dermer

1978, Isaacs & Coffey 1989). Alternatively, primary

prostate cancers are characterized by the loss of basal

epithelium (Brawer et al. 1985) and the multiclonal exp-

ansion of luminal epithelial foci (Grisanzio & Signoretti

2008, Lindberg et al. 2013); however, after androgen

deprivation therapy, residual tumor-propagating cells

repopulate the de-bulked tumor (Germann et al. 2012)

and lead to lethal monoclonal metastases (Liu et al. 2009).

BPH nodules also appear to be clonal (Blackwood et al.

2011, Gaisa et al. 2011) and many men are, or become

resistant to 5ARI therapy (McConnell et al. 2003), which

may be due at least in part to androgen-independent

growth mechanisms in basal cells (Isaacs 2008, Bauman

et al. 2014, Lin-Tsai et al. 2014).

Early evidence that basal cells could give rise to

luminal cells in the adult was shown by [3H]-thymidine

uptake and Ki67 immunoreactivity in BPH tissue, which

showed that actively dividing cells were predominantly

localized to the basal compartment (Dermer 1978, Bonkhoff

et al. 1994). This observation led to the hypothesis that a

resident stem cell within the basal compartment could

give rise to a luminal cell since the ratio of basal to luminal

cells was unchanged (Isaacs & Coffey 1989). Many have

since demonstrated that an indigenous, androgen-inde-

pendent prostate progenitor cell survives castration and

can repopulate the luminal layer upon re-administration

of androgen (English et al. 1987, Verhagen et al. 1988,

Wang et al. 2009, Germann et al. 2012, Shi et al. 2014). The

development of cell lineage tracing in mouse models

coupled with antibody-based cell sorting and ex vivo

culturing have more specifically identified both basal

and luminal progenitors that contribute to glandular

development, adult homeostasis and post-castration

regeneration (Collins et al. 2001, Wang et al. 2009, Ousset

et al. 2012, Shi et al. 2014), and these same markers can be

used to identify and study progenitors in human prostate

(Goldstein et al. 2008, Karthaus et al. 2014).

Developmental signaling in the urogenital mesench-

yme directs solid cords of p63-positive epithelial progeni-

tors to bud from the urogenital sinus epithelium and give

rise to basal, luminal and neuroendocrine cell types

(Signoretti et al. 2005). Cell lineage tracing has confirmed

that these p63C, ck14C progenitors give rise to all

epithelial lineages through asymmetrical divisions during

development, but that fully differentiated luminal cells

are derived mainly from symmetrical division of luminal
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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progenitors in the homeostatic adult (Choi et al. 2012,

Ousset et al. 2012, Wang et al. 2014a). However, stress

conditions during adulthood such as androgen depri-

vation and inflammation drive luminal cell differentiation

from both basal and luminal progenitors (Wang et al.

2013, Kwon et al. 2014).

In adulthood, a subset of basal epithelial cells are

multipotent and have been reported to be enriched or

isolated based on either expression of various cell surface

markers, including Sca-1, CD44, CD49f, a2b1 integrin,

Trop2, CD117 and CD133, and the capacity for self-

renewal in serially passaged 3D cultures (Collins et al.

2001, Bhatt et al. 2003, Hudson 2004, Richardson

et al. 2004, Xin et al. 2005, Goldstein et al. 2008, Leong

et al. 2008, Garraway et al. 2010, Ousset et al. 2012). The

luminal layer also contains a small population of CK18C,

Nkx3.1C progenitors that are resistant to castration and

can contribute to the repopulation of luminal secretory

cells after re-administration of androgen (English et al.

1987, Leong et al. 2008, Wang et al. 2009, Chua et al. 2014,

Shi et al. 2014). Finally, recent evidence in mice suggests

that a label-retaining progenitor population that expands

following castration and regeneration is CD133C, Sca-1C,

CD44C, CD49fC and CD117C, but also ARC (Shi et al.

2014). A similar a2b1Hi, CD133C progenitor enriched by

FACS from human prostate was also shown to express

functional androgen receptor (AR) (Williamson et al.

2012), but it’s still unclear whether androgen deprivation

therapy may inadvertently expand a progenitor popula-

tion capable of tumor propagation or 5ARI-resistant BPH.
Models for the characterization of progenitors

There is still considerable controversy over the identity of

the tumor-propagating cell in prostate cancer, predomi-

nantly because of the various techniques used to define

progenitor cell properties. Flow cytometry, serial passa-

ging of ex vivo 3D spheres, tissue regeneration with

inductive mesenchyme and genetic lineage tracing are

each used to characterize whether a cell displays the ability

to self-renew or differentiate. Prostate stem cells were

originally isolated by flow cytometry using cell surface

markers that were enriched either in functionally analo-

gous epidermal stem cells (Collins et al. 2001) or after

castration (Lawson et al. 2007, Goldstein et al. 2008).

Functional characterization of the self-renewal and

differentiation capacity of these putative prostate stem cell

populations is accomplished using tissue regeneration

with inductive mesenchyme followed by kidney capsule

xenografting (Xin et al. 2003) as well as serial passaging
Published by Bioscientifica Ltd.
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as 3D spheres (Collins et al. 2001, Xin et al. 2007). These

studies clarify that only a subpopulation of basal cells has

the capacity to self-renew or give rise to differentiated

progeny in vivo. However, lineage tracing studies of basal

cell self-renewal and differentiation in the homeostatic

adult indicate that, when removed from their endogenous

tissue microenvironment, the plasticity of basal cells in 3D

cultures or tissue regeneration, xenografting causes an

overestimation of the physiological relevance of their

contribution as progenitors of luminal epithelium,

mimicking non-homeostatic conditions such as

castration, inflammation or initiation (Wang et al. 2013,

2014b). We will look at the meaningful differences and

overlapping contributions of each model system.
Mouse models

Due to the emergence of castration-resistant lethal cell

types after hormonal therapy, there has been an intense

search for the tumor cell of origin in order to thera-

peutically target the tumor-propagating cell type. In

contrast to reductionist cell culture models, mouse models

provide an experimental system to test the effects of

genetic manipulation in a cell’s native environment. For

many years, oncogenes and tumor suppressor genes were

driven or knocked out in mice using the probasin

promoter, which is predominantly expressed in luminal

epithelium (Grabowska et al. 2014). The realization that

the basal epithelium contains a stem cell population and

many of the tumor suppressors (e.g., PTEN, Notch, p53,

p63, Bcl-2) and oncogenes (e.g., c-MYC, b-catenin) altered

in human prostate cancer progression prompted the

generation of mouse models using promoters from genes

expressed in basal cells (CK5, CK14) in order to determine

whether a basal cell could be a tumor cell of origin

(Abate-Shen & Shen 2000). Direct comparisons of genes

using basal and luminal promoters suggests that basal and

luminal cells can each serve as targets of prostate cancer

initiation (Wang et al. 2006, Korsten et al. 2009, Choi et al.

2012), but that tumors propagated by transformed

luminal cells more closely resemble human prostate

carcinomas (Wang et al. 2014b).
Tissue regeneration

Early work by Cunha & Lung (1978) identified presump-

tive stroma, or mesenchyme, as essential for prostate-

specific epithelial differentiation. Cunha et al. (1983a,b)

went on to show, using heterotypic tissue recombination,

that mesenchyme from any species could instruct
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0195 Printed in Great Britain
epithelium from other endodermal lineages to differ-

entiate into a new cell type. Various androgen-regulated

stromal factors were shown as paracrine factors (insulin-

like growth factors (IGFs), fibroblast growth factors (FGFs),

vascular endothelial growth factor (VEGF), Wnt) that

could regulate epithelial differentiation, though these

‘andromedins’ are still poorly characterized (Thomson

2008). These studies demonstrated the powerful extrinsic

control of tissue interactions on epithelial differentiation

during development and paved the way for the study of

stromal alterations that contribute to prostate cancer

progression (Strand et al. 2010).

Lineage tracing in mouse models demonstrates that

initiation of basal cells causes both progenitor cell

enrichment (Mulholland et al. 2009) and basal-to-luminal

differentiation (Lu et al. 2013, Wang et al. 2013). Con-

cordant results are seen when murine or human basal

epithelium isolated by FACS and initiated with oncogenes

ex vivo recapitulate the histological and molecular features

of human prostate cancer upon tissue regeneration with

inductive fetal mesenchyme (Goldstein et al. 2010, Lawson

et al. 2010). Furthermore, luminal tumors can be serially

propagated in the absence of basal cells (Stoyanova et al.

2013). What is still unclear is whether the serially passaged

tumor is propagated by an emergent intermediate or

luminal progenitor derived from the transformed basal cell.

While the majority of differentiation events occur

from basal to luminal cells, luminal to basal cell

differentiation has also been observed in both lineage-

traced mice and in ex vivo organoid cultures (Karthaus et al.

2014). Regardless of the representative numbers of specific

progenitor populations in vivo, the functional capacity of

distinct basal and luminal progenitors to give rise to fully

differentiated luminal progeny, especially under inflamed

or castrate conditions, is of utmost importance for

developing therapeutic strategies to target androgen-

independent progenitors.
Cell culture

Because of the limited access to patient samples and the

limited amount of starting material to work with, one of

the most promising advances in prostate stem cell research

is the optimization of culture conditions for expanding

and differentiating stem cells in culture (Sato et al. 2011,

Clevers et al. 2014). The inductive power of fetal

mesenchyme in driving epithelial differentiation is still

poorly understood (Cunha & Lung 1978), so optimizing

the media conditions necessary for feeder-free cultures will
Published by Bioscientifica Ltd.
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provide the reductionist systems necessary for dissecting

the mechanisms responsible for cell fate decisions.

The cancer stem cell hypothesis states that a geneti-

cally unstable progenitor retains unlimited self-renewal

while a subset of its progeny still matures to a luminal-like

secretory cell phenotype (Visvader & Lindeman 2012).

Prostate carcinomas display luminal exocrine, neuro-

endocrine and intermediate cell phenotypes. The transit

amplifying or intermediate cells are proposed to be the

progenitors within the tumor and consequently targets

for androgen-independent progression (van Leenders &

Schalken 2003).

In order to understand the underlying mechanisms

of self-renewal and differentiation, a variety of different

culture models have been attempted for the propagation

and differentiation of prostate epithelial progenitors.

Litvinov et al. show that low-calcium, serum-free media

can select for CD133C/ABCG2C/a2b1Hi/p63C/PSCAK/

ARK/PSAK stem cells from primary human prostate as well

as immortalized human prostate epithelial cultures, and

that the selected stem cells could give rise to both

neuroendocrine and CD133K/p63C/PSCAC intermediate

cell lineages. However, the intermediate cell lineage could

not be fully differentiated into CD133K/p63K/PSCAK/

ARC/PSAC secretory luminal epithelium even after the

addition of dihydrotestosterone (DHT) (Litvinov et al. 2006).

Taking this work one step forward, Heer et al.

(2006) used flow cytometry to sort human prostate

CD133K/a2b1Hi transit amplifying cells and

CD133C/a2b1Hi stem cells to determine the mechanisms

that cause terminal differentiation into luminal secretory

cells. They demonstrate that keratinocyte growth factor

(KGF) can drive transit amplifying progenitor (TAP)

differentiation by downregulating b1 integrin through

p38 activation. In addition, they demonstrate that

CD133K/a2b1Hi transit amplifying cells express AR

mRNA, but AR protein is under constant proteasomal

degradation. The CD133C/a2b1Hi stem cell population

did not express AR mRNA or protein (Heer et al. 2007).

Lamb et al. (2010) developed a primary human

prostate epithelial cell stratification model where a

confluent population of K5C/K14C/BclK2C/EGFRC/ARK

basal cells would give rise to overlaying patches of fully

differentiated K18C/K19C/ARC/Nkx3.1C/TMPRSS2C

secretory luminal cells after 14 days in culture with DHT

and the stromal derived factors FGF7 or FGF10. Although

the nuclear localization of AR was limited in this model,

it still represented an advance over previous attempts

to culture fully differentiated luminal epithelium using

retinoic acid, insulin or FGFs (Peehl et al. 1996, Gustafson
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0195 Printed in Great Britain
et al. 2006). Another group using primary cultured basal

(K14C/p63C) and transit amplifying (K18C/ARK) epithelial

cells in culture showed that the addition of 1,25-diydroxy-

vitamin D3, all-trans retinoic acid, and TGF-b1 could

induce low levels of AR transcription while the added

inhibition of the mitochondrial protein MAO-A with

clorgyline increased AR protein levels (Zhao et al. 2008).

This is consistent with the observation that basal cells are

more densely populated with mitochondria than luminal

cells (El-Alfy et al. 2000) and may suggest that a metabolic

rewiring is partially necessary for cellular differentiation.

One of the key difficulties with these culture models is

that primary cells eventually undergo senescence after a

few passages (Litvinov et al. 2006), requiring a constant

supply of fresh tissue from patients with inherently

variable genetic and clinical backgrounds. A further

complication is the limited number of stem cells within

normal tissue (1–5% of total cells) and the limited amount

of starting tissue. Most immortalized cell lines do not fully

recapitulate normal glandular architecture, and while

spontaneously immortalized human prostate epithelial

cell lines have been developed for the serial study of

normal differentiation, their self-renewal properties are

difficult to assess given the random duplications and

deletions acquired during the immortalization process

(Jiang et al. 2010). However, it has recently been

demonstrated that both basal (Xin et al. 2007, Lamb et al.

2010, Lukacs et al. 2010, Goldstein et al. 2011, Hofner et al.

2015) and luminal (Wang et al. 2009, Karthaus et al. 2014)

progenitors can be propagated and differentiated ex vivo

under optimized culture conditions, enabling their mol-

ecular, cellular and pharmacological assessment. Using an

R-spondin-based organoid technology developed for the

culture of a variety of epithelial tissues including the

intestine (Sato et al. 2009), several groups have identified

factors that promote both multi-lineage differentiation

and long-term expansion of prostate tissue (Chua et al.

2014, Gao et al. 2014, Karthaus et al. 2014). In this assay,

both basal and luminal cells appear multipotent, capable of

generating organoids containing markers of both the basal

and luminal lineages (Karthaus et al. 2014). The organoid

system may enable a new approach to investigate lineage

hierarchy, transformation and mechanisms of self-renewal

and differentiation without the use of animal models.
Molecular regulation of prostate stem cell self-renewal

and differentiation

The optimization of culture conditions for the propa-

gation of stem cells was based on the discovery of common
Published by Bioscientifica Ltd.
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mechanisms of stem cell self-renewal and differentiation

(Blanpain et al. 2007, Karthaus et al. 2014). In particular,

the addition of the Wnt pathway agonist R-spondin1 is

necessary to maintain human and mouse organoids

(Karthaus et al. 2014). The R-spondin receptor Lgr4 is

strongly expressed in Sca-1C/CD49fC prostate progenitor

cells and is required for proper luminal differentiation as

shown in Lgr4 knockout mice (Luo et al. 2013). The

authors went on to show that Wnt3a plus R-spondin3

co-treatment promotes b-catenin-mediated p63high cell

proliferation and differentiation. It may seem counter-

intuitive to characterize basal cells as ‘differentiated,’ but it

has been recognized by some groups that the 95–99% of

basal cells that do not display self-renewing progenitor

characteristics are an independent lineage termed ‘com-

mitted’ basal cells (Maitland et al. 2011, Rane et al. 2014).
Paracrine regulation of epithelial differentiation and

tumorigenesis

The Wnt/b-catenin pathway is a prime example of the

control of stem cell self-renewal and differentiation

control by paracrine interactions with stroma. The ability

of stroma to drive epithelial transformation in the adult

has been demonstrated by tissue recombination using

both human and mouse tissues. Hayward et al. (2001)

showed that freshly isolated human carcinoma associated

fibroblasts could drive transformation of a non-tumori-

genic human prostate epithelial cell line. At around the

same time, the stromal reaction adjacent to sites of

prostatic intraepithelial neoplasia, a precursor to prostate

cancer, was characterized (Tuxhorn et al. 2002), and this

stromal reaction could be used to independently predict

prostate cancer recurrence (Ayala et al. 2003).

Among others, alterations to the Wnt/TGF-b pathway

have been shown to be critical to the protumorigenic

activity of the stroma (Li et al. 2008, Placencio et al. 2008,

Franco et al. 2011, Carstens et al. 2014). The abrogation of

TGF-b signaling in a subpopulation of stromal cells alone

is sufficient to drive epithelial carcinogenesis in either

mouse or human experimental systems (Bhowmick et al.

2004, Franco et al. 2011), and this is at least partially due

to increased stromal Wnt production (Li et al. 2008,

Placencio et al. 2008).
Regional differences in the human prostate stem cell niche

The development of benign and malignant prostate

disease in humans is largely restricted to anatomical

zones (transition and peripheral respectively), suggesting
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0195 Printed in Great Britain
intrinsic differences in control of cytodifferentiation

(McNeal et al. 1988). Given the concentration of

progenitor cells in the proximal prostate in mouse

(Tsujimura et al. 2002, Goldstein et al. 2008), it would be

intriguing to determine whether the same anatomical

concentration of progenitors in the basal layer could be

detected in human prostate transition vs peripheral zones.

Since basal cells are more resistant to transformation (Choi

et al. 2012) and are likely cytoprotective due to their loss in

cancer, it would also be informative to determine whether

there are molecular differences between the stem cell

niches in the transition vs peripheral zones.
Role of progenitor cells in BPH

It has been postulated that stem cell expansion is

responsible for the nodular growth of the transition zone

in BPH, but direct evidence for this is still lacking.

Although there are a variety of histological phenotypes

associated with lower urinary tract symptoms, the

treatment of an enlarged prostate is still the most difficult,

with only a third of patients responding to 5ARIs

(McConnell et al. 2003, Roehrborn 2006). Molecular

signatures of men who undergo surgery for lower urinary

tract symptoms related to benign prostatic hyperplasia/

lower urinary tract symptoms (BPH/LUTS) have been

generated and are correlated with AP-1 transcription factor

expression (Descazeaud et al. 2008, Lin-Tsai et al. 2014),

but analyses of progenitor populations have not been

performed. However, recent histological evidence does

suggest that activation of the Wnt/b-catenin pathway in

hyperplastic basal cells is associated with surgical inter-

vention for BPH/LUTS (Bauman et al. 2014), suggesting

potential activation of a progenitor pathway.
Transformation of basal cells results in a luminal

phenotype

Although prostate tumors share the genetic variability

observed in other organs (Watson et al. 2013), 95% of

human prostate tumors are luminal-like adenocarcinomas

(Grisanzio & Signoretti 2008, Wang et al. 2014b). Even

when basal cells are experimentally transformed for tissue

regeneration, luminal adenocarcinomas are mostly pro-

pagated rather than basal cell carcinomas, suggesting a

differentiation event occurs before full transformation

(Goldstein et al. 2010, Lawson et al. 2010, Stoyanova et al.

2013, Wang et al. 2013). However, if a basal cell is a tumor

cell of origin, as has been shown in experimental animal

models, one has to wonder why basal or squamous cell
Published by Bioscientifica Ltd.
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carcinomas represent such a small percentage of prostate

tumor phenotypes (and usually occur in the transition

zone) (Ali & Epstein 2007). In both animal models and

tissue recombination xenografting experiments, the

transformation of the basal epithelium can lead to both

basal- and luminal-like tumors, with luminal phenotypes

capable of repeated propagation in the absence of the

initiating transformed basal cell (Choi et al. 2012,

Stoyanova et al. 2013). This has led many to posit that

transformation of basal epithelium simply leads to a

differentiation event (Hudson et al. 2001, Choi et al.

2012, Wang et al. 2013). Therefore, the question of

whether prostate cancer is a basal or luminal phenotype

(Wang et al. 2009, Maitland et al. 2011, Choi et al. 2012)

may not be as important as understanding the

mechanisms that regulate self-renewal vs differentiation

in normal and transformed progenitor cells. In fact, the

use of differentiation-promoting histone deacetylase

inhibitors (Gottlicher et al. 2001) can sensitize stem-like

prostate cancer cells to radiation (Frame et al. 2013),

suggesting that further understanding of the mechanisms

promoting differentiation may be useful to enhancing

current therapies.
Neuroendocrine differentiation

Studies in mouse models demonstrate that basal cells and

some luminal cells can give rise to neuroendocrine cells

in the normal prostate (Goldstein et al. 2008, Wang et al.

2009). It has yet to be shown whether primary human

prostate stem/progenitor cells can generate neuroendo-

crine cells in vivo. Other data indicate that prostate cancer

cell lines with a luminal-like adenocarcinoma phenotype

can take on neuroendocrine features following androgen

deprivation (Burchardt et al. 1999). These data suggest that

neuroendocrine cells can be derived from neighboring

epithelial cells and tumor cells. Given the emergence of

castration-resistant tumors with small cell or neuroendo-

crine features in response to newer therapies capable of

suppressing the androgen-signaling axis (Beltran et al.

2014), understanding the role of neuroendocrine differ-

entiation from normal and malignant prostate epithelial

cells is critical for treating aggressive treatment-resistant

disease.
Difficulty in recapitulating native tissue interactions using

human models

Ex vivo 3D culturing systems of freshly isolated mouse and

human prostate epithelia are being developed to study
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0195 Printed in Great Britain
differentiation in the absence of interaction with stroma

(Karthaus et al. 2014). While these reductionist culture

conditions will be highly valuable in answering specific

questions about the intrinsic control of cellular differen-

tiation, the study of the role of the microenvironment

in controlling epithelial differentiation and possibly even

tumor genotype still requires an experimental system

capable of tissue interactions (Goldstein & Witte 2013).

This dichotomy is particularly evident when comparing

lineage tracing of progenitors in mouse models to either

serial passaging of progenitors in a non-native matrix

ex vivo or in further tissue regeneration experiments with

inductive (reprogramming) mesenchyme. Given that

tissue regeneration with human cells requires the use of

immunocompromised mice, transgenic mouse models are

particularly useful for studying the role of both the stroma

and inflammation as paracrine regulators of epithelial

differentiation. More work is necessary to improve human

models to account for epithelial–epithelial and epithelial–

stromal interactions.
Summary

Using a number of model systems, researchers have

demonstrated that a range of cell-types can generate

luminal cells in vitro or in vivo. We hypothesize that any

progenitor cell that can give rise to the luminal lineage

under experimental conditions can respond to oncogenic

transformation by generating malignant luminal progeny.

It is now critical to determine whether the cell of origin

influences the fate of the tumor (aggressive vs indolent) or

whether this is determined by genetic alterations or the

tumor microenvironment. This is a difficult question to

model in mice given the huge differences between mouse

and human prostate epithelial basal-to-luminal ratio and

basal cell phenotype. It will also be critical to determine

whether there are common mechanisms required to make

a luminal cell (or prostate cancer cell) regardless of the

starting cell and whether that information can be used to

detect, prevent or treat prostate cancer.
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